Safety and effectiveness of COVID-19 mRNA vaccination and risk factors for hospitalisation caused by the omicron variant in 0.8 million adolescents: A nationwide cohort study in Sweden

Prof. Peter Nordström, PhD¹, Marcel Ballin, MSc¹, Anna Nordström, PhD¹,²,³

¹Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
²Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
³School of Sport Sciences, UiT the Arctic University of Norway, Tromsø, Norway

Corresponding author:
Peter Nordström, Professor
Unit of Geriatric Medicine
Department of Community Medicine and Rehabilitation
Umeå University
90187 Umeå
Sweden
Phone: +4670 899 65 99
E-mail: peter.nordstrom@umu.se

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Real-world evidence on the safety and effectiveness of COVID-19 vaccination against severe disease caused by the omicron variant among adolescents is sparse. In addition, evidence on risk factors for severe COVID-19 disease, and whether vaccination is similarly effective in such risk groups, is unclear.

Methods and findings

Nationwide registers were used to examine the safety and effectiveness of COVID-19 mRNA vaccination against COVID-19 hospitalisation, and risk factors for COVID-19 hospitalisation in adolescents. The safety analysis included all individuals in Sweden born between 2003-2009 (aged 11.3-19.2 years) given at least one dose of mRNA vaccine (N=645,355), and never vaccinated controls (N=199,022). Outcomes evaluated included all hospitalisations until 5 June 2022. The vaccine effectiveness (VE) against COVID-19 hospitalisation and associated risk factors was evaluated in adolescents given two doses of mRNA vaccine (N=501,945), as compared to never vaccinated controls (N=170,083), during an omicron predominant period (1 January 2022 to 5 June 2022). The safety analysis showed that COVID-19 mRNA vaccination was not associated with an increased risk of any serious adverse events resulting in hospitalisation. During follow-up, 1.69% of the vaccinated individuals were hospitalised compared to 1.71% of the controls (P=0.29). In the VE analysis, there were 21 cases (0.004%) of COVID-19 hospitalisation among 2-dose recipients and 26 cases (0.015%) among controls, resulting in an estimated VE of 75% (95% CI, 54-86, P<0.001). Strong risk factors for COVID-19 hospitalisation included previous infections (odds ratio [OR], 14.3, 95% CI, 7.7-26.6, P<0.001), and cerebral palsy/development disorders (OR, 12.0, 95% CI, 6.4-22.6, P<0.001), with similar estimates of VE in these subgroups as in the total cohort. The number needed to vaccinate with two doses to prevent one case of
COVID-19 hospitalisation was 9,007 in the total cohort and 1,031 in those with previous infections or developmental disorders. None of the individuals hospitalised due to COVID-19 died within 30 days.

Conclusions

In this nationwide study, COVID-19 mRNA vaccination was not associated with an increased risk of any serious adverse event in adolescents. Two doses were associated with a lower risk of COVID-19 hospitalisation during the omicron predominant period, especially among those with certain predisposing conditions who should be prioritized for vaccination. However, COVID-19 hospitalisation among general adolescents was extremely rare, and additional doses in this population may not be warranted at this stage.
Why was this study done

Evidence before this study

➢ There is limited evidence on the effectiveness of COVID-19 vaccination against severe outcomes during the omicron era among adolescents. In addition, there is lack of data on whether certain groups of adolescents are at greater risk of severe COVID-19 and should be prioritized in vaccination programs, and whether vaccination is equally effective in such risk groups.

➢ Regarding safety, some studies have indicated a link between COVID-19 mRNA vaccination and increased risk of myocarditis and pericarditis in young men, although the data appear inconsistent.

What did the researchers do and find?

➢ Using Swedish nationwide health registers, a cohort of 844,377 adolescents were followed until 5 June 2022 to evaluate the safety and effectiveness of COVID-19 mRNA vaccination against COVID-19 hospitalisation, and risk factors for COVID-19 hospitalisation.

