Serology assays used in SARS-CoV-2 seroprevalence surveys worldwide: a systematic review and meta-analysis of assay features, testing algorithms, and performance

Author names: Xiaomeng Ma1,2, Zihan Li1,3, Mairead Whelan1, Dayoung Kim4, Christian Cao1,5, Mercedes Yanes-Lane6, Tingting Yan1,3, Thomas Jaenisch7, May Chu7, David A. Clifton6, Lorenzo Subissi8, Niklas Bobrovitz5,9, Rahul K. Arora1,10*

Affiliations:
1. Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
2. Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario M5T 3M6, Canada
3. Wyss Institute for Biologically Inspired Engineering, University of California Berkeley, Berkeley, California 02115, USA
4. Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
5. Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
6. COVID-19 Immunity Task Force, McGill University, Montreal, Quebec H3A 0G4, Canada
7. Department of Epidemiology & Center for Global Health, Colorado School of Public Health, Aurora, Colorado 80045, USA
8. World Health Organization, Geneva 1211, Switzerland
9. Department of Critical Care Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
10. Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK

Abstract

Background: Many SARS-CoV-2 serological assays were rapidly developed during the COVID-19 pandemic. However, differences in detection mechanism limit the comparability of assay outputs.

Methods: As part of the SeroTracker global living systematic review of SARS-CoV-2 seroprevalence studies, we collated serological assays used in serosurveys between January 1, 2020 and November 19, 2021. We mapped performance metrics to the manufacturer, third-party head-to-head, and independent group evaluations, comparing the assay performance data using a mixed-effect beta regression model.

Results: Among 1807 serosurveys, 192 distinctive commercial assays and 380 self-developed assays were identified. According to manufacturers, 28.6% of all commercial assays met WHO criteria for emergency use (sensitivity [Sn.] >= 90.0%, specificity [Sp.] >= 97.0%). Third-party and independent evaluations indicated that manufacturers overstated the Sn. of their assays by 5.4% and 2.8%, and Sp. by 6.3% and 1.2%. We found in simulations that inaccurate Sn. and Sp. can substantially bias seroprevalence estimates corrected for assay performance.

Conclusions: The Sn. and Sp. of the serological assay are not fixed properties, but varying features depending on testing population. To achieve precise population estimates and to ensure comparability, serosurveys should select assays with strong, independently validated performance and adjust seroprevalence estimates based on assured performance data.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Serosurveys have been foundational to emergency pandemic surveillance and evidence-guided public health policy during the COVID-19 pandemic. These studies help map the true extent of SARS-CoV-2 infection, indicators of population humoral immunity, and other measures of disease risk\[1\]. Serological assays, tools for detecting antibodies produced after SARS-CoV-2 infection or vaccination, are a critical methodological step in serosurvey design and result interpretation. In response to expanding demand for serosurveys, many SARS-CoV-2 serological assays were developed, mobilized, and adopted since the beginning of the pandemic.

The breadth of available serological assays since the beginning of the pandemic is large and diverse, with over hundreds of serological assays currently commercially available. Most serological assays target antibodies against the spike (S) and/or nucleocapsid (N) proteins\[2\] of the SARS-CoV-2 virus and detect a variety of antibody isotypes (IgG, IgM, IgA, or all - Total Ab). To date, several types of analyte binding methods and virological techniques have been applied to SARS-CoV-2 serology — the most common being neutralization assays, lateral flow immunoassays [LFIAs], immunofluorescence assays [IFAs], enzyme-linked immunosorbent assays [ELISAs], and chemiluminescence assays [CLIAs].

An important consideration during serosurvey study design is assay performance. Assay performance has direct consequences on the validity of a study, where the sensitivity (Sn.) and specificity (Sp.) reflect whether a given seroprevalence result is accurately reflective of the sample group’s true antibody positivity. Sn. and Sp. are not fixed properties of an assay, which, however, dependent on the panel of samples they were tested with. Manufacturers, third-party
sources, and other independent groups conduct performance evaluations on the Sn. and Sp. of assays to ensure the reliability and comparability of seroprevalence results. These evaluations use panels with different compositions of samples, some of which are likely to produce high estimates. Thus evaluation performance of assays varies considerably. Recently, a review compared serological assay performance against RT-PCR results for 58 studies\(^3\). The authors found that among ELISAs, CLIA, and LFIAs, the pooled assay Sn. and Sp. ranged from 75% - 91% (Sn.) and 92% - 100% (Sp.). This broadly varying assay performance raises the concern that SARS-CoV-2 seroprevalence estimates are potentially biased by imperfect or inconsistent assay performance, especially in cases where no statistical adjustments are made to account for test performance.

