Development of a serological assay to simultaneously identify *Helicobacter suis* and *Helicobacter pylori* infection

Hidenori Matsui,a,b,c* Emiko Rimbara,a Masato Suzuki,d Kengo Tokunaga,e Hidekazu Suzuki,f Masaya Sano,f Takashi Ueda,f Hitoshi Tsugawa,g Sohachi Nanjo,h Akira Takeda,i Makoto Sasaki,j Shuichi Terao,k Tsuyoshi Suda,l Sae Aoki,a Keigo Shibayama,b Hiroyoshi Ota,m and Katsuhiro Mabe**

aDepartment of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
bDepartment of Bacteriology, Nagoya University Graduate School of Medicine, Aichi, Japan
cÔmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
dAntimicrobial Research Center, National Institute of Infectious Diseases, Tokyo, Japan
eDepartment of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
fDivision of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
gDivision of Host Defense Mechanism, Tokai University School of Medicine, Kanagawa, Japan
hThird Department of Internal Medicine, Toyama University Hospital, Toyama, Japan
iTakeda Hospital, Fukuoka, Japan
jDivision of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan
kDepartment of Gastroenterology, Kakogawa Central City Hospital, Hyogo, Japan
lDepartment of Gastroenterology, Kanazawa Municipal Hospital, Ishikawa, Japan
mDepartment of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Nagano, Japan
nJunpukai Health Maintenance Center Kurashiki, Okayama, Japan

H. M. and E. R. contributed equally to this work.

*Corresponding authors at: Department of Bacteriology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan and Junpukai Health Maintenance Center Kurashiki, Tsurashima 3-1-19, Kurashiki-shi, Okayama 712-8014, Japan. E-mail addresses: hmatsui@niid.go.jp (to H. M.) and katsuhiro-mabe@junpukai.or.jp (to K. M.).

•Abstract (maximum 250 words)

Background *Helicobacter suis* hosted by hogs is the most-prevalent gastric non-*Helicobacter pylori* *Helicobacter* species (NHPH) found in humans with gastric diseases. However, there is no reliable method for diagnosing *H. suis* infection in clinical practice without gastric biopsy specimens.
Methods Helicobacter infection was diagnosed by using routine methods for detecting *H. pylori* infection and three other methods (PCR, culture accompanied by genomic analyses, and microscopy) for detecting NHPH and *H. pylori* infection using gastric biopsy specimens. Then, an ELISA was developed to detect serum anti-*H. suis* and anti-*H. pylori* antibody titers.

Findings The serum specimens (n=101) were divided into specimens with (n=20) and without *H. suis* infection (n=81), or into specimens with (n=17) or without *H. pylori* infection (n=64) after excluding *H. pylori* infection-eradicated specimens (n=20). The cut-off values of the optical density in the ELISA were used to judge Helicobacter infections. The sensitivity and specificity were 100% and 92.5%, respectively, for identifying *H. suis* infection, or 88.2% and 87.5%, respectively, for identifying *H. pylori* infection, and these levels were considered acceptable for clinical application. We detected no other NHPH infections by PCR or culture in this study.

Interpretation We developed the world’s first ELISA to simultaneously diagnose *H. suis* and *H. pylori* infection, which is available for large-scale medical examination. The eradication of *H. suis* was confirmed by the time-dependent decline of anti-*H. suis* antibody titers.

Funding This work was supported by MEXT/JSPS KAKENHI (JP19H03474, JP20K08365) and AMED (JP20fk0108148, JP20fk0108133).

(241 words)

Keywords (4–6) gastric non-*Helicobacter pylori* Helicobacter species (NHPH), *Helicobacter pylori*, *Helicobacter suis*, ELISA, diagnosis, eradication

Research in context

Evidence before this study The natural hosts of *Helicobacter suis*, a member of the gastric non-*Helicobacter pylori* Helicobacter species (NHPH), are monkeys and hogs, while other NHPH such as *H. heilmannii* sensu stricto (s.s.), *H. aurogastricus*, *H. felis*, *H. salomonis*, *H. baculiformis*, *H. cynogastricus*, and *H. bizzozeronii* infect the stomachs of cats and dogs. Among humans with NHPH infections, *H. suis* infection is most common. However, *H. suis* from gastric biopsy specimens could not be grown as a pure culture until our recent success growing *H. suis* from the gastric biopsies of patients suffering from gastric diseases. Recent studies suggest that *H. suis* infection leads to gastric diseases such as MALT lymphoma, nodular gastritis, chronic gastritis, and peptic ulcer. Because routine diagnostic methods based on the urease activity of NHPH, such as the urea breath test (UBT) and rapid urease test (RUT), often yield negative results in the
case of *H. suis* infecting the human stomach, PCR or histological examination from gastric biopsy specimens has been performed to diagnose *H. suis* infection for research purposes. Therefore, in patients with gastric diseases caused by *H. suis* infection, physicians often miss the window for eradication treatment.