➢ COVID-19 mRNA vaccination in adolescents was not associated with an increased risk of any diagnoses resulting in hospitalisation. In contrast, two doses of vaccine had an associated 75% effectiveness against COVID-19 hospitalisation. However, only about 6 individuals in 100,000 were hospitalised due to COVID-19 during follow-up.

➢ There were certain strong risk factors for COVID-19 hospitalisation, such as previous infections and different development disorders, which increased the risk of COVID-19 hospitalisation more than tenfold. Vaccine effectiveness among these individuals was similar as in the rest of the cohort.

What do these findings mean?
Although COVID-19 mRNA vaccination appears safe and associated with reduced risk of COVID-19 hospitalisation, the risk of severe COVID-19 seems to be extremely low in general adolescents. Therefore, administration of additional doses to the general population of adolescents may not be warranted at this stage of the pandemic. In contrast, individuals with a high risk for severe COVID-19 should be prioritised for vaccination.
Introduction

The omicron variant of SARS-CoV-2 led to a surge in cases among young people during 2022 when several countries lifted or alleviated their restrictions.[1] Although clinical trials showed that the BNT162b2 and mRNA-1273 vaccines had acceptable safety profiles in adolescents and reduced the risk of infection in the short-term,[2, 3] these trials were conducted before the emergence of omicron. Limited sample sizes also hindered the evaluation of the level of protection against severe COVID-19, such as hospitalisation, which could be estimated using large-scale observational studies. These studies also offer the possibility of investigating any potential links between vaccination and rare serious adverse events, such as myocarditis, for which the data appear inconsistent.[4, 5]

Currently, there is limited data on vaccine effectiveness (VE) against severe COVID-19 caused by the omicron variant among adolescents. Two case-control studies found that two doses of the BNT162b2 mRNA vaccine had about 80% VE against COVID-19 hospitalisation or death in adolescents.[6] [7] However, given their study design, it is difficult to determine how common severe disease is during the omicron era. In addition, little is known about whether certain groups of adolescents should be prioritized for vaccination because of a higher risk of severe COVID-19, and whether vaccination has a similarly protective effect in such risk groups. Moreover, although a third dose, also known as a booster dose, may increase protection against symptomatic omicron infection in adolescents,[8, 9] the risk of severe COVID-19 after a third dose relative to after the second dose is unclear.

Therefore, the present study leveraged Swedish nationwide registers to evaluate, among adolescents, 1) the risk of serious adverse events following COVID-19 mRNA vaccination, and 2) the effectiveness of COVID-19 mRNA vaccination against hospitalisation due to COVID-19 and risk factors for COVID-19 hospitalisation during an omicron predominant period.
Methods

Study design and cohorts

This nationwide, retrospective cohort study was approved by the Swedish Ethical Review Authority (number 00094/2021), who waived the requirement of obtaining informed consent given the retrospective study design.

The cohort considered for inclusion was compiled by Statistics Sweden (www.SCB.se); the government agency in charge of nationwide statics in different areas and covering the total population of Sweden. All individuals born 2003-2009 who were given at least one dose of COVID-19 vaccine or had a documented SARS-CoV-2 infection until March 2022 were considered for inclusion (N=692,333). To these individuals, Statistics Sweden matched one control individual on birth year, sex, and municipality. Controls could not have a documented SARS-CoV-2 infection at the date of documented infection in the corresponding infected individual, and they could not have received a first dose of vaccine at the date when the corresponding vaccinated individual had received two doses of vaccine. The cohort was updated with vaccination data and SARS-CoV-2 infections until 2 June 2022. Because one control could be matched to several vaccinated individuals, the total eligible cohort consisted of 844,511 individuals, of whom 645,489 had been vaccinated with at least one dose, 600,846 had been vaccinated with two doses, and 60,475 had been vaccinated with at least three doses (Figure 1). After excluding a few individuals vaccinated with a vector-based vaccine (N=134), a total of 844,377 individuals remained and were included in the present study for two sets of analyses. In a first set of analyses, named the safety analysis, all diagnoses set during hospitalisation were evaluated in all individuals given at least one dose of vaccine during follow-up (N=645,355) as compared to individuals never vaccinated during follow-up (N=199,022). In a second set of analyses, VE against COVID-19 hospitalisation was evaluated by comparing individuals given at least two doses of vaccine (N=501,945) to
individuals never vaccinated during follow-up (N=170,083), excluding all individuals with a previous documented SARS-CoV-2 infection (Figure 1). Data on individuals vaccinated against COVID-19 and data on documented SARS-CoV-2 infections were collected from the Swedish Vaccination Register and the SmiNet register, respectively. Both these registers are managed by the Public Health Agency of Sweden and all healthcare providers in Sweden were obliged to report to these registers according to law.[10, 11]

