A Digital Biomarker for Identifying Changes in Daily Activity Patterns

Nan Fletcher-Lloyd¹,³*, Alina-Irina Serban²,³, Magdalena Kolanko¹,³, David Wingfield¹,³, Danielle Wilson¹,³, Ramin Nilforooshan³,⁴, Payam Barnaghi¹,³, and Eyal Soreq¹,³

¹Department of Brain Sciences, Imperial College London, London, UK
²Dyson School of Design Engineering, Imperial College London, London, UK
³Care Research & Technology Centre, The UK Dementia Research Institute
⁴Surrey and Borders Partnership NHS Foundation Trust
*Corresponding Author

October 25, 2022

Abstract

Malnutrition and dehydration are strongly associated with increased cognitive and functional decline in people living with dementia (PLWD), as well as an increased rate of hospitalisations in comparison to their healthy counterparts. Extreme changes in eating and drinking behaviours can often lead to malnutrition and dehydration, accelerating the progression of cognitive and functional decline and resulting in a marked reduction in quality of life. Unfortunately, there are currently no established methods by which to objectively detect such changes. Here, we present the findings of a quantitative analysis conducted on in-home monitoring data collected from 73 households of PLWD. The Coronavirus 2019 (COVID-19) pandemic has previously been shown to have dramatically altered the behavioural habits, particularly the eating and drinking habits, of PLWD. Using the COVID-19 pandemic as a natural experiment, we show that there are significant changes in eating and drinking habits at the group level within a subset of 21 households of PLWD that were continuously monitored for 499 days, with an overall increase in day-time activities and a decrease in night-time activity observed in both single and multiple occupancy households. We further present preliminary results suggesting it is possible to proactively detect episodic and gradual changes in behaviours. Together, these results pave the way to introduce improvements into the monitoring of PLWD in naturalistic settings and for shifting from reactive to proactive care.

1 Introduction

There are currently around 50 million people living with dementia (PLWD) worldwide, and this number is estimated to rise to approximately 150 million by 2050 [¹, ²]. Malnutrition and dehydration are strongly associated with increased cognitive and functional decline in PLWD [³, ⁴, ⁵, ⁶]. Furthermore, PLWD are more likely to experience malnutrition and dehydration when compared to age-matched controls [⁷, ⁸], with such events accounting for ten times more hospital admissions in PLWD [⁹]. Extreme changes in eating and drinking behaviours often result in episodes of malnutrition and dehydration. With malnutrition and dehydration being linked to the acceleration of cognitive and functional decline, this can lead to a marked reduction in quality of life. As such, it is crucial to detect changes in the in-home eating and drinking habits of PLWD. Despite this, there are currently no established methods by which to objectively detect such changes.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
There are many reasons why a change in eating and drinking habits might occur. The cognitive and functional decline symptomatic of a dementia diagnosis can increase the likelihood of physical difficulties in food preparation and feeding (having trouble chewing and swallowing), as well as shopping, and these changes tend to vary dependent on the progression of the disease. Another reason may be that the PLWD is experiencing a change in their state of health due to an underlying adverse health condition. Additionally, external factors that occur outside the disease model, such as a change in household occupancy or a catastrophic event, can also affect the eating and drinking behaviours of PLWD.

1.1 Problem Statement

PLWD are among the most clinically vulnerable patient group in the population. They have a higher rate of hospitalisation in comparison to age and gender-matched healthy controls, particularly for preventable adverse health conditions such as malnutrition and dehydration. Furthermore, they have a reduced tendency to consult with healthcare professionals.

In this study, we use in-home monitoring systems to detect changes in behavioural patterns of PLWD. The emergence of Internet of Things technologies provides us with an unprecedented ability to continuously monitor and quantify behavioural patterns of PLWD passively and in real-world settings. Recently, there have been several studies that have focused on the benefits of assistive living technologies for PLWD. For instance, Ishii et al. and Urwyler et al. employed passive infrared motion (PIR) sensors to monitor activities of daily living to differentiate between healthy controls and PLWD. By monitoring the continuity and regularity of performance of these activities, these studies were able to suggest a method by which to identify the onset of neurodegenerative dementias in the earlier stages of disease. Previous work has also been done on time series anomaly detection applied to in-home monitoring data. For instance, Monekosso et al. employed the Hidden Markov Model (HMM) technique to model behaviour from sensor data that had undergone distance-based clustering to group the activities of daily living of a PLWD. Despite being one of the most widely used techniques, HMMs suffer two main limitations: they do not take into account the temporal patterns generated from sensors, and their Black Box approach leads to reduced explainability of the model’s decision-making process. As such, the focus of our current work is on developing a 'Glass Box’ approach to anomaly detection that considers temporality.