The added value of this study

This study is the first to develop a serological diagnostic method for *H. suis* infection in humans. The diagnostic procedure identified all the *H. suis* infections that had been identified in advance by PCR and culture of gastric biopsy specimens. The ELISA showed low cross-reactivity between *H. suis* and *H. pylori* infection. Because NHPH other than *H. suis* were not detected in the human stomach in this study, the development of a comprehensive approach for identifying *H. suis* and *H. pylori* infection could lead to an accurate diagnosis of gastric *Helicobacter* infection.

Implications of all the available evidence

Most *Helicobacter pylori* infections occur in infancy in developed countries, usually via transmission from their family members. Meanwhile, the infection period and route of *H. suis* from hogs remain unclear. Because the post-*H. pylori* eradication era has already begun in Japan, a possible surge in the *H. suis* infection rate may already have induced many cases of gastric disease in the Japanese population. Therefore, a method for comprehensive clinical diagnosis and effective eradication would be helpful as a plan of action for *Helicobacter* infections.

1. **Introduction**

Helicobacter suis, which differs from *H. pylori* in its bipolar flagella and corkscrew-like spiral morphology, is classified as a member of the gastric non-*Helicobacter pylori* *Helicobacter* species (NHPH), a group of bacteria that have been known to infect the human stomach since the 1980s.1-3 Comparative genomic assessment of multilocus sequencing typing (MLST) of *H. suis* based on seven housekeeping genes revealed high genomic homology between hog- and human-derived isolates, suggesting that *H. suis* infection in humans is a zoonosis originating from hogs.4-6 The ancestral source of *H. suis* infection was rhesus macaques, and the host jump from macaques to wild pigs happened between 75,000 and 10,000 years ago.6,7 In contrast to *H. pylori*, most NHPH isolated from humans showed no growth as a pure culture until our recent report of a thriving culture of *H. suis* from human gastric biopsies of patients suffering from gastric mucosa-associated lymphoid tissue (MALT) lymphoma and peptic ulcer.5 In the same study, we demonstrated the pathogenicity of the cultured *H. suis* through mouse infection experiments using cultured *H. suis*.5 However, the infection route, the antimicrobial susceptibility, and the relationship between virulence factors and gastric diseases remain unclear. In past reports, the prevalence of NHPH infection was shown to be less than 0.5% by microscopic detection of
the *H. suis* morphology in gastric sections. In more recent reports, PCR detection showed that the NHPH infection rate rose to more than 10-fold of those observed microscopically. However, because a comprehensive method to diagnose *H. suis* infection has not been established, the actual *H. suis* infection rate is still uncertain.

On the other hand, the infection rate of *H. pylori* has dramatically declined mainly due to improvements in the general hygiene environment in childhood in Japan. As a result, the prevalence of *H. suis* infection could become more significant than the *H. pylori* infection rate in the future. Therefore, the development of comprehensive methods to diagnose *H. suis* infection has become a matter of some urgency. Nonetheless, given the current worldwide infection status—i.e., more than half of the world’s population is still infected with *H. pylori*—there is a need for rapid diagnostic products that can identify both *H. suis* and *H. pylori* infection simultaneously. To the best of our knowledge, this is the first study to report a method for the simultaneous, serological diagnosis of *H. suis* and *H. pylori* infection; the study also reports our evaluation of the anti-*H. suis* antibody titers after eradication.

2. Methods

2.1. Ethics statement

The Research Ethics Committees (REC) of the National Institute of Infectious Diseases (NIID) and Kitasato University approved this study under registration numbers 1284 and 18100, respectively. The ethical review was also approved at the following eight medical institutions: Junpukai Health Maintenance Center, Kyorin University Hospital, Tokai University Hospital, Toyama University Hospital, Takeda Hospital, Aichi Medical University Hospital, Kakogawa Central Municipal Hospital, and Kanazawa Municipal Hospital. We also obtained written informed consent from all examinees, each of whom received an explanation of the study at one of the participating medical institutions.