Validation from different sources is often in disagreement and results in varied intra-assay performance data especially compared to manufacturer-certified evaluations, as supported by several head-to-head laboratory assay comparison studies\(^4-8\). Commercial assays constitute the vast majority of assays used in serosurveys, and manufacturers of these commercial assays self-certify their testing products with in-lab evaluations\(^9\). Such evaluations were usually done in the early pandemic using small true positive samples drawn from patients with confirmed symptomatic COVID-19 and no co-infection of other viruses\(^10\). The lack of endemic samples representing the demographics and endemic pathogens in a study area introduces spectrum bias\(^11\). There is also a lack of standardization between the methodology for manufacturer evaluations, and key factors such as the time post-symptom onset that sampling was done vary.
There is uncertainty in the extent to which misspecified assay performance will introduce bias to results in unadjusted and adjusted seroprevalence estimates. This issue is further exacerbated by the discordant validation data between sources and the unavailability of third-party evaluations for certain assays. For this reason, there is a need to synthesize assay performance data for use in both the design and interpretation of serosurveys. In particular, how these sources of validation data differ and what the Sn. and Sp. of an assay are needed to minimize bias in seroprevalence estimates given the true background prevalence. These results have important implications on public health policy and resource mobilization through the interpretation of seroprevalence data: especially critical for the future course of the pandemic and advising serosurveillance for future infectious disease threats.

Our group maintains a living systematic review on SARS-CoV-2 seroprevalence\cite{12}. We sought to 1) describe the usage of serological assays and the implementation of testing algorithms employing multiple tests in SARS-CoV-2 serosurveys during the COVID-19 pandemic; 2) conduct a large-scale examination of the performance of these assays across manufacturers, third-party reference labs, and independent investigator evaluations; and 3) quantitatively assess the influence of assay performance on seroprevalence estimates. To our knowledge, this is the first large-scale evaluation of discrepancies between validation sources and intra-assay performance for serological assay targeting SARS-CoV-2 antibodies.
Materials and Methods

This study is registered as a part of an ongoing living systematic review of global SARS-CoV-2 seroprevalence studies in PROSPERO (CRD42020183634[12]), which is also accessible on an open-access web dashboard[13]. Detailed methods and results from this review have previously been published[14, 15].

Data sources and search strategy

We developed published literature, preprint, and grey literature search strategies with a health sciences librarian[14]. From the search dates of January 1st, 2020, to November 19th, 2021, we searched for articles on Medline, EMBASE, Web of Science preprints on Europe PMC. Our secondary search included Google News, articles submitted to SeroTracker.com, and studies submitted to us by expert recommendations. Two reviewers independently screened titles/abstracts and full texts. Data were extracted and critically appraised in duplicate[16].

Inclusion and exclusion criteria

We included all SARS-CoV-2 seroprevalence studies in humans which reported a sample size, sampling date and locale, and prevalence estimate. We excluded studies conducted only in people with SARS-CoV-2 infection or vaccination and online public dashboard estimates that were not associated with a defined serology study[15]. We adapted an automated appraisal tool based on the Joanna Briggs Institute critical checklist to evaluate the risk of bias in included seroprevalence studies[17]. Full details of the assessment process can be accessed from this published work[16].

Serological assay data extraction
We developed a database of serological assays linked to our seroprevalence database. We extracted assay-related information reported in individual seroprevalence studies. For each assay, we identified product name, manufacturer, country, WHO geographical region of development, antibody isotypes detected (IgG, IgM, IgA, total Ab), test type (ELISA, LFIA, IFA, CLIA, neutralization assay, others; see Supplementary Files Table S1), antibody target (Spike, Nucleocapsid, others), multiplex detection (detecting more than one antibody targets), time to result (Rapid Diagnostic Tests [RDT]/non-RDT), and test Sn. and Sp. as reported by the manufacturers. For commercial assays, we validated and complemented details on assays with the information provided by each manufacturer on their websites.

Many studies cited serological assay validation results to corroborate the performance of the assay they selected. However, given that the testing environment, validation procedure, and reference panel varied across groups conducting validation, we categorized assay validation as either (1) third-party lab validation or (2) independent group field validation. We linked commercial assays with their performance in five large third-party lab performance evaluations and defined these as third-party lab validations. These five labs conducted large-scale head-to-head evaluations under controlled and reproducible conditions, including NRL (WHO sponsored), the US FDA, Netherland CIDC, The Doherty Institute, and FIND Diagnostics (Table S2). Independent field validation results were defined as performance validation data extracted from individual seroprevalence studies. These studies reported pretest results with a smaller sample in addition to population prevalence. Where available, assays’ Sn. and Sp. for all isotypes and total antibodies were extracted from third-party lab evaluations and independent evaluations. The WHO has set performance criteria for emergency use of Sn. >=
90.0% and Sp. $\geq 97.0\%^{[18]}$. We applied these thresholds to categorize commercial assays based on performance in manufacturer, third-party, and independent evaluations.