Here, we use COVID-19 as a natural experiment to observe how household routines can be affected by external catastrophic events. From the start of the Coronavirus pandemic in December 2019 (COVID-19), governments worldwide have attempted to slow the spread of this disease using quarantining measures. Since then, several reviews have reported changes in behavioural patterns at a population level. These changes included increased snacking, as well as an increase in food intake (amount and frequency). Existing research has investigated the effects of lockdown on PLWD, with findings indicating that PLWD experienced changes in their in-home eating and drinking habits when in quarantine. However, most of these studies used telephone questionnaires to collect this data. Such an approach is not only overly reliant on self-reporting - which is not always feasible for PLWD - but could also be highly subjective. The use of remote monitoring technologies allows us to investigate previous statements in literature at a quantitative level.

Further to this, we introduce a novel ‘Glass Box’ approach by which initial findings suggest it is possible to detect changes in the in-home behaviours of PLWD. Such findings pave the way to shift the provision of care from reactive to proactive care for PLWD and people living with other long-term health conditions.

2 Results

Data was collected from the kitchens of 73 homes of PLWD. We conducted retrospective analyses to investigate the effect of the COVID-19 pandemic on the in-home eating habits of PLWD on a subset
of households of PLWD. We then developed a digital biomarker to investigate whether it was possible to detect catastrophic changes in the in-home eating and drinking habits of PLWD.

2.1 Higher activity levels within the kitchen during the pandemic

Data was collected from a subset of 21 households of PLWD between the 1st of December 2019 and the 12th of April 2021 using a passive infrared motion sensor, a door sensor on the fridge door, and smart plugs for the kitchen appliances (see Figure 1c). In total, over 2 million unique observations were recorded across 499 days. Changes in activity patterns were examined over seven time periods: P1 - acted as a baseline for kitchen activity (from the 1st of December 2019 to the 30th of January 2020); P2 - the onset of COVID-19 in the UK with the first infections being recorded (the 31st of January 2020 to the 23rd of March 2020); P3 - the introduction of the first UK lockdown with a stay-at-home ruling announced alongside measures such as social distancing and self-isolation (the 24th of March 2020 to the 1st of June 2020); P4 - relaxation of the first UK lockdown and introduction of restrictions focused on local lockdowns and remote working (the 2nd of June 2020 to the 5th of November 2020); P5 - the second UK lockdown (the 6th of November 2020 to the 2nd of December 2020); P6 - relaxation of the second UK lockdown but with continued Tier 4 level restrictions (the 3rd of December 2020 to the 6th of January 2021); and P7 - the third UK lockdown (the 7th of January 2021 to the 12th of April 2021)(see Figure 2).

Mean household kitchen activity was calculated based on the sum of mean daily activity across the different kitchen sensors. We used linear mixed effects modelling and analysis of variance to compare kitchen activity between the pre-COVID baseline (P1) and the pandemic periods (P2 - P7). All values are reported here to three significant figures (3.s.f.). First, we compared activity between P1 and all other periods combined. The onset of the COVID-19 pandemic in the UK is associated with a significant increase in kitchen activity ((t(21) = 5.28***)). This increase can also be observed in the mean activity across the different sensors at different re-sampling frequencies of decreasing (finer) granularity (see Figure 3a-c). The main effect of changes in activity due to COVID-19 can be seen in both single and multiple occupancy households (F(1,21) = 21.0***), but with no effect of occupancy and no interaction between activity in the COVID-19 pandemic and occupancy (see Figure 4a). Next, we modelled each pandemic period separately (see Figure 4b), with the main effect of COVID-19 being a significant increase in kitchen activity from P1 onwards (F(6,126) = 10.77***) but with no significant effect of occupancy or interaction between activity across the pandemic periods and household occupancy.

\[
TotalActivity \sim pandemic + (1|subject)
\]

(1)

\[
TotalActivity \sim pandemic \ast occupancy + (1|subject)
\]

(2)

\[
TotalActivity \sim period + (1|subject)
\]

(3)

\[
TotalActivity \sim period \ast occupancy + (1|subject)
\]

(4)

The change in kitchen activity between the baseline and all the pandemic periods combined was also specific to the time of day (see Figure 5). Activity levels in the kitchen changed significantly during the nighttime hours but less so during the daytime hours, with a significant interaction between COVID-19 and time of day (F(3,147) = 3.62*)). This interaction can also be seen when the pandemic periods were modelled separately (F(18,567) = 2.74***). Whereas the daytime hours saw an initial increase in the level of kitchen activity during the earlier stages of the pandemic (P2 - P3) before beginning to return to baseline levels, night-time kitchen activity saw an initial increase (P3) followed by a continuous decrease (past baseline) from P4 to P7, without returning to baseline (see Figure 5b).