2.2. Collection and transportation of clinical specimens

Serum and gastric biopsy specimens from examinees suffering from any gastric disorder who underwent upper gastrointestinal (GI) endoscopy at one of the eight above-named medical institutions were enrolled in this study. The specimens from participants having healthy stomachs were excluded from this study. All examinees were tested to have *H. pylori* infection by means of two of the following seven tests: the urea breath test, rapid urease test, serum *H. pylori* antibody test, stool *H. pylori* antigen test, histological test, and culture test. Gastric biopsy specimens were collected from the greater curvature of the gastric antrum, the greater curvature of the lower gastric body, and the lesser curvature of the gastric angle, and they were transported to the NIID using the NHPH biopsy transport media for cultivation, PCR, and microscopy. Serum specimens were transported to the NIID and stored at -20°C before use. The specimen number assigned by the NIID and the clinical data cannot be used to identify medical institutions or examinees.
2.3. Culture
The gastric biopsy specimen was homogenized with 300 µL of Brucella broth (Difco Laboratories, Detroit, MI, USA) adjusted to pH 5.0 by hydrochloride. A 200 µL aliquot of the tissue homogenates was inoculated onto NHPH agar plates containing 1.5% (wt/vol) agar, Brucella broth, 20% (vol/vol) heat-inactivated bovine serum (FBS), Campylobacter selective supplement (Skirrow; Oxoid, Basingstoke, UK), Vitox supplement (Oxoid), and hydrochloric acid to adjust the pH to 5.0, and incubated for more than seven days in a humidified gas mixture (5% O₂, 12% CO₂, and 83% N₂) at 37°C. The grown colonies of primary culture were inoculated onto NHPH agar plates and enriched by modified biphasic culture for 120 h with shaking in a humidified gas mixture at 37°C. The whole-genome sequencing of broth-grown bacteria was carried out as described below. Although both H. pylori and NHPH were grown on the NHPH agar plate as primary cultures, the H. pylori colonies tended to grow faster and to be larger than the small, slow-growing colonies formed by NHPH. Therefore, the colonies formed by H. pylori were inoculated into a Brucella agar plate containing 5% (vol/vol) horse blood for 72 h in a humidified gas mixture at 37°C. NHPH could not grow on this plate.

2.4. PCR
To identify NHPH infections, the DNA was prepared from the remaining 100 µL of homogenates of gastric biopsy specimens using DNeasy Blood & Tissue Kits (Qiagen, Hilden, Germany). Then, the DNA was used as the template for probe-based real-time PCR targeting of the H. suis-specific vacA-type autotransporter protein gene (hsvA) and the NHPH-specific region of the 16S rRNA gene. The PCR procedure was described previously. The sequences of the two sets of primers and probes were as follows: NHP194003_11930_forward (5’-CTGGTAATGCATCATTAGAAGCAAA-3’), NHP194003_11930_reverse (5’-GATGGGCGCTTCTGGTTTA-3’), and NHP194003_11930_probe (5’-/56-FAM/TGTACACAC/ZEN/CAAACAGATGAGCCGT/3IABkFQ-3’) for targeting the hsvA gene; NHPH_16S_F (5’-CAAGTCGAACGATGAAGCCTA-3’), NHPH_16S_R (5’-ATTTGGTATTAATCACCATTTCTAGT-3’), and NHPH_16S_probe (5’-/56-FAM/TTACTCACC/ZEN/CGTGCCGCCACTAATC/3IABkFQ/-3’) for targeting the NHPH 16S rRNA gene. The diagnosis of H. suis infection was made when both positive results occurred in two types of PCR targeting the hsvA and NHPH 16S rRNA genes. We included the culture as a diagnostic criterion to confirm H. pylori infection, whereas we excluded the culture as a diagnostic criterion to confirm H. suis infection. To identify H. pylori infection, the 651 bp DNA fragment of the 23S rRNA gene was amplified by the colony PCR using a set of primers as follows: F3 (5’-CCGTAGCGAAAGCGAGTCT-3’) and R3 (5’-CCCGACTAACCCTACGATGA-3’). The 23S rRNA gene sequences of Helicobacter pylori strains were deposited at GenBank/EMBL/DDBJ as shown in Supplemental data 3. The nucleotide sequences of PCR products were aligned by ClustalW ver. 2.1
The 23S rRNA gene sequences of the reference *Helicobacter* strains were taken from GenBank/EMBL/DDBJ, as listed in Supplemental data 4.

2.5. Genomic analysis

Whole-genome sequencing of all culture-derived *H. suis* strains was performed using MiSeq (Illumina, San Diego, CA, USA). The library for Illumina sequencing (150-bp paired-end, insert size of 500-900 bp) was prepared using a Nextera XT DNA Library Prep Kit. The Illumina reads were assembled de novo using Shovill v1.1.0 (https://github.com/tseemann/shovill) with default parameters in order to acquire the draft genome sequences. Core genome alignments among *Helicobacter* strains were determined using Roary version 3.13.0 (https://github.com/sanger-pathogens/Roary) with default parameters. The maximum-likelihood phylogenetic trees were constructed by RAxML-NG v. 1.1 (https://github.com/amkozlov/raxml-ng) using partial 23S rRNA gene sequences or 628 core gene alignments. Whole-genome sequences of *H. suis* strains were deposited at GenBank/EMBL/DDBJ as shown in Supplemental data 2. The bacterial species were determined by calculating the average nucleotide identity (ANI) using pyani 0.2.12 (https://github.com/widdowquinn/pyani). Multilocus sequence typing (MLST) was performed according to the method described previously. Sequence types (STs) were assigned by using an online reference database (https://pubmlst.org/organisms/helicobacter-suis).