Analysis

Data extraction, cleaning, and management were performed in a collaborative data collection platform (airtable.com). Data analysis was performed using R 4.0.2$^{[19]}$. We first summarized basic study characteristics, seroprevalence estimates, and serological assay features stratified by the WHO region at the study level.

At the assay level, we described the distribution of test usage, initial adoption, test type, region of development, test features, test evaluation states, and eligibility for emergency use by commercial and self-developed assays. We collected Sn./Sp. data to show the difference in reported performance for the top 50 assays and the top 20 assays by evaluation sources (manufacturers, third parties, and independent groups). The median Sn. and Sp. values for the top 50 assays were extracted from three evaluation sources and plotted on a panel against the WHO criteria. Bland-Altman plots were created to compare manufacturer-reported Sn./Sp. with third party’s lab and independently evaluated Sn./Sp. in pairs.

For studies that used a testing algorithm involving multiple assays, we examined the combination of assays used (commercial/self-developed), how results from assays were combined (e.g., either test positive for a specimen to be positive vs. both tests positive), and whether the study reported a combined Sn. and Sp. for the testing algorithm. Many studies used multiple assay testing algorithms and also reported seroprevalence derived from using individual assays on the same set of samples. For these studies, we generated another set of Bland-Altman plots to show the
discrepancy of estimates between testing algorithms. Seroprevalence estimates given by multiple assay algorithms and seroprevalence given by individual assays were compared in pairs.

Modeling analysis

In examining whether assay performance differs by evaluation sources, we developed mixed-effect beta regression models with random effects specified for individual assays. The model was fitted for Sn. and Sp. separately. This modeling analysis enables us to determine discordance between evaluation sources and inherent assay features that may affect performance metrics.

We then performed a simulation. We simulated 1000 scenarios in which observed seroprevalence ranged from 0.0-99.9%. We adjusted assay performance on observed prevalence to answer the third question we asked – to what extent a misreported assay performance value will bias the adjusted estimates from the ‘true’ prevalence estimate. The precise prevalence estimate intervals were defined by specifying error levels at ±5% to the true prevalence. We simulated adjusted seroprevalence for assays at three accuracy levels – 1) high: Sn. = 95.0%, Sp. = 99.0%; 2) good: Sn. = 90.0%, Sp. = 97.0%; 3) moderate: Sn. = 87.0%, Sp. = 90.0%, with different levels of error of performance misspecification.

Results

Included studies

We screened 72,799 titles and abstracts and 4,876 full texts published between January 1, 2020, and November 19, 2021. This represents the pre-booster vaccine time window before Omicron where most qualitative tests were introduced. We extracted data from 2,069 articles – 262 of
these were identified as preprints, overlapped by subsequent full articles. 1,807 serosurveys were included for final analysis (see Supplemental Files Figure S1).

Assay use in seroprevalence studies

Among these 1,807 serosurveys, 80.7% of studies used a single serological assay (73.1% commercial assays, 18.2% self-developed assays, 8.7% unable to specify), while 19.3% used a testing algorithm involving multiple assays (Table S3 and S5); 248 adjusted seroprevalence estimates for assay performance. Overall, global usage of commercial serology assays follows a power-law distribution, with the top 25 assays accounting for 67.0% of total commercial assay use in seroprevalence studies (Figure S2) and the top 50 assays accounting for 91.4% of use.

Characteristics of identified assays

Among 1807 serosurveys, we identified 192 commercial serology assays and 380 self-developed serology assays (Table 1). A full list of identified commercial serology assays can be found in Supplemental Files (Table S6). Of the 192 identified commercial assays, 31.3% were ELISAs, 39.1% were LFIAs, 15.6% were CLIAs, 2.6% were IFA assays, 15.6% were other types or not able to specify (Table 1). Of the 380 studies using self-developed assays, most used ELISAs (68.7%, Table 1). Product information was limited for many assays, most notably LFIAs: up to 32.6% and 42.6% of studies did not mention details about targeted antigen(s) and antibody isotypes, respectively. 45.0% of studies using self-developed assays used multiplex detection to recognize multiple antibody targets. RDTs (types including LFIA, IFA) accounted for 53.6% (103/192) of all commercial assays, while only 4.5% (17/192) of self-developed assays were developed as RDTs.