Outcomes

In the safety analysis, based on all diagnoses set in the cohort during the hospital stay until 5 June 2022, results are presented for 30 different diagnoses. These diagnoses were selected based on their incidence and general interest given previous reports of links between certain diagnoses and COVID-19 mRNA vaccination.[4, 12, 13] Only the first diagnosis was evaluated for each individual, and individuals with this diagnosis at baseline were therefore excluded from the prospective analyses.

In the VE analysis, the primary outcome was a main diagnosis of COVID-19 (thus, “due to” COVID-19 rather than “with” COVID-19), set during inpatient hospital stay from 1 January 2022 until 5 June 2022. The secondary outcome was documented SARS-CoV-2 infection of any severity from the SmiNet register, from 1 January 2022 until 28 February 2022, as per when the guidelines for testing in Sweden had changed. For these two outcomes, only cases that occurred 7 days after the second dose of vaccine and onwards were counted to ensure the full effect of vaccination. The start of 1 January was selected on the basis that the omicron variant was first documented in Sweden on 29 November 2021[14] and by early January 2022 it represented >90% of sequenced cases (Supplementary Table 1). Data on all diagnoses used in this study were obtained from the National Patient Register[15] using 10th revision International Classification of Disease codes, starting from 1 January 2016 earliest
until 5 June 2022 latest. The definition and diagnostic codes for all diagnoses considered in
the safety analysis and for the analysis of risk factors for COVID-19 hospitalisation are shown
in Table 1. The positive predictive value for diagnoses set within the National Patient Register
differs, but has generally been found to be between 85-95%, although sensitivity is often
lower.[15] Finally, data on death due to COVID-19 or influenza, defined as death within 30
days after the diagnosis, were obtained from the National Cause of Death Register.[16] The
present study was approved by the Swedish Ethical Review Authority.

Statistical analysis

In the safety analysis, diagnoses were evaluated before and after the first dose of
vaccine in 645,355 individuals given at least one dose of vaccine and in 199,022 controls who
were unvaccinated during the follow-up time. The baseline date in vaccinated individuals was
the date of vaccination with the first dose. In the controls, a baseline date was randomly
assigned based on the mean baseline date and standard deviation among the vaccinated
individuals (10 October 2021 ± 54 days). Student’s t-tests and chi-square tests were used to
compare the prevalence of different variables at baseline. To estimate hazard ratios (HRs) for
the 30 different diagnoses during follow-up, Cox regression models were used. Individuals
were censored on the date of the diagnosis of interest, death, or end of follow-up (5 June
2022), whichever came first.