2.6. Broth culture of *H. pylori* and *H. suis* for the preparation of ELISA antigens

The colonies of *H. pylori* TN2GF4 grown on a *Helicobacter*-selective agar plate (Nissui Pharmaceutical, Tokyo) were inoculated into a Brucella broth containing 10% (vol/vol) FBS supplemented with 1% (vol/vol) Vitox supplement and *Helicobacter pylori*-selective supplement (Dent; Oxoid) for 72 h by shaking in a humidified gas mixture (5% O₂, 10% CO₂, and 85% N₂) at 37°C. The frozen stock of *H. suis* SNTW101c was inoculated onto NHPH agar plates and enriched by modified biphasic culture for 120 h with shaking in a humidified gas mixture at 37°C as described above.

2.7. ELISA

Bacterial cells collected by centrifugation were washed twice with phosphate-buffered saline, pH 7.4 (PBS), suspended in distilled water and disrupted by sonicaton with Bioruptor II (BMBio, Tokyo) to prepare whole-cell lysates. For the measurement of serum anti-*H. suis* or anti-*H. pylori* antibody titer, Nunc-Immuno 96-well microtiter plates (No. 439454; Thermo Fisher Scientific, Waltham, MA, USA) containing 100 µL of whole-cell lysates of *H. suis* SNTW101c or *H. pylori* TN2GF4 (4 µg/mL in 0.1 M carbonate/bicarbonate buffer, pH 9.4) were incubated overnight at 4°C. After washing three times with PBS containing 0.05% (vol/vol) Tween 20 (PBS-T), wells were saturated with 200 µL of blocking buffer (PBS containing 1% BSA). The plates were incubated for 1 h at 37°C while shaking at 500 rpm. After
washing three times with PBS-T, the wells were filled with 50 µL of serum samples diluted at 1:3,600 with blocking buffer. The plates were incubated for 1 h at 37°C while shaking at 500 rpm. After washing three times with PBS-T, the wells were filled with 50 µL of horseradish peroxidase (HRP)-conjugated goat anti-human IgA+IgG+IgM (H+L) secondary antibody (Jackson, Bar Harbor, ME, USA) diluted at 1:10,000 with blocking buffer. The plates were incubated for 1 h at 37°C while shaking at 500 rpm. After washing three times with PBS-T, the wells were filled with 50 µL of KPL SureBlue TMB Microwell Peroxidase Substrate (1-Component) (Sera Care Life Sciences, Milford, MA, USA). The colour reaction was stopped by adding 50 µL of 1 N hydrochloric acid into the wells. The absorbance at 450 nm (reference wavelength, 630 nm) was measured on a ChroMate-6 microplate reader (Microtec, Chiba, Japan).

2.8. Microscopy

Polyclonal anti-\textit{H. suis} antisera were prepared by immunization of two male New Zealand White rabbits with a bacterial lysate of heat-killed \textit{H. suis} strain NHP20-4056, obtained from a 65-year-old man suffering from gastric MALT lymphoma. Polyclonal anti-\textit{H. suis} IgG was purified using protein A Sepharose. Rabbit monoclonal anti-\textit{H. pylori} antibody (clone EP279) was purchased from Cell Marque (Rocklin, CA, USA). For the histological study, 10% neutral buffered formalin fixed, paraffin wax embedded tissue blocks from gastric biopsy specimens were retrieved. Serial paraffin sections with a thickness of 3 µm were prepared. The sections were stained with Giemsa. For the immunohistochemistry (IHC), the sections were deparaffinized, rehydrated, and placed in a 0.3% hydrogen peroxide solution in methanol for 30 min to block endogenous peroxidase activity. For the antigen retrieval, the sections in citrate buffer (pH 6.0) or Histofine antigen-retrieval solution (pH 9.0; Nichirei Biosciences, Tokyo) were heated at 110 °C for 10 min using a Decloaking Chamber NxGen (Biocare Medical, Pacheco, CA, USA). After blocking with 5% (wt/vol) BSA for 10 min, the sections were incubated with anti-\textit{H. suis} IgG (13.2 µg/mL) or anti-\textit{H. pylori} antibody (1:100 dilution) for 2 h, followed by rinsing three times in Tris-buffered saline (TBS, pH 7.4) and incubation with the HRP-conjugated goat anti-rabbit antibody (Agilent Technologies, Santa Clara, CA, USA; 1:50 dilution) for 1 h. The sections were stained with 0.03% (wt/vol) 3,3-diaminobenzidine tetrahydrochloride and 0.01% (vol/vol) hydrogen peroxide. Hematoxylin was used for counterstaining. The images were captured with a BX53 upright microscope (Olympus, Tokyo).

2.9. Eradication of \textit{H. suis}

For the treatment of gastric diseases with \textit{H. suis} infection, each of the following three agents was administered twice daily for a week for eradication of \textit{H. suis}: vonoprazan (a potassium-competitive acid blocker: P-CAB), amoxicillin, and clarithromycin. At least two months after the eradication, an upper GI
endoscopy was performed to confirm the resolution of gastritis and gastric diseases and to confirm the eradication by pathology, PCR, and serum antibody tests.