\[
TotalActivity \sim pandemic \ast time + (1|subject)
\]

(5)

\[
TotalActivity \sim period \ast time + (1|subject)
\]

(6)
2.2 Proof-of-concept for a Digital Biomarker

Having observed that a catastrophic event such as the COVID-19 pandemic significantly affects kitchen activity levels, we then set out to further investigate whether such changes are reflected in the daily behavioural patterns. Using kitchen activity data as a proxy, we derived transition matrices as behavioural patterns reflecting in-home eating and drinking related activities throughout the day across time. We then used the Frobenius distance to gauge a measure of dissimilarity between subsequent transition matrices. Here, we present a proof-of-concept for an explainable digital biomarker that can be used to proactively detect changes in behaviours.

For our proof-of-concept, we set the step frequency of the sliding window to 1 day and the current and baseline windows to 1 and 3 weeks, respectively. Initial transition matrices were derived using an hourly re-sampling rate. Time windows were chosen based on clinical relevance, balancing the need to detect both episodic and gradual changes.

2.2.1 Synthetic Tests

We first tested our algorithm on synthetic data that we derived from a single household within our study cohort. Using this synthetic data, we were able to manually induce events to mimic possible biomarker change-points.

Our synthetic data was first derived as a single 24-hour day calculating the product of the hourly transition probability and the average transition activity for each transition. These values were then expanded over 366 days (1 leap year) and distorted with noise normally distributed as follows.

\[N \sim (\mu, \sigma) \]

Using a single, small change, we focused on designing three scenarios for our algorithm: a short-term change lasting 3 days (see Figure 7a), a long-term change lasting 2 months (see Figure 7b), and a permanent change (see Figure 7c), all occurring from the 1st of June 2020. For each scenario, the measure of dissimilarity is summed across each day (capped at 4 x 24 hours = 96). As can be seen in Figure 7, we can observe a clear increase in dissimilarity for all scenarios. Moreover, each scenario can be uniquely identified by their distinct visual presentation using these time windows (see Figure 7). Short-term changes exhibit as narrow peaks, whereas long-term and permanent changes exhibit as broad peaks (see Figure 7). The nature of the algorithm is such that if a change in behaviour is sustained, dissimilarity will gradually decrease. As such, long-term and permanent changes exhibit broad peaks, as the algorithm accounts for the sustained change. Furthermore, long-term changes exhibit as two peaks, as the algorithm accounts for a temporarily sustained change that gradually reverts back (see Figure 7).

Another benefit of having conducted synthetic tests is that it allowed us to better observe the sensitivity of our algorithm through trial-and-error selection of the level of noise distortion. As can be observed in Figure 7, despite an increase in the level of noise distortion, a clear increase in dissimilarity could still be observed, with each scenario maintaining their distinct visual presentation.

2.2.2 Case Studies

For a proof-of-concept using real-world data, we employed a retrospective analysis across 73 households of PLWD using a case-by-case approach. Here, we provide three case studies. All households were households of multiple occupancy. For each case study, the measure of dissimilarity is summed across each time of day (night, morning, afternoon, and evening) as initially introduced in Section 2.1, as we saw that there was a significant interaction between time of day at this re-sampling rate (6-hourly) and the trigger event (in the above case, the COVID-19 pandemic). The measure of dissimilarity for each time of day is capped at 4 x 6 hours = 24.
2.2.3 Case Study 1

Here, we present the time series data from a household of a PLWD in our COVID cohort subset (see Figure [8]). For this household, transition matrices were extracted and compared during the 17-month period from the 1st of December 2019 to the 12th of April 2021, inclusive of the three UK lockdowns. As can be observed in Figure [8], the onset of each new period (as indicated on the figure) is accompanied by an immediate increase in dissimilarity across all times of day, suggesting a change in the patterns of behaviour in the kitchen. Particularly for P2 - P4, dissimilarity begins to decrease as time progresses before increasing at the onset of a new period (see Figure [8]). These results indicate that the change in kitchen behaviours was sustained for each period, respectively, with the household adapting to the changing situation induced by the restrictions accompanying each period.