In the VE analysis, logistic regression was used to estimate odds ratios (OR) for the
primary outcome of COVID-19 hospitalisation (from 1 January 2022 until 5 June 2022), and
for the secondary outcome of a SARS-CoV-2 infection (from 1 January 2022 until 28
February 2022). The ORs obtained were used to estimate VE as 1 minus the OR x 100. In all
analyses, the first model was unadjusted and the second model was adjusted for baseline date,
age, sex, and whether the individual was born in Sweden or not. Data underlying these
covariates were retrieved from Statistics Sweden.[17] To investigate whether VE differed by
covariates, interaction analyses were performed using product terms created by
multiplying the variable coding for vaccination status at baseline (vaccinated/unvaccinated)
by each respective covariate, which was added to the logistic regression model. Given that the
interaction term was statistically significant (P<0·05) for the baseline date, VE was also
estimated in subgroups according to this covariate. The number needed to vaccinate (NNV)
with two doses to prevent one case of COVID-19 hospitalisation during follow-up was
estimated as the inverse of the absolute risk difference between the groups
(vaccinated/unvaccinated). The NNV was estimated both in the total cohort and by subgroups.

Finally, a sensitivity analysis using a negative control outcome was conducted to
explore the potential risk of bias due to unmeasured confounding.[18] Here, a logistic
regression model was performed, comparing individuals given at least two doses of COVID-
19 mRNA vaccine compared to never vaccinated individuals concerning the outcome of
hospitalisation due to influenza from 1 January 2022 until 5 June 2022. All analyses were
performed in SPSS v29·0 for Mac (IBM Corp, Armonk, NY, USA), and Stata v16·1 for Mac
(Statcorp, College Station, Texas, USA). A two-sided P-value <0·05 or Ors/HRs with 95%
CIs not crossing one were considered statistically significant.

Role of the funding source

The present study was not funded.

Results

The total cohort comprised 844,377 adolescents born 2003-2009 (age 11.3-19.2 years),
of whom 645,355 received at least one dose of COVID-19 mRNA vaccine and 199,022 never
vaccinated individuals (controls). Almost 90% of the vaccinated individuals received
BNT162b2 as a first dose, while the remaining received mRNA-1273. Baseline characteristics
are shown in Table 1. Individuals that were never vaccinated were slightly younger, more
often of male sex and born outside of Sweden, and were less often diagnosed with a previous
SARS-CoV-2 infection (P<0.001 for all). Concerning other diagnoses at baseline, differences
between the groups were marginal (Table 1).

Serious adverse events after a first dose of vaccine

In the safety analysis (N=844,377), there were a total of 19,660 hospitalisations among
14,320 individuals during follow-up. In vaccinated individuals, 1.69% (N=10,918) were
hospitalised at least once, compared to 1.71% (N=3,402) in those never vaccinated (P=0.29
for difference). There were marginal differences between the two groups in the 30 diagnoses
presented (Table 2), although statistically significant associations in favour of vaccination
were observed with respect to the risk of sepsis, thrombocytopenia, alcohol dependency, and
Crohn’s disease (P<0.05 for all). None of the other associations were statistically significant.

Vaccine effectiveness against COVID-19 hospitalisation

In the analysis of VE against COVID-19 hospitalisation, 501,945 individuals vaccinated
with two doses and 170,083 never vaccinated controls were included. Between 1 January
2022 and 5 June 2022, a total of 47 individuals (6 per 100,000) were hospitalised due to
COVID-19. Of these, 21 cases were among those vaccinated with two doses (0.004%), and 26
among unvaccinated (0.015%), resulting in a VE of 75% (95% CI, 54-86, P<0.001) (Table 3).
The NNV with two doses to prevent one case of COVID-19 hospitalisation was 9,007. For
those with a second dose of vaccine earlier than 15 November, the VE was 68% (95% CI, 25-
86, P=0.009), compared to 86% (95% CI, 63-95, P<0.001) for those with a second dose of
vaccine 15 November 2021 and later (P=0.03 for interaction). When comparing individuals
vaccinated with three doses (N=41,225) compared to those vaccinated with two doses
(N=413,544), only 12 individuals were hospitalised due to COVID-19 during follow-up (VE,
13%, 95% CI, -354-84, P=0.86). There were no deaths within 30 days of hospitalisation
among the 238 individuals hospitalised due to COVID-19 in the total cohort (N=844,377)
since the beginning of the pandemic in January 2020.