2.10. Statistics
Differences in the incidence between two groups and in the gender ratio among four groups were compared by Pearson’s chi-square and Fisher’s exact tests, respectively. The anti-\textit{H. suis} and anti-\textit{H. pylori} antibody values were compared among four groups using one-way ANOVA, followed by Tukey’s post hoc test. The cut-off value for the optimal decision threshold was proposed in the area under the receiver operating characteristic (ROC) curves (AUC). The sensitivity and specificity indicated the effectiveness of a test concerning a chosen referent.

In contrast, the positive predictive value (PPV) and negative predictive value (NPV) indicated the effectiveness of a test for categorizing examinees as having or not having a target condition. The linear regression lines were constructed by the least-squares method. All statistical analyses were performed with GraphPad Prism 9.4.1 (GraphPad Software, San Diego, CA, USA) and differences were considered significant when the \(p\)-value was less than 0.05.

2.11. Role of funding sources
The funding sources had no role in the writing, data collection, analysis, interpretation, or any other aspect of this study. The corresponding authors had full access to all data and had final responsibility for the decision to submit the manuscript for publication.

3. Results
3.1. Classification of the specimen
As shown in Table 1, by using routine methods, PCR, and culture for diagnosing \textit{Helicobacter} infections, we classified all 101 subjects into the following four groups in advance: an \textit{H. suis}-infection group (n=20), an \textit{H. pylori}-infection group (n=17), a group with eradication of \textit{H. pylori} infection (n=20), and a group with neither \textit{H. suis} nor \textit{H. pylori} infection (n=44). The patients in these groups had gastritis (n=52), gastric mucosa-associated lymphoid tissue (MALT) lymphoma (n=23), duodenal MALT lymphoma (n=1), peptic ulcer (n=20), autoimmune (metaplastic atrophic) gastritis (n=4), and endoscopic mucosal resection (EMR) for early gastric cancer (EGC; n=1). The percentage of men in the \textit{H. suis} infection group was 85%, which was significantly different from the percentages in the \textit{H. suis} non-infection groups, i.e., the \textit{H. pylori} infection group (58.8%), the post-eradication of \textit{H. pylori} infection group (45.0%), and the non-infection group (45.0%) (all \(P<0.05\)). The ratio of patients with gastric MALT lymphoma was as follows: 3/20 in the \textit{H. suis} infection group, 1/17 in the \textit{H. pylori} infection group, 1/20 in the post-eradication of \textit{H. pylori} infection group, and 18/44 in the non-infection group. Therefore, the incidence rates of gastric MALT lymphoma were significantly different between the \textit{H. suis} infection
group (15%: 3/20) and the combined \textit{H. pylori} infection plus post-eradication of \textit{H. pylori} infection groups (5.4%: 2/37) \((P<0.05)\). With respect to peptic ulcer, the ratios were as follows: 1/20 in the \textit{H. suis} infection group, 5/17 in the \textit{H. pylori} infection group, 4/20 in the post-eradication of \textit{H. pylori} infection group, and 10/44 in the non-infection group. The incidence rates of peptic ulcer were significantly different between the \textit{H. suis} infection (5%: 1/20) group and the \textit{H. pylori} infection group (29.4%: 5/17), as well as between the \textit{H. suis} infection group and the post-eradication of \textit{H. pylori} infection group (20%: 4/20) (both \(P<0.05\)). Supplemental data 1 shows individual data of 101 examinees.