2.2.4 Case Study 2

The second case study focuses on a household of a PLWD who experienced several changes in their eating and drinking habits. Transition matrices were extracted and compared from the 13th of April 2021 onwards (post-COVID-19 pandemic). As can be seen in the Figure [9], dissimilarity in the kitchen behavioural patterns increased in this household in June 2021, with the PLWD being hospitalized mid-June due to dehydration. Our algorithm suggests a change in behaviour before this date, and the carer of this participant later confirmed that the PLWD had experienced a change in their eating and drinking habits prior to hospitalization. From the beginning of August to the end of November 2021, the PLWD experienced several health events in the form of infections and was prescribed several courses of antibiotics. Our results show dissimilarity is at its lowest around this period of time. As antibiotics usually have to be taken on an empty stomach (1 hour before eating or 2 hours after), we hypothesize that this might have led to more consistent eating habits. Late November/beginning of December, the participant’s carer reported that the PLWD had been struggling to sleep, often waking early. The carer also reported that the participant had begun to snack during the night, as well as experiencing increased appetite. This was then followed by reports of daytime snacking in the middle of January 2022. As seen in Figure [9], around the dates these changes in eating behaviours were observed, there is a rapid increase in dissimilarity in the kitchen behavioural patterns across all four periods of the day. As we saw in case study 1, dissimilarity then begins to decrease, which we interpret as the new behaviours being sustained. This aligns with the PLWD experiencing continued episodes of night-time snacking and increased appetite, respectively. Across March 2022, the participant experienced several episodes of high blood pressure, which we interpret as the prolonged period of dissimilarity seen across this month (see Figure [9]). Finally, the PLWD began to experience episodes of forgetfulness, particularly as regards to mealtimes. This was reported around late April/early May 2022 and aligns with the sporadic changes in dissimilarity resulting from our algorithm from this point on (see Figure [9]).

2.2.5 Case Study 3

Finally, we present the time series data of a household of a PLWD who experienced a decline in their health following a COVID diagnosis in the first week of March 2022. Again, transition matrices were extracted and compared post the COVID-19 pandemic. This participant regularly experienced episodes of agitation accompanied by night-time wandering and low mood accompanied by restlessness during the day. This aligns with the relatively high levels of dissimilarity, particularly at night-time, when compared to the two previous case studies, that we observe in Figure [10]. The PLWD had previously only experienced one health event when they were briefly hospitalized after developing pneumonia in August 2021 (see Figure [10]). Around the time of their COVID diagnosis, the PLWD was reported to have experienced difficulty in moving around, which aligns with the decrease in dissimilarity shortly after this time (see Figure [10]). We hypothesize that as the PLWD became less mobile, their wandering and restlessness reduced, leading to more consistent kitchen behaviours which we believe to be reflecting the routine of the carer. Following on from this event, the participant experienced more
frequent adverse health events, including a period of confusion with loss of time mid-May and low blood pressure followed by mobility issues due to swollen ankles from mid-June 2022. Correspondingly, we see three peaks in rapid succession indicating dramatic increases in the dissimilarity of kitchen behavioural patterns around these dates (see Figure 10).

3 Discussion

We used passive in-home monitoring data to conduct retrospective analyses on 73 households of PLWD. Over 5 million unique observations were collected from the 1st of December 2020 to the 31st of August 2022, providing a unique opportunity to monitor the behavioural patterns of this vulnerable population over an extended period of time.

We first investigated the effect of the COVID-19 pandemic on the in-home kitchen activity of 21 households of PLWD, from which nearly 2 million unique observations were collected across nearly 500 days. In-home kitchen activity levels increased during daytime hours (morning (06:00 - 12:00), afternoon (12:00 - 18:00), and evening (18:00 - 00:00)) and, after an initial increase, decreased during night-time hours (00:00 - 06:00) across households following a declaration from the World Health Organisation that COVID-19 was a Public Health Emergency of International Concern. This change preceded the introduction of the first stay-at-home ruling in the UK, suggesting that people living with dementia proactively changed their behaviour prior to the onset of public health restrictions.

Investigating the effects of changes such as those that occurred due to the implementation of COVID-19 related restrictions is important for several reasons. It allows us to understand how well vulnerable populations, such as PLWD, adapt to both internal and external events. Using COVID-19 as a natural experiment, this study investigated how well PLWD adapted to external triggers and provided a way to measure the effects of such events on household activity at a quantitative level. This work provides a descriptive analysis by which to better understand previous statements in literature as regards the effects of pandemic quarantining on the in-home eating and drinking habits of PLWD. The strong correspondence between changes in kitchen activity and the onset of public health measures in the UK illustrates a distinct change in kitchen-related behaviours. However, it should be noted that our quantitative measures are based on proxy kitchen movement and appliance use activities. While these observation and measurement data do not reflect the complete picture of in-home eating and drinking habits, the continuous and relatively long period of data collection does provide a unique opportunity to analyse the changes in patterns of related activities.