Reporting of assay performance
Manufacturer data could be searched from publicly available online sources or manufacturer-led research papers for 91/192 (47.4%) commercial assays; 61.5% of these were subsequently either assessed in the five third-party evaluations or independent group evaluations (Table 2). Based on manufacturer data, mean Sn. was 97.8 (95% Confidence Interval [CI]: 93.9-100) % and mean Sp. was 99.7 (95% CI: 97.8-100)%; 55/192 (28.6%) met the 90.0% Sn. and 97.0% Sp. WHO criteria for emergency use (Figure 1, Figure S3); of the 50 most frequently used assays, 76.9% met the WHO criteria. In contrast, only 46.1% and 53.7% met these criteria based on third-party and independent evaluations, respectively (Figure S3).

CLIAs demonstrated higher and more reliable performance across all three evaluations sources than ELISAs, LFIAs, and IFAs among the top 50 assays (Figure 1 and Figure S4). The pairing comparison of manufacturer-reported figures of merit against five third-party lab and independent group evaluations indicated manufacturers systematically overstated the Sn. and Sp. of the assays they developed (Figure 2, Figure S5). After controlling for assay features, Sn. and Sp. were considerably lower by 5.4% (95% CI: 2.6-8.2)% (p<0.001) and 2.8% (95% CI: 1.8-3.9)% (p<0.001) according to third parties and by 6.3 [95% CI: 3.9-8.7]% (p<0.001) and 1.2 (95% CI: 0.2-2.1)% (p=0.016, Table 2) according to independent evaluations.

We conducted a simulation to examine the impact of incorrect sensitivity and specificity estimates on estimated seroprevalence, using a threshold of ±5% between true and adjusted prevalence to define substantial effects. Falsely specifying Sn. 5% higher than its true value will not affect population prevalence estimates for any assay with higher than moderate performance (Sn. >= 80%, Sp. >= 87%). However, if Sn. is falsely specified 10% higher and Sp. by 3%
higher, population prevalence estimates are inaccurate for true prevalence below 18.3% or above
38.7% (assays with moderate performance), or inaccurate for true prevalence below 17.5% or
above 41.5% (assays with good performance, i.e., Sn = 90%, Sp = 97%). Falsely specifying
assay Sn. 10% lower and Sp 5% lower than their true values lead to substantial deviations
between estimated and true population seroprevalence at all seroprevalence values (Figure 3. a-c,
Table S4).

Multiple test combinations

349/1807 (19.3%) studies employed a testing algorithm that used more than one serological
assay (Table S5). Most studies (254/349 [72.8%]) used a combination of the commercial test(s)
with self-developed test(s) and employed multiple laboratory-based (i.e., non-RDT) assays
(267/349 [76.5%]). Concerning antibody target, 152 (43.5%) studies combined spike and
nucleocapsid-targeted assays, while spike-spike assay combinations were observed in 121/349
(34.7%) studies.

Of 349 multiple-testing studies, 42.4% of these tested the same sample on multiple assays
concurrently (“parallel testing”); among these, 68.2% defined seropositivity as a positive result
on at least one assay and 31.8% defined this as a positive result on all assays. 31.8% used one
assay first for screening, followed by another for confirmation (“sequential testing”). While
having the combined Sn. and Sp. for a testing algorithm is important to interpret seroprevalence
estimates, this was only reported in 9.5% of seroprevalence studies using a multiple testing
algorithm (Table S5). A subset of samples from 167 studies tested on parallel or sequential
multiple algorithms were identified to interpret seroprevalence estimates derived from these
algorithms. These studies also have estimates provided by a single assay. We found parallel and
sequential testing algorithms were potentially effective in ruling out false-positive cases given by RDTs (-7.8% in prevalence estimates using a single assay) and recognizing positive cases missed by ELISAs (+4.4%, Figure S6).

Discussion

In examining 1807 global serosurveys published since the beginning of the pandemic, we found that 192 unique commercial and 380 unique self-developed serological assays were used. We found that intra-assay performance evaluation results varied widely according to evaluation method and source. This variation in assay evaluations may have an impact on seroprevalence estimate validity and bias by under- or over-estimating estimates by up to 9.5%.