3.2. Measurement of the anti-\textit{H. suis} and anti-\textit{H. pylori} antibody titers

As shown in Fig. 1, the mean with standard deviation (SD) of the absorbance at 450 nm of ELISA for identifying \textit{H. suis} infection in the \textit{H. suis} infection group was 2.124±0.535, which was significantly higher than those of the other \textit{H. suis} non-infection groups: the \textit{H. pylori} infection group (0.530±0.807, \(P<0.0001\)), the post-eradication of \textit{H. pylori} infection group (0.392±0.514, \(P<0.0001\)), and the non-infection group (0.261±0.447, \(P<0.0001\)) (Fig. 1a). The cut-off value (0.997) for the absorbance at 450 nm of \textit{H. suis} infection was calculated by ROC curve analysis between the \textit{H. suis} infection group \((n=20)\) and other \textit{H. suis} non-infection groups \((n=81)\): the \textit{H. pylori} infection \((n=17)\), post-eradication of \textit{H. pylori} infection \((n=20)\), and non-infection with either \textit{H. suis} or \textit{H. pylori} \((n=44)\) groups (Fig. 1b). Meanwhile, the mean with SD of the absorbance at 450 nm of ELISA for identifying \textit{H. pylori} infection in the \textit{H. pylori} infection group was 1.372±0.715, which was significantly higher than those of two of the other \textit{H. pylori} non-infection groups—i.e., the \textit{H. suis} infection group \((0.458±0.441, P<0.0001)\) and the non-infection group \((0.300±0.429, P>0.05)\)—but not the post-eradication of \textit{H. pylori} infection group \((0.850±0.831, P>0.05)\) (Fig. 1c). Then, the cut-off value (0.811) for the absorbance at 450 nm of \textit{H. pylori} infection was calculated by ROC curve analysis between the \textit{H. pylori} infection group \((n=17)\) and other \textit{H. pylori} non-infection groups \((n=64)\), including the \textit{H. suis} infection group \((n=20)\) and the group with non-infection of either \textit{H. suis} or \textit{H. pylori} \((n=44)\) (Fig. 1d). The sensitivity, specificity, PPV, and NPV of ELISA for identifying the \textit{H. suis} infection group against the \textit{H. suis} non-infection groups were 100% (95\% confidence interval [CI]: 83.9\% to 100\%), 92.5\% (95\% CI: 84.8\% to 96.6\%), 76.9\%, and 100\%, respectively (Table 2). On the other hand, the sensitivity, specificity, PPV, and NPV of ELISA for identifying the \textit{H. pylori} infection group against the \textit{H. pylori} non-infection groups were 88.2\% (95\% CI: 65.7\% to 97.9\%), 87.5\% (95\% CI: 77.2\% to 93.5\%), 65.2\%, and 96.6\%, respectively (Table 3).

3.3. Microscopic diagnosis of \textit{H. suis} and \textit{H. pylori} infection

To assess the discrimination of the results between the serological assay and PCR using gastric biopsy specimens, we attempted to detect \textit{H. suis} and \textit{H. pylori} by Giemsa staining and IHC analysis of the biopsy specimens numbered 04133 (\textit{H. pylori} infection group), 04150 (post-eradication of \textit{H. pylori} infection group), and 04018 (non-infection group). These three serum specimens maintained the high
titers of both anti-\textit{H. suis} and anti-\textit{H. pylori} antibodies (Supplemental data 1). We conducted the conventional Giemsa staining and an IHC to identify \textit{H. suis} and \textit{H. pylori} in gastric biopsy specimens. As shown in Fig. 2, \textit{H. suis} were detected in the lumen of foveola and on the epithelial cells by the IHC test using the rabbit monoclonal anti-\textit{H. pylori} antibody (clone EP279) (Fig. 2b) or the rabbit polyclonal anti-\textit{H. suis} antibody (Fig. 2c) in the 04029 biopsy specimen (\textit{H. suis} infection group). In contrast, the IHC test using the rabbit monoclonal anti-\textit{H. pylori} antibody detected \textit{H. pylori} (Fig. 2e), and the rabbit polyclonal anti-\textit{H. suis} antibody weakly detected \textit{H. pylori} (Fig. 2f) in the 04220 biopsy specimen (\textit{H. pylori} infection group). These results indicate that although the rabbit polyclonal anti-\textit{H. suis} antibody reacts explicitly with \textit{H. suis}, the rabbit monoclonal anti-\textit{H. pylori} antibody exhibited cross-reactivity with \textit{H. suis}. In contrast, Giemsa staining of biopsy specimens could clearly distinguish spiral forms of \textit{H. suis} (Fig. 2a) from spiral forms of \textit{H. pylori} (Fig. 2d). The IHC test used the rabbit monoclonal anti-\textit{H. pylori} antibody detected \textit{H. pylori} (Fig. 2h), and the rabbit polyclonal anti-\textit{H. suis} antibody weakly detected \textit{H. pylori} (Fig. 2i) in the 04133 biopsy specimen. Giemsa staining also detected \textit{H. pylori} in the 04133 biopsy specimen (Fig. 2g). However, the IHC test using the rabbit monoclonal anti-\textit{H. pylori} antibody and that using the rabbit polyclonal anti-\textit{H. suis} antibody did not detect either \textit{H. suis} or \textit{H. pylori} in either the 04150 or 04018 biopsy specimens (Fig. 2k, l, n, and o). Moreover, Giemsa staining also did not detect \textit{H. suis} or \textit{H. pylori} in the 04150 and 04018 biopsy specimens (Fig. 2g and j). These findings suggest that the whole-cell lysate of \textit{H. suis} SNTW101c reacted with anti-\textit{H. pylori} antibodies included in the 04133 serum specimen, and the ELISA might detect prior but not current infection with \textit{H. pylori} or \textit{H. suis} in the 04150 and 04018 serum specimens.