This work has also focused on developing an explainable digital biomarker. We derived transition probabilities of a Markov chain as a pattern reflecting in-home eating and drinking behaviours throughout the day and used a dissimilarity measure to compare between subsequent transition matrices across time. The results of our algorithm when applied to real-world data show that remote monitoring data can be an effective proxy by which to study the behavioural patterns of PLWD in the comfort of their own homes, providing quantifiable information about potential health concerns within a vulnerable population.

In this paper, we present a novel marker by which we might proactively detect changes in the behaviours of PLWD. By designing an algorithm that can be manually tuned to search through clinically relevant windows, we have laid the foundation for a Glass Box approach to anomaly detection that is generalizable across any cohort. Furthermore, this method also allows anomaly detection to be patient specific. Our algorithm could be applied to each household individually, meaning we were able to derive unique behavioural profiles that allowed us to quantitatively define stable behavioural patterns as those that lay within the range of natural variation in dissimilarity for any household.

Future work will involve developing this algorithm for deployment in the Minder platform. This would allow us to raise alerts for tipping points in household behaviour. We would further measure the usefulness of this algorithm qualitatively by collecting feedback on these alerts from the monitoring team, making any necessary adjustments according to this information. We will also work to expand our algorithm to include information from sensors throughout the household.
3.1 Conclusions and Future Directions

To summarize, the results of this study further demonstrate the utility of remote data collection. Our work expanded on the capabilities of in-home monitoring devices to identify changes in PLWD’s behavioural patterns. In addition, we provide a proof-of-concept for a generalizable and explainable digital biomarker that can be used for patient-specific anomaly detection in the eating and drinking habits of PLWD at home and is also applicable to other adverse health events and long-term health conditions. Providing means to objectively quantify this type of information will provide a valuable aspect of inspecting the health and well-being of individual PLWD in a meaningful automated way. This strategy can significantly enhance our capacity to augment the provision of personalized dementia care.

4 Methods

Our aim was to identify and develop a digital biomarker that could be used to detect changes in the in-home eating and drinking habits of PLWD. Here, we first describe a quantitative analysis on a subset of households of PLWD conducted to investigate the effect of the COVID-19 pandemic on the in-home eating habits of PLWD. We then discuss the design of an algorithm by which to detect changes in the in-home eating and drinking habits of PLWD.

4.1 Participants

Remote-monitoring data was collected from 120 households of PLWD as part of the ongoing Minder study being conducted at the UK Dementia Research Institute (UK DRI) Care Research & Technology (CRT) centre [24, 25]. This study uses activity within the kitchen as a proxy for eating and drinking habits. To be included in the Minder study, all individuals have to have an established diagnosis of dementia or mild cognitive impairment (see Supplementary Information). To be included in this study, each household had to have at least 100 days of kitchen activity data. Due to this criterion, a total of 73 households were included in the final cohort, with the mean number of days collected across these households being 427 ±257, both to the nearest whole number. Of the 73 households, 20 PLWD were living alone (15 female and 5 male) and the remaining 53 households had multiple occupancy (17 female and 36 male) (see Figure 1a). Within this cohort, there were a range of diagnoses, with the majority of diagnoses being Alzheimer’s Disease. For further information, see Supplementary Table 1. All participants were over the age of 50, with year of birth ranging from 1927 to 1962 and mean 1941 (to the nearest year) (see Supplementary Information Table 2 and Figure 1b)).

4.2 Information Governance and Ethics

In this type of study, it is important to ensure that privacy and information governance requirements are fully considered and required approvals are obtained. The Minder study protocol received ethics approval from the London-Surrey Borders Research Ethics Committee then South West London Ethics Committee (see here). The information governance procedures have also been reviewed and approved by the Surrey and Borders NHS Trust information governance committee and the Imperial College information governance team. Further information can be found here and here. We obtained informed written consent from all the study participants. Each participant was assessed according to Mental Capacity Act guidelines (available here) by a fully qualified researcher who has completed a mandatory clinical practice course. Participants understood the study and were able to understand the consent process.

4.3 In-home Monitoring Technologies

A range of Develco IoT devices [https://www.develcoproducts.com/], deployed by Howz [https://www.howz.com/], were used to collect anonymized binary data from the households of participants.
All of the sensors were Develco products. Movement data was collected using a wall-mounted PIR Develco Mini Motion Sensor, information on the opening and closing of the fridge door collected using the Delveco Window Sensor, and Develco Smart Plug Minis collected information on the usage of appliances (kettle and oven) (see Figure 1c). Exact placement of these sensors varied respectively with the layout of individual households.

4.4 Investigating the Effect of the COVID-19 Pandemic on In-home Eating and Drinking Habits

In this section, we first describe the acquisition and treatment of data used in this analysis. We then describe the statistical tests conducted on the processed data by which to quantify the effect of the COVID-19 pandemic on the in-home eating and drinking habits of PLWD.