Risk factors for COVID-19 hospitalisation and vaccine effectiveness by subgroups

Of the 47 individuals hospitalised due to COVID-19 in the VE analysis, 28 (60%) had
previously been hospitalised for another condition, compared to 66,756 (10%) of the
individuals in the rest of the cohort. Among the individuals hospitalised due to COVID-19, 15
(32%) had previously been diagnosed with an infection, compared to 22,110 (3.3%) in the
rest of the cohort, equal to an adjusted OR for COVID-19 hospitalisation of 14.3 (95% CI,
7.7-26.6, P<0.001), after adjustment for age, sex, baseline date, vaccination status, and
whether the individual was born in Sweden. The VE in this risk group was similar (VE, 88%,
95% CI, 57-96, P<0.001), as in the total cohort, but with a slightly lower vaccination
coverage (72.7% vs. 74.7%). In addition, 15 (32%) of the individuals hospitalised due to
COVID-19 had previously been diagnosed with cerebral palsy and/or different development
disorders, compared to 25,947 individuals (3.9%) in the rest of the cohort, resulting in an
adjusted OR for COVID-19 hospitalisation of 12.0 (95% CI, 6.4-22.6, P<0.001). Again, VE
in this subgroup was similar as in the total cohort (VE, 72%, 95% CI, 18-90, P=0.02), but
with a slightly lower vaccination coverage (71.5% vs 74.8%). The NNV with two doses to
prevent one case of COVID-19 hospitalisation in the subgroup of individuals previously
diagnosed with infections or development disorders (N=46,783) was 1,031.

Vaccine effectiveness against SARS-CoV-2 infection
The VE against SARS-CoV-2 infection of any severity was estimated among 488,441 individuals vaccinated with two doses compared to 165,626 never vaccinated controls. Between 1 January 2022 and 28 February 2022, there were 72,631 cases of confirmed SARS-CoV-2 infection. The VE varied by time since the last dose (P<0.001), with no VE in the total cohort (VE, -2%, 95% CI, -4-0, P=0.02) (Table 4). There was a marginal VE among individuals with a second dose no earlier than 1 September 2021 (VE, 4%, 95% CI, 2-6, P<0.001), a low VE for individuals with a second dose no earlier than 1 November 2021 (VE, 21%, 95% CI, 19-23, P<0.001), and a moderate VE for individuals with a second dose no earlier than 1 January 2022 (VE, 47%, 95% CI, 43-51, P<0.001).

Sensitivity analysis

The risk of hospitalisation due to influenza was evaluated in 600,021 individuals given at least two doses of vaccine compared to in 199,003 never vaccinated individuals. Between 1 January 2022 and 5 June 2022, a total of 48 individuals (6 per 100,000) were hospitalised due to influenza, with no detectable VE (VE, -6%, 95% CI, -51-119, P=0.88). Of the 130 individuals in the total cohort hospitalised for influenza since the start of the COVID-19 pandemic in January 2020, one individual died within 30 days of hospitalisation.

Discussion

In this nationwide study of more than 0.8 million adolescents, COVID-19 mRNA vaccination was not associated with an increased risk of hospitalisation for any diagnosis, with an overall risk of hospitalisation which was similar in vaccinated and unvaccinated individuals. The results also showed that although vaccination was associated with lower risk of COVID-19 hospitalisation during an omicron predominant period, the absolute risk of
being hospitalised was extremely low, except in subgroups of adolescents that had previously
been diagnosed with infections, cerebral palsy or other development disorders.

Evidence on the safety and effectiveness of COVID-19 mRNA vaccination in
adolescents during the omicron predominant period is limited. In this study, no association
between vaccination and increased risk of hospitalisation in general, or for any specific
diagnosis, was detected. This suggests that COVID-19 vaccination in adolescents is safe.