Intra-assay consistency across different sources of validation has been difficult to identify in the literature, and the context-dependent performance of assays has not yet been widely elucidated. In addition to previously published inter-assay comparisons\[22–26\], the added value of our large-scale evaluation demonstrates that independent and third-party head-to-head evaluations reveal overestimation in manufacturer evaluations of assay Sn. and Sp. Our pooled analysis found that Sn. on average was lower by 5.4% and 6.3% in third-party’s and independent group evaluations, respectively. Likewise, Sp. on average was lower by 2.8% and 1.2% in third-party’s and independent group evaluations, respectively. These results mean there may be more false positives and negatives than would be expected given manufacturer-verified test evaluations, which may impact result adjustment and interpretation.
There are notable strengths to third-party evaluations. For example, the five third-party labs included in our study all disclosed the reference panel they used (Table S2). The composition of samples in reference panels is consistent across the evaluation of each individual assay, including testing materials consisting of combinations of high-titer, mid-titer, and low-titer samples on N- and S- antibody targets that reflect more accurately the full-time course of infection (past infections, and waning antibodies)[27, 28]. The design of these positive panels mirrors the complexity of antibody detection in real settings. Cross-reactivity to other viral infections (such as HIV, Dengue, Malaria, and Middle East Respiratory Syndrome) was also consistently assessed in negative panels.

Only a small proportion (6.9%) of independent author groups conducted their own assay pre-study validation before rolling out their serosurvey; fewer described the evaluation panels and method they used. Although not always feasible, we recognize that independent evaluations gain value in their further limitation of spectrum bias as the reference panels used by third-party head-to-head evaluations, which may not perfectly represent the study geography and context. Third-party evaluations are of value in retrospectively adjusting data or selecting and adjusting for assays in new studies. However, third-party evaluations typically only target frequently used assays which were mostly developed and distributed in high-income countries. This situation necessitates the need for study investigators to validate assays not included in these evaluations or reassess performance reflecting the study geography and demographic context as well as the epidemiological time course involving population exposure and viral mutations. Of note, studies have demonstrated loss of sensitivity over time as antibodies wane, and incorporating performance based on time since the infection will gain further importance as the pandemic
progresses\cite{10,29}. Moreover, viral mutations may result in decreased assay performance\cite{30}.

Additionally, studies have shown differences in antibody dynamics in specific populations such as those from sub-Saharan Africa, young adults, and pregnant women that may impact test performance\cite{31–34}. Independent evaluations targeted toward the intended study population using representative panels are strongly supported by our findings which reach an updated understanding of serological assay performance, and conversely, accurate seroprevalence estimates.

Seroprevalence estimates can vary considerably based on the assay used, even in the same population and based on the same samples\cite{23}. For instance, low-specificity assays can lead to overinflated seroprevalence estimates, creating misleading results — particularly in settings with low true prevalence\cite{35}. Moreover, Sn. and Sp. are not true parameters of the assays, but can vary for the same assay depending on the reference panel or population used. Overall, our findings caution against accepting aggregate sensitivities and specificities reported by assay manufacturers, favoring independent or third-party evaluations on representative populations. Sn. and Sp. should be stratified by disease severity and time since infection, and the characteristics of the positive and negative reference panels should be reported at a minimum. The chance of biased estimates can be substantially minimized with proper adjustment. Our finding implies that statistically adjusting for test validity may be an essential step - particularly in low prevalence settings where a small absolute difference in seroprevalence can produce a massive relative difference in understanding of case ascertainment, and/or where assay performance values are low (as seen with some rapid test assays).
Another option to effectively minimize bias in seroprevalence studies was to use a multiple testing strategy. Although findings should be further validated due to the heterogeneity of data, we noticed that pairing RDT with other assays could minimize false-positive rates by using RDTs only. Moreover, multiple testing algorithms could also increase the sensitivity of laboratory binding assays such as ELISAs and CLIAs and rule out false negatives, especially in low prevalence settings. Requiring a positive result on multiple assays in parallel and sequential testings improves the overall specificity of the testing algorithm compared with the individual assays alone[36], but sometimes at the expense of sensitivity[37]; conversely, requiring a positive result on just one of multiple assays improves sensitivity at the expense of specificity. The importance and rational deployment of these algorithms should thus take into account contextual factors such as background prevalence in the population being studied. Additionally, for accurate interpretation, reporting the details of the assays used and how they were combined with one another is important - ideally including a combined sensitivity and specificity evaluation for each unique combination of assays used to interpret a result.

This study has some limitations. While the living review from which our data is drawn captures seroprevalence studies, we have not captured all applications of serological assays. For example, we excluded studies done exclusively in confirmed COVID-19 cases and vaccinated individuals, and our findings may not apply to these areas of serological research. Additionally, our findings apply to population-based contexts and may not translate entirely to the patient or clinical level, where serological assays are used to guide patient care. When collating third-party, independent, and manufacturer data on assay performance, we extracted the overall Sn./Sp. on total antibodies whenever available. We extracted performance data collected from the far-most day from
symptom onset. Finally, while we made our best effort to identify and summarize the use of serological assays in each serosurvey and the performance of assays from different sources, we saw data missing in some fields. These missing data were excluded from subgroup analyses. For instance, not all studies cited the assay or gave a comprehensive description of the test used, especially for conference abstracts.