4.4.1 Data Acquisition

The COVID-19 pandemic was used as a natural experiment, with data being continuously collected from 21 households of PLWD over a 499-day period from the 1st of December 2019 to the 12th of April 2021, a period inclusive of the three national UK lockdowns [20]. Of the 21 households, 5 PLWD were living alone (3 female and 2 male) and the remaining 16 households had more than one occupant (6 female and 10 male). In this subset of participants, there was an age range of 72 to 92 years old and mean age 80.0 years old. All households had a PIR motion sensor, a fridge door sensor, a smart plug for the kettle, and at least one smart plug for a toaster, microwave, or oven appliance.

This study analyses kitchen activity levels at seven progressive periods across a 17-month time-span (see Figure 2). Each period represents a specific stage of the COVID-19 pandemic in relation to the appearance of COVID-19 in the UK and the successive measures put in place by the UK government in response. A pre-COVID baseline was derived from data collected prior to the first officially recorded infections in the UK (P1). Period two (P2) defines the time from the initial onset of COVID-19 in the UK up to the first lockdown. The third, fifth, and seventh periods (P3, P5, and P7) denote the first, second, and third UK lockdowns, respectively. The relaxation period between the first and second lockdowns is denoted by period four (P4), while the period of relaxation with continued tier 4 level restrictions between the second and third lockdowns is denoted by period six (P6). The complete timeline is as follows:

- P1 - pre-COVID baseline (01/12/2019 - 30/01/2020)
- P2 - the onset of COVID-19 in the UK (31/01/2020 - 23/03/2020)
- P3 - first UK lockdown (24/03/2020 - 01/06/2020)
- P4 - relaxation (02/06/2020 - 05/11/2020)
- P5 - second UK lockdown (06/11/2020 - 02/12/2020)
- P6 - end of second lockdown but with continued restrictions (03/12/2020 - 06/01/2021)
- P7 - third UK lockdown (07/01/2021 - 12/04/2021)

All households had missing data between the dates of 31/07/2020 and 03/08/2020 inclusive, due to a network failure.

4.4.2 Data Pre-Processing

In our households, activity is triggered and logged sparsely per event, with seconds precision and a 30 second delay. For our analyses, we use an aggregate measure of kitchen activity. Mean household kitchen activity is calculated based on the sum of mean daily activity across the different kitchen sensors (see Figure 4).
Our second analysis focused on kitchen activity at different times of the day. For this, sensor activity is re-sampled into four six-hourly periods (three daytime periods: morning (06:00 - 12:00); afternoon (12:00 - 18:00); and evening (18:00 - 00:00), and one night-time period (00:00 - 06:00)). Mean kitchen activity at each time of day is then calculated based on the sum of mean activity for that time of day across the different kitchen sensors (see Figure 5). To remove interference from what we already knew would be a significant effect of time on day on kitchen activity levels, the mean kitchen activity of each household is standardized across all households by time of day.

Mean sensor activity is derived at three different re-sampling frequencies (six-hourly, hourly, and every 15 minutes) (see Figure 3a-c).

4.4.3 Statistics

We used RStudio to access the linear mixed-effects regression (LMER) modelling packages in R [27], to test the relationship between the onset and progression of the COVID-19 pandemic in the UK and kitchen activity. Using this test, we modelled the fixed effects of pandemic periods, time of day, and household occupancy. We also modelled the random effect associated with household heterogeneity. Here we use standard significance reporting (p < 0.0001***, p < 0.001**, p < 0.05*, and p < 0.1), unless stated otherwise, detailing t-values and F-values to three significant figures.

4.5 Identifying and Developing a Digital Biomarker

In this research, we define an anomaly as changes in behaviour that significantly deviates from stable, predictable behavioural patterns. However, in order to define an anomaly as such, we must first be able to quantify regular behavioural patterns. We wanted to discover patterns in the sequences of sensor recordings in such a way as to be able to describe anomalous behavioural patterns as quantifiably significant deviations from stable, predictable behaviour.

4.5.1 Using Stochastic Matrices to Model Behaviour

Stochastic matrices are square matrices describing the transitions of a Markov chain. A Markov Chain describes a sequence of possible transitions, which are the changes of state of a system to which a Markov chain assigns a probability dependent only on the state attained in the previous transition. As such, from here on, we will refer to our stochastic matrices as transition matrices.