These findings add to, and extend upon those from a nationwide study in Scotland, reporting
no association between vaccination and increased risk of hospital stay for 17 different
diagnoses among adolescents.[5] The present study also estimated that two doses of mRNA
vaccine had about 75% effectiveness against hospitalisation due to COVID-19. Similar
estimates were reported in two case-control studies of adolescents conducted in the US and
Brazil during an omicron predominant period, where VE against COVID-19 hospitalisation or
death was about 80%.[6] [7] However, given their design, these studies were unable to
determine how common severe COVID-19 is. Therefore, the very low absolute risk of severe
disease observed in the present cohort study based on a nationwide sample of adolescents is
an important finding for decision making concerning the need for COVID-19 vaccination in
adolescents. Overall, only 47 individuals, or 6 in 100,000, were hospitalised due to COVID-19
during a period of 5 months, and none of all adolescents hospitalised due to COVID-19
since the start of the pandemic died within 30 days of hospitalisation. Based on this very low
risk of severe COVID-19 in the total cohort, the NNV with two doses to prevent one case
during follow-up was about 9,000. Interestingly, the absolute risk of being hospitalised due to
COVID-19 and influenza was similar, despite that the infection pressure from SARS-CoV-2
during follow-up was more than 100 times higher than that of influenza.[19]

Given the above, it is important to evaluate whether certain groups of adolescents are at
higher risk of severe COVID-19, and if so, whether vaccination is associated with similar
protection among these individuals. This study identified two different clusters of diagnoses
which increased the risk of COVID-19 hospitalisation more than tenfold. The first included
previous infections and the second included cerebral palsy and other developmental disorders.
An encouraging finding was that the VE in these subgroups was similar to that in the total
cohort, and consequently, the NNV to prevent one case of COVID-19 hospitalisation was
about 1,000 individuals. It is therefore of concern that vaccination coverage in these risk
groups was somewhat lower compared to in the total cohort. Although we are unable to
determine the underlying causes for this observation, factors such as recurrent infections
interfering with the administration of the vaccine, and fear of adverse events, may have
contributed. Taken together, these findings suggest that vaccination of adolescents during the
omicron era should primarily be targeting risk groups, such as those with previous infections
and development disorders.
Concerning the outcome of SARS-CoV-2 infection of any severity, the results indicated
that VE from primary vaccination wanes within a few months, similar to observations made
in a few other countries.[7-9] However, there is a lack of data exploring whether booster
doses reduce the risk of severe COVID-19 as compared to primary vaccination.[20] The
results for this comparison in the present study showed that COVID-19 hospitalisations
during follow-up were once again extremely rare, implying that administration of booster
doses to the general population of adolescents may not be warranted at the current stage of the
pandemic. Based on these findings, it is noteworthy that the US and several countries in
Europe are recommending booster doses to adolescents.[21, 22]
The present study has limitations that should be considered. Because of the
observational design, conclusions based on the associations found should be made with
cautions. For example, despite that VE changed marginally before and after adjustment for
covariates, there may be other factors that could have influenced the estimates. However, for
the analysis of serious adverse events, we evaluated all diagnoses set during hospital stay both before and after the first dose of vaccine, thereby increasing the chance of detecting selection bias that could interfere with the results. In addition, the sensitivity analysis wherein influenza was used as a negative control outcome supported the lack of important confounding. Moreover, because COVID-19 hospitalisation in this population was very rare, it was not possible to estimate the VE of a first booster dose in this cohort with any form of precision. Strengths of this study include that all the registers used to obtain the data used in the present study have nationwide coverage with virtually zero loss to follow-up. Finally, the study cohort was based on the total population of Swedish adolescents, including 0.8 million individuals aged 11-19 years of age, which increases the possibility to generalize the findings to other countries with similar population structures.

Conclusion

In summary, COVID-19 mRNA vaccination was not associated with an increased risk for hospitalisation of any cause in adolescents, suggesting that they are safe to use. While vaccination was associated with a reduced risk of COVID-19 hospitalisation during the omicron era, the absolute risk among general adolescents was extremely low and similar to that of influenza. In contrast, in a large proportion of adolescents hospitalised due to COVID-19, certain risk factors were present, and the effectiveness of vaccination in these individuals was similar to in the total cohort. These results indicate that certain vulnerable subgroups of adolescents, rather than adolescents in general, should be prioritized for vaccination.