3.4. Genomic diagnosis of \textit{H. suis} and \textit{H. pylori} infection

The partial 23S rRNA gene sequences of the 13 \textit{H. suis} and 16 \textit{H. pylori} strains isolated in this study were compared with those of the reference \textit{Helicobacter} strains. As shown in Fig. 3a, this genomic analysis successfully classified every \textit{Helicobacter} strain with species specificity. All \textit{H. suis} and \textit{H. pylori} strains belonged to the same phylogenetic clades of \textit{H. suis} and \textit{H. pylori} reference strains, indicating that the genomic identification in this study was correct. We proved that all \textit{H. suis} strains have more than 99% ANI values against the \textit{H. suis} type strain HS1 (Supplemental data 2). As shown in Fig. 3b, further classification was performed by the maximum-likelihood phylogeny using the core gene alignments of \textit{H. suis} strains, which confirmed that all \textit{H. suis} strains from humans were closely related to \textit{H. suis} strains from pigs but not from macaques, indicating that the infection was spread from hogs to humans. As shown in Fig. 3c, all \textit{H. suis} strains from pigs and humans were classified as a distinct ST by MLST except two strains (NHP19-0020 and NHP19-0033) isolated from hogs on the same farm. The maximum-likelihood phylogeny reconstructed using the core gene alignments of \textit{H. suis} strains from humans and pigs showed that all \textit{H. suis} strains could be divided into three clades (I, II, and III). Of the 14 \textit{H. suis} strains from humans, 7 belonged to clade II, 4 to clade III, and 3 to clade I. In addition, 3 of 4
strains from medical institute A were in clade II, 2 from B were in clade I, 3 of 4 from C were in clade II, and 2 from D were in clade III. Therefore, *H. suis* strains isolated from the same medical institutes tend to belong in the same clades.

3.5. Decline of anti-*H. suis* antibody titers after eradication

Among 20 individuals belonging to the *H. suis* infection group, 6 individuals (94058, 94059, 04080, 04252, 04262, and 14005) suffering from gastritis were given the eradication therapy as described in the Methods. Successful eradication of *H. suis* infection was confirmed in all 6 of these patients. As shown in Fig. 4a, the anti-*H. suis* antibody titers gradually decreased over time after eradication. Each linear regression line has an equation of the form $Y=-AX+B$, where X is months after eradication, Y is the absorbance at 450 nm, A is the slope of the line, and B is the intercept (the value of Y when $X=0$), resulting in the following equations for the 6 patients who underwent eradication therapy:

- $Y=-0.1010X+2.526$ (94058)
- $Y=-0.09653X+2.185$ (94059)
- $Y=-0.1364X+2.237$ (04080)
- $Y=-0.5990X+1.933$ (04252)
- $Y=-0.3780X+2.175$ (04262)
- $Y=-0.3429X+1.972$ (14005)

The estimated times required for the anti-*H. suis* antibody titers to decline to 0.997 (the cut-off value for the absorbance at 450 nm) in the 6 specimens were as follows: 15.1 months (94058), 12.3 months (94059), 9.1 months (04080), 1.6 months (04252), 3.1 months (04262), and 2.8 months (14005). The average time was 7.3 ± 5.7 months after eradication (Fig. 4b). Then, the 6 individuals were divided into the following two groups: a group of individuals exhibiting a slow decline of anti-*H. suis* antibody titers after eradication (94058, 94059, and 04080) and a group exhibiting a fast decline of anti-*H. suis* antibody titers after eradication (04252, 04262, and 14005). In the slow decline group, the time required for the anti-*H. suis* antibody titers to decline to 0.997 was 13.6 months after eradication (Fig. 4c). In contrast, in the fast decline group, the time required for the anti-*H. suis* antibody titers to decline to 0.997 was 2.6 months after eradication (Fig. 4d).

Discussion

In the current study, 20 out of 101 examinees were infected with *H. suis*, but no other NHPH were identified. Therefore, we presume a lower risk of infection with NHPH in the human stomach other than *H. suis* to be colonizing in the stomachs of cats and dogs. On the other hand, no *H. suis* infection has yet been identified in the stomachs of cats and dogs. Although *H. suis* colonizes the hog stomach and is the source of zoonotic infection in a high percentage of human cases of *H. suis* infection, the infection rate among hog farmers is not higher than that of individuals who have no contact with animals. It has been hypothesized that *H. suis* infects humans via the consumption of contaminated pork. However, there is no clear evidence regarding the *H. suis* infection route or period.