Due to the sequence of possible transitions always occurring in the kitchen, the number of sensor firings recorded by the PIR kitchen motion sensor is very high, with kitchen-to-kitchen transitions being the most frequently occurring transition. As such, to better control the level of noise in the data, we chose to eliminate kitchen-to-kitchen transitions from our transition matrices. For the same reason, as the fridge door sensor recorded both opened-to-closed and closed-to-opened transitions, and as the latter transition was extremely likely to occur sequentially from the former, we only included opened-to-closed transitions.

For any one transition matrix, we have 16 transitions (see Figure 6): kitchen-to-kitchen (which was always set to 0), kitchen-to-kettle, kitchen-to-fridge, kitchen-to-oven, kettle-to-kettle, kettle-to-fridge, kettle-to-oven, fridge-to-kitchen, fridge-to-kettle, fridge-to-fridge, fridge-to-oven, oven-to-kitchen, oven-to-kettle, oven-to-fridge, and oven-to-oven. Our transition matrices are right stochastic matrices, meaning that the probabilities in each row sum to 1.

4.5.2 Designing a Sliding Window Function

To extract transition matrices across any period, we use a sliding window with a pre-set step frequency (see Figure 6). For any point in time as defined by the step frequency of the sliding window, these matrices are compared across the current window and that of the baseline window, both of which could be altered to allow for the most clinically relevant windows of time to be examined (see Figure 6). Each transition probability is derived from the sum of that transition divided by the sum of the total
number of transitions from that state, at a set re-sampling rate, aggregated across both the current
and the baseline window.

The duration of the current window, baseline window, and step, as well as the re-sampling
frequency of the transition matrices were curated by a trial-and-error approach in which to select for
smoothing that reduced the effect of noise and highlighted important trends in the dataset. Such an
approach also allows us to mitigate the effect of missing data.

4.5.3 Measuring Similarity

We use the Frobenius distance to calculate a measure of similarity between any two matrices (see
Figure 6). The Frobenius distance is the square-root of the sum of the squared distances between each
of the singular values of one matrix and their respective values in another matrix (1). In this instance,
the higher the Frobenius distance, the greater the dissimilarity between any two matrices, with the
measure capped at 4 for each matrix (the closer to 0, the more similar, and the closer to 4, the more
dissimilar).

\[
FrobeniusDistance = \sqrt{\sum_{ij} (a_{ij} - b_{ij})^2}
\]

5 Code and Data Availability

Code and anonymized data have been made publicly available on GitHub and can be found here.

Acknowledgements

We would like to acknowledge support from the UK Dementia Research Institute, Care Research and
Technology Centre and Surrey and Borders Partnership NHS Trust. A particularly thank you to Helen
Lai for allowing us to use her in-home monitoring system figures which we have used as part of our
cohort description and in-home monitoring system figure.

Acknowledgement list for UK Dementia Research Institute (UK DRI) Care Research &
Technology (CR&T) Centre publications using the MINDER core dataset.

Leadership and Management Infrastructure:
Centre Director: Professor David Sharp
Co-Director: Professor Payam Barnaghi
Centre Manager: Danielle Wilson
Health and Social Care Lead: Sarah Daniels
Project Managers: Mara Golemme and Zaynab Ismail, Imperial College London
Group Leaders: Professor David Sharp, Professor Payam Barnaghi, Professor Paul Freemont, Dr
Ravi Vaidyanathan, Professor Tim Constandinou, Imperial College London Professor Derk-Jan Dijk,
University of Surrey
Groups:
Behaviour and Cognition led by Prof David Sharp
Michael David, MD, Martina Del Giovane, Neil Graham, MD, PhD, Naomi Hassim, Magdalena
Kolanko, MD, Helen Lai, Lucia Li, MD, PareshMalhotra, MD, PhD, Emma Jane Mallas, PhD, Sanara
Raza, Greg Scott, MD, Alina-Irina Serban, Eyal Soreq, PhD, Tong Wu, PhD
Biosensor Hardware led by Prof Timothy Constandinou
Alan Bannon, PhD, Shlomi Haar, PhD, Charalambos Hadjipanayi, Grena Hammour, Bryan Hsieh,
Adrien Raveaux, PhD
Robotics and AI Interfaces led by Dr Ravi Vaidyanathan
Weiguang Huo, PhD, Maria Lima, Maitreyee Wairagkar, PhD

Machine Intelligence led by Professor Payam Barnaghi

Nan Fletcher-Lloyd, Hamed Haddadi, PhD, Valentinas Janeiko, Anna Joffe, Samaneh Kouchaki, PhD, Viktor Levine, Honglin Li, Francesca Palermo, Mark Woodbridge, Yuchen Zhao, PhD, Alexander Capstick