Contributors

PN conceived and designed the study. PN acquired the data. PN performed the statistical analyses. PN and MB accessed and verified the underlying data. All authors
interpreted the data. PN and MB drafted the manuscript. All authors critically revised the manuscript for intellectual content. PN and AN supervised the work. All authors gave final approval of the version to be published. All authors had full access to all the data and had final responsibility for the decision to submit for publication.

Declaration of interests

We declare no competing interests.

Role of the funding source

There was no funding source for this study.

Data sharing statement

The data files used for the present study are publicly unavailable according to regulations under Swedish law. However, all data used for the present study can be applied for from the National Board of Health and Welfare, Statistics Sweden, and the Public Health Agency of Sweden.

References

7. Florentino PTV, Millington T, Cerqueira-Silva T, Robertson C, de Araujo Oliveira V, Junior JBS, et al. Vaccine effectiveness of two-dose BNT162b2 against symptomatic and severe COVID-19 among adolescents in Brazil and Scotland over time: a test-negative case-control study. Lancet Infect Dis. 2022. Epub 2022/08/12. doi: 10.1016/S1473-3099(22)00451-0. PubMed PMID: 35952702; PubMed Central PMCID: PMCPMC9359673 programme from JBS SA. VdAO, VSB, MBL, and MB-N are employees of Fiocruz, a federal public institution that manufactures Vaxzevria in Brazil through a full technology transfer agreement with AstraZeneca. Fiocruz allocates all its manufactured products to the Ministry of Health for public health use. SVK was Co-Chair of the Scottish Government's Expert Reference Group on Ethnicity and COVID-19 and a member of the UK Government's Scientific Advisory Group on Emergencies subgroup on ethnicity. IR is a member of the Scientific Advisory Committee of the Government of Croatia and co-Editor-in-Chief of the Journal of Global Health. CRS declares funding from the Medical Research Council, the National Institute for Health Research, the Chief Scientist Office, and the New Zealand Ministry for Business, Innovation and Employment and Health Research Council during the conduct of this study. CR declares he is a Member of SPI-M, Scottish Government Scientific Advisory Committee, MHRA COVID-19 vaccine benefit and risk expert working group. AS declares that he is a member of the UK and Scottish Governments COVID-19 Advisory Boards and Astra-Zeneca's Thrombotic Thrombocytopenic Taskforce. IR is Co-Editor-in-Chief of the Journal of Global Health and President of the International Society of Global Health. All other authors declare no competing interests.

Figure legends
Figure 1. Selection of study participants.
Data from the Public Health Agency of Sweden:
All individuals vaccinated against COVID-19 or with a documented SARS-CoV-2 infection,
born 2003-2009 (N=692,546)

To these individuals, Statistics Sweden matched one control individual from the total population of individuals
born 2003-2009. Matched controls were not vaccinated at the date of vaccination in the corresponding case, and did
not have a documented infection on the date of the corresponding case. One control could be matched to
several cases (N=844,511)

N=134 individuals not vaccinated with an mRNA vaccine were excluded

Safety analysis:
All individuals given at least one dose of mRNA vaccine (N=645,355) in the
cohort was compared to all individuals not given any vaccine (N=199,022).
Outcomes were all diagnoses set during hospital stay after vaccination, and after
a corresponding date in the controls.

Vaccine effectiveness analysis:
After excluding individuals with a documented previous SARS-CoV-2 infection at baseline, all individuals given at
least two doses of mRNA vaccine (N=501,945) was compared to all individuals not given any vaccine
(N=170,083). The outcome was COVID-19 hospitalisation from 7 days after the second dose of vaccine onwards, and
a corresponding date in the controls.