Conclusions

In conclusion, we found a large and diverse number of assays used in seroprevalence studies, although 91% of studies employ assays within the top 50 most commonly used. This diversity in serological assays available may impact the interpretation and reliability of seroprevalence estimates - particularly given the varying intra-assay performance evaluations. Sn. and Sp. are not fixed properties of a serological assay, but varying features depending on the reference panel or population on which is tested. Authors conducting seroprevalence studies should consider employing third-party or independently evaluated assays informing assay properties in a particular context. Statistical test adjustments on validated assay performance, and multiple testing strategies substantially minimize the risk of bias in their seroprevalence estimate results, but overall Sn. and Sp. should be better reported if multiple assays are combined.
Transparency declaration

Supplementary Materials: Supplementary file 1 contains an article inclusion diagram, explanation on major categories of assays, description on reference panels of five third-party lab evaluations, supplementary analytical results, and the full list of identified commercial serology assays from systematic review. Supplementary file 2 is the PRISMA checklist required for a review article.

Funding: SeroTracker receives funding for SARS-CoV-2 seroprevalence study evidence synthesis from the Public Health Agency of Canada through Canada’s COVID-19 Immunity Task Force, the World Health Organization Health Emergencies Programme, the Robert Koch Institute, and the Canadian Medical Association Joule Innovation Fund.

L.S. is employed by WHO; no others at WHO, and no other funders, had any role in the design of this study, its execution, analyses, interpretation of the data, or decision to submit results. This manuscript does not necessarily reflect the views of the World Health Organization or any other funder.

Acknowledgments: We would like to thank all members of the SeroTracker team who built the foundation for this study by maintaining an up-to-date database of seroprevalence studies.

Institutional Review Board Statement: Ethical review and approval were waived for this study, due to only second-hand synthesized data was used.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data from seroprevalence studies and the serological assays used therein are available from: https://serotracker.com/en/Explore

Conflict of interest: R.K.A. reports consulting fees from the Bill and Melinda Gates Foundation Strategic Investment Fund, past employment with Health Canada, and equity in Alethea Medical, all outside the submitted work. D.A.C. reports consulting fees from Sensyne Health, Oxford University Innovation, and BioBeats, each outside the submitted work.
References

Figures and tables

Figure 1. The difference in reported assay performance among manufacturer evaluation, third
party evaluation, and independent evaluation

*Note. The figure shows the side-b-side comparison of assay performance for the top 20 assays.
Performance evaluations came from three sources: manufacturer reports, third-party labs and
independent groups. Intervals were constructed by computing the minimum/maximum
performance values from the given source.*

Figure 2. Pairwise Bland-Altman plots on the agreement of Sn. and Sp. between a source of
assay evaluation against the manufacturer evaluation: Manufacturer vs. (a)-(b) Australia NRL,
(c)-(d) US FDA, (e)-(f) Netherland CIDC, (g)-(h) FIND Diagnostics, (i)-(j) Australia Doherty,
(k)-(l) independent evaluations

*Note. Assays missing corresponding data were not involved in the analysis. The bias level (with
its 95% confidence interval) was the average difference given by performance value from
manufacturers - performance value from the other evaluation source.*

Figure 3. Consequences of correcting seroprevalence estimates using biased estimates of
sensitivity (Sn.) and specificity (Sp.): simulation-based analysis. Serological assay with a) high:
a true Sn. at 95.0% and a true Sp. at 99.0%, b) good: a true Sn. at 90.0% and a true Sp. at 97.0%,
c) and moderate performance: a true Sn. at 80.0% and a true Sp. at 87.0%.
Note. * The dot-dash lines provide an interval which indicate the seroprevalence adjusted for the misspecified assay performance at a given error level was still within ±5% deviation of the true seroprevalence. The prevalence adjustment was performed using the formula by Sempos and Tian in Am J Epidemiol.

** Notice that an assay with underestimated Sn. and Sp. is unable to provide prevalence estimates after adjustment at a low prevalence setting: a): 5.3% and b): 5.6%; an assay with overestimated Sn. and Sp. tends to inflate seroprevalence after adjustment when the true prevalence is low: b) 3.0% and c) 9.6%.
Table 1. Features of commercial and self-developed serology assays used by studies