Point of Care Diagnostics led by Professor Paul Freemont

Loren Cameron, PhD, Michael Crone, PhD, Kirsten Jensen, PhD, Martin Tran

Sleep and Circadian led by Professor Derk Jan Dijk

Ullrich Bartsch, PhD, Ciro Della Monica, PhD, Kiran GR Kumar, PhD, Damion Lambert, Sara Mohammadi Mahvash, PhD, Vikki Revell, PhD

Helix

Matthew Harrison, Sophie Horrocks, Lenny Naar

Site Investigators and Key Personnel:

Surrey and Borders Partnership NHS Foundation Trust (Site and Sponsor)

Chief Investigator: Professor Ramin Nilforooshan

Research and Development Manager: Jessica True

Research Co-ordinator: Emily Beale

Clinical Monitoring Team: Vaiva Zarombaite, Lucy Copps, Olivia Knight

Brook Green Medical Centre

Principal Investigator: Dr David Wingfield

Software Engineers, Data Analysts and Technical Staff

Severin Skillman, Anna Joffe, Viktor Levine, Valentinas Janeiko, Eyal Soreq, Helen Lai, Martina Del Giovane

Clinical Personnel

Michael David, Magdalena Anita Kolanko

Author Contributions

Fletcher-Lloyd, N., Serban, A. I., Soreq, E., and Barnaghi, P., conceptualized the study. Fletcher-Lloyd, N. analysed the data, developed the digital biomarker, and drafted the manuscript. Soreq, E. and Serban, A. I. assisted with data pre-processing and LME modelling. Fletcher-Lloyd, N., Serban, A. I., and Soreq, E. interpreted the results. Barnaghi, P. and Soreq, E. revised the manuscript.

Competing Interests

The authors declare no competing conflicts of interest.

Funding

This project was supported by the Engineering and Physical Sciences Research Council (EPSRC) PROTECT Project (grant number: EP/W031892/1) and the UK DRI Care Research and Technology Centre funded by the Medical Research Council (MRC) and Alzheimer’s Society (grant number: UKDRI-7002). Alina-Irina Serban was supported by the UK Research and Innovation Centre for Doctoral Training in Artificial Intelligence (UKRI CDT in AI) for Healthcare, see http://ai4health.io (grant number: P/S023283/1).

References

[25] UK DRI Care Research Technology Centre and Imperial College London Helix Centre. Minder meeting place, 2022.

Figures

Figure 1: Study cohort description, home monitoring system, and study design: a) & b) Household occupancy, gender, and age distributions; c) sensors contributing to the data reported in this study: wall-mounted passive infrared motion sensors, a sensor on the fridge door, and smart plugs for the kitchen appliances (kettle and oven); and d) step-by-step workflow illustrating study design.

Figure 2: Timeline for the collection of data pre-COVID and during the COVID-19 pandemic period.
Figure 3: Change in kitchen activity at the transition between P1 (the pre-COVID baseline) and P2 (the onset of the COVID-19 pandemic in the UK), from the 25th of January 2020 to the 10th of February 2020: a-c) mean sensor activity re-sampled at six-hour, 1-hour, and 15-minute frequencies, respectively, demonstrating the gradual increase at individual sensors and at an increasingly finer granularity.

Figure 4: Changes in mean kitchen activity during the pandemic: a) mean kitchen activity pre-COVID and during COVID according to household occupancy; and b) mean kitchen activity across all the pandemic periods according to household occupancy.
Figure 5: Changes in mean kitchen activity during the pandemic during different times of the day: a-c) changes in kitchen activity during daytime hours (morning (06:00-12:00), afternoon (12:00-18:00), and evening (18:00-00:00); and d) change in kitchen activity during night-time hours (00:00-06:00).
Figure 6: Diagram of sliding window algorithm used to extract dissimilarity measures.

Figure 7: Synthetic time series data illustrating the output of the sliding window algorithm across three possible scenarios: a) a short-term (3-day) change; b) a long-term (2-month) change; and c) a permanent change. For each scenario, the dissimilarity measure is summed across each 24-hour day, at two different levels of noise distortion.
Figure 8: Case study 1 time series data illustrating the output of the sliding window algorithm from a household of a PLWD in the COVID cohort subset. Total dissimilarity is summed across each 6-hour period of the day (night, morning, afternoon, and evening).

Figure 9: Case study 2 time series data illustrating the output of the sliding window algorithm from a household of a PLWD who experienced several changes in their eating habits. Total dissimilarity is summed across each 6-hour period of the day (night, morning, afternoon, and evening).
Figure 10: Case study 3 time series data illustrating the output of the sliding window algorithm from a household of a PLWD who experienced a decline in health following a COVID diagnosis. Total dissimilarity is summed across each 6-hour period of the day (night, morning, afternoon, and evening).