<table>
<thead>
<tr>
<th>Assay characteristics</th>
<th>Commercially assays (N = 192)</th>
<th>Self-developed assays (N = 380)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Developed by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer</td>
<td>162</td>
<td>-</td>
</tr>
<tr>
<td>Lab groups</td>
<td>-</td>
<td>275</td>
</tr>
<tr>
<td>Type of Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>60</td>
<td>31.3</td>
</tr>
<tr>
<td>LFIA</td>
<td>75</td>
<td>39.1</td>
</tr>
<tr>
<td>IFA</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>CLIA (Including CGIA, CMIA)</td>
<td>30</td>
<td>15.6</td>
</tr>
<tr>
<td>Neutralization Assay</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Others/ Not specified</td>
<td>22</td>
<td>11.5</td>
</tr>
<tr>
<td>WHO regions of development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>America</td>
<td>49</td>
<td>25.5</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>Europe</td>
<td>75</td>
<td>39.1</td>
</tr>
<tr>
<td>South-East Asia</td>
<td>4</td>
<td>2.1</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>58</td>
<td>30.2</td>
</tr>
<tr>
<td>Not Reported</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Feature of Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDT</td>
<td>103</td>
<td>53.6</td>
</tr>
<tr>
<td>Non-RDT</td>
<td>89</td>
<td>46.4</td>
</tr>
<tr>
<td>Antibody Targets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spike</td>
<td>55</td>
<td>28.6</td>
</tr>
<tr>
<td>Nucleocapsid</td>
<td>37</td>
<td>19.3</td>
</tr>
<tr>
<td>Multiplex Targets (*)</td>
<td>38</td>
<td>19.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>62</td>
<td>32.3</td>
</tr>
<tr>
<td>Isotypes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG-only</td>
<td>52</td>
<td>27.1</td>
</tr>
<tr>
<td>IgG and IgM</td>
<td>103</td>
<td>53.6</td>
</tr>
<tr>
<td>Total Antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IgG, IgM, IgA)</td>
<td>22</td>
<td>11.5</td>
</tr>
<tr>
<td>Other Combinations (**)/Not Reported</td>
<td>15</td>
<td>7.8</td>
</tr>
<tr>
<td>Assay Sn. and Sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer/developer reported</td>
<td>91</td>
<td>47.4</td>
</tr>
<tr>
<td>Third-party validated</td>
<td>118</td>
<td>61.5</td>
</tr>
<tr>
<td>Australia NRL</td>
<td>16</td>
<td>8.3</td>
</tr>
<tr>
<td>Australia Doherty</td>
<td>18</td>
<td>9.4</td>
</tr>
<tr>
<td>US FDA</td>
<td>57</td>
<td>29.7</td>
</tr>
<tr>
<td>FIND Diagnostic</td>
<td>30</td>
<td>15.6</td>
</tr>
<tr>
<td>Netherlands CIDC</td>
<td>26</td>
<td>13.5</td>
</tr>
<tr>
<td>Other groups</td>
<td>94</td>
<td>49.0</td>
</tr>
<tr>
<td>Emergency Use (***)/Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>57</td>
<td>29.7</td>
</tr>
<tr>
<td>No</td>
<td>135</td>
<td>70.3</td>
</tr>
</tbody>
</table>
Note: * Multiplex targets indicate the assay detects more than one targets on the SARS-CoV-2 virus; the multiplex detection combinations include spike-whole virus antigen, spike-nucleocapsid, nucleocapsid-spike-envelope protein.

** Other test isotypes include IgM-only, IgA-only, IgM and IgA, and other not specified isotype combinations.

*** Manufacturer reported test performance met the WHO standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivity minimum 90.0%, specificity minimum 97.0%.
Table 2. Predictors of assay Sn. and Sp. estimated with mixed-effect beta regression (N = 192)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sensitivity (Obs. = 621)</th>
<th>Specificity (Obs. = 628)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est. (%) 95% CI P value</td>
<td>Est. (%) 95% CI P value</td>
</tr>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturer ref ref ref ref ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent</td>
<td>-6.3 (-8.9, -3.7) <0.001 *</td>
<td>-1.2 (-2.1, -0.2) 0.016 *</td>
</tr>
<tr>
<td>Third Party's Lab</td>
<td>-5.4 (-8.2, -2.6) <0.001 *</td>
<td>-2.8 (-3.9, -1.8) <0.001 *</td>
</tr>
<tr>
<td>NRL</td>
<td>2.2 (-2.8, 7.2) 0.39</td>
<td>-6.7 (-8.6, -4.7) <0.001 *</td>
</tr>
<tr>
<td>US FDA</td>
<td>0.5 (-2.7, 3.7) 0.739</td>
<td>-2.4 (-3.7, -1.2) <0.001 *</td>
</tr>
<tr>
<td>FIND Diagnostic</td>
<td>-22.8 (-26.7, -18.9) <0.001 *</td>
<td>-2.6 (-4.2, -1.0) 0.002 *</td>
</tr>
<tr>
<td>Netherland CIDC</td>
<td>-1.8 (-5.9, 2.4) 0.409</td>
<td>-2.1 (-3.6, -0.5) 0.011 *</td>
</tr>
<tr>
<td>Doherty</td>
<td>-7.1 (-12, -2.3) 0.004</td>
<td>-2.7 (-4.6, -0.8) 0.005 *</td>
</tr>
<tr>
<td>Isotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG-only ref ref ref ref ref ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG and IgM</td>
<td>-1.5 (-6.1, 3.2) 0.538</td>
<td>-0.8 (-3.1, 1.6) 0.519</td>
</tr>
<tr>
<td>Total Antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IgG, IgM, IgA)</td>
<td>2.8 (-1.6, 7.2) 0.217</td>
<td>0.8 (-1.6, 3.2) 0.516</td>
</tr>
<tr>
<td>Other Combinations/Not Reported</td>
<td>-3.8 (-9.9, 2.3) 0.225</td>
<td>-1.4 (-4.6, 1.7) 0.371</td>
</tr>
<tr>
<td>Type of Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA ref ref ref ref ref ref ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFIA</td>
<td>-1.6 (-6.4, 3.1) 0.5</td>
<td>-0.8 (-3.2, 1.7) 0.533</td>
</tr>
<tr>
<td>IFA</td>
<td>2.7 (-6.4, 11.7) 0.565</td>
<td>-2.1 (-6.7, 2.5) 0.381</td>
</tr>
<tr>
<td>CLIA (Including CGIA, CMIA)</td>
<td>0.0 (-4.0, 4.0) 0.995</td>
<td>0.4 (-1.7, 2.6) 0.699</td>
</tr>
<tr>
<td>Others/Not specified</td>
<td>-1.4 (-10.9, 8.2) 0.778</td>
<td>2.4 (-1.6, 6.4) 0.246</td>
</tr>
<tr>
<td>Antibody Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spike ref ref ref ref ref ref ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleocapsid</td>
<td>-4.3 (-8.1, -0.5) 0.026</td>
<td>-1.0 (-2.8, 0.8) 0.294</td>
</tr>
<tr>
<td>Multiplex Targets</td>
<td>0.3 (-3.7, 4.2) 0.901</td>
<td>-2.4 (-4.5, -0.3) 0.022 *</td>
</tr>
<tr>
<td>Unknown</td>
<td>-5.4 (-8.7, -2.1) 0.001</td>
<td>-1.0 (-2.7, 0.6) 0.217</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serological assay</td>
<td>0.0024 0.0487</td>
<td>0.0010 0.0320</td>
</tr>
<tr>
<td>Residual</td>
<td>0.0080 0.0892</td>
<td>0.0012 0.0340</td>
</tr>
</tbody>
</table>

Note. * Corresponds to the significant level of p<0.05. Beta regression is a linear modeling approach for continuous variable with range of 0 to 1. Sn. and Sp. were modeled separately with random effects for individual serological assay.

30
Figure 2

- Manuf. vs. NRL on Sn.
- Manuf. vs. NRL on Sp.
- Manuf. vs. FDA on Sn.
- Manuf. vs. FDA on Sp.
- Manuf. vs. CIDC on Sn.
- Manuf. vs. CIDC on Sp.
- Manuf. vs. FIND on Sn.
- Manuf. vs. FIND on Sp.
- Manuf. vs. Doherty on Sn.
- Manuf. vs. Doherty on Sp.
- Manuf. vs. Indep. on Sn.
- Manuf. vs. Indep. on Sp.

Bias: -2.9% (-15.5, 9.6%)

Bias: 5.3% (-6.6, 17.2%)

Bias: 0.0% (-16.7, 16.8%)

Bias: 3.3% (-7.3, 13.8%)

Bias: 0.4% (-13.1, 14.0%)

Bias: 2.4% (-6.3, 11.0%)

Bias: 22.7% (0.3, 45.2%)

Bias: 3.3% (-7.3, 13.8%)

Bias: 5.5% (-20.3, 31.3%)

Bias: 1.7% (-3.3, 6.8%)

Bias: 4.6% (-14.6, 23.9%)

Bias: 0.2% (-4.5, 5.0%)

Average Assay Sn./Sp. Measurement
Figure 3

(a) Adjusted Prevalence vs. True Prevalence

(b) Adjusted Prevalence vs. True Prevalence

(c) Adjusted Prevalence vs. True Prevalence

Legend:
- 10% error in Sn.
- 5% error in Sp.
- 0% error in Sn.
- 5% error in Sp.
+ 5% error in Sn.
+ 0% error in Sp.
+ 10% error in Sn.
+ 3% error in Sp.
+ 20% error in Sn.
+ 10% error in Sp.