Tsukadaira *et al.* reported that NHPH-associated gastritis was found in 50 (consisting of 49 men and 1 woman) of 3847 patients (1.30%) in Japan from November 2010 to August 2020 (for 9 years and
10 months). After the endoscopists got more suspicious of NHPH infection, the percentage increased to 3.35% (30 of 896 patients) over the last two years and four months from 0.73% in the first 7 years and 6 months. Accordingly, they estimated the NHPH infection rate in Japan to be approximately 3.35%. In the same report, when a PCR test targeting urease genes was performed on the 30 patients with NHPH-associated gastritis, 28 were infected with NHPH as follows (2 were not detected): 26 with *H. suis* and 2 with *H. heilmannii s.s* or *H. ailarogastricus*, whereas most of the results of conventional *H. pylori* diagnostic tests, such as serum antibody, stool antigen, UBT, and RUT were negative. They concluded that *H. suis* was the most common NHPH that infected human stomachs. In past studies, the identification of NHPH from human stomachs was not performed using whole-genome sequence analysis because suitable culture conditions for most NHPH had not been established at that time. Therefore, our present study provides the first NHPH infection findings based on whole-genome sequences. Because *H. pylori* and all NHPH have a single copy of the urease (ureAB) gene and two copies of the 16S rRNA gene, the diagnosis by the PCR test using the specific primer sets targeting the 16S rRNA gene or urease gene might have included considerable mistakes. Instead of the 16S rRNA or urease gene, we identified the *H. suis*-specific carR gene as the target of a PCR test from the draft genome sequence of *H. suis*, which was improved to a probe-based real-time PCR test. Subsequently, we continued searching for other *H. suis*-specific genes from the whole-genome sequence of *H. suis*. We recently selected the hsvA gene as the target of *H. suis* detection by a probe-based real-time PCR test. The hsvA gene encoded an autotransporter protein that secretes a large N-terminal passenger domain using a C-terminal autotransporter-beta domain. We designed a set of *H. suis*-specific primers within the hsvA gene to amplify the linker region between the passenger and autotransporter-beta domains. Nonetheless, gastric biopsy for the detection of *H. suis* with PCR involves potential risks, such as bleeding from the biopsy site or sampling from a site without bacteria. A serological assay to simultaneously identify both *H. suis* and *H. pylori* infection is available for the large-scale periodic medical examination of unimpaired individuals; this assay can provide an accurate estimation of the infection rate and can effectively prevent gastropathy.

Marini *et al.* have tried to detect an anti-*Helicobacter* antibody of macaques by ELISA using the *H. pylori* SS1 and *H. suis* outer membrane protein preparations as antigens. In the identification of *H. suis* infection, the sensitivity and specificity were 70.0% (95% CI: 34.8% to 93.3%) and 75.0% (95% CI: 19.4% to 99.4%), respectively. Meanwhile, in the identification of *H. pylori* infection, the sensitivity and specificity were 66.7% (95% CI: 9.2% to 99.2%) and 63.6% (95% CI: 30.8% to 89.1%), respectively. Therefore, the ELISA data using the whole bacterial cell lysates as antigens in this study showed more accuracy than the previously reported ELISA data using the outer membrane protein as antigens. Our ELISA data showed high sensitivity and acceptable specificity for clinical practice to diagnose *H. suis* and *H. pylori* infection (Fig. 1 and Tables 2 and 3).
H. suis infection has been considered to cause gastric MALT lymphoma. As shown in Table 1, men are more susceptible to *H. suis* infection compared to women, and *H. suis* infection is more likely to induce gastric MALT lymphoma than *H. pylori* infection. This study is the first report to show that men were more susceptible to *H. suis* infection than women. The incidence rate of gastric MALT lymphoma in patients without infection by either *H. suis* or *H. pylori* (40.9%: 18/44) was much higher than that of patients with either *H. suis* (15%: 3/20) or *H. pylori* (5.9%: 1/17) infection. The reason for this finding is uncertain, but it is unlikely that the progressed lesion removes bacteria. On the other hand, *H. pylori* infection is more likely to induce peptic ulcer than *H. suis* infection. However, the incidence rate of each disease was restrictive and biased in this study, so we are now conducting a large-scale epidemiological investigation concerning NHPH infections. *H. pylori* eradication therapy is the first choice for treating gastric MALT lymphoma in *H. pylori*-infected patients, and even in *H. pylori*-negative patients, since *H. pylori*-negative patients have also been shown to respond to eradication therapy. Yasuda et al. recently reported finding *H. suis* infection even in their patients with gastric cancer. Because there is currently no established method for the clinical diagnosis of *H. suis* infection, accurate diagnosis of *H. suis* infection is crucial in order to avoid wasting precious time on the wrong course of treatment.

Although all serum specimens were *H. suis*-positive by ELISA in the 20 individuals in the *H. suis* infection group, only two serum specimens (04133 and 04232) were *H. suis*-positive by ELISA in the 17 individuals in the *H. pylori* infection group (Supplemental data 1). Some previous reports have described patients having mixed infection with *H. pylori* and an NHPH. In others, the NHPH infection was found after the eradication of *H. pylori* infection. In the present study, we confirmed the infection with *H. pylori* but not *H. suis* by microscopy with Giemsa staining and IHC test using the rabbit monoclonal anti-*H. pylori* antibody or the rabbit polyclonal anti-*H. suis* antibody (Fig. 2g, h, and i). We presume that the whole-cell lysate of *H. suis* SNTW101c reacted with anti-*H. pylori* serum antibodies. Among 20 individuals in the post-eradication of *H. pylori* infection group, two serum specimens (04150 and 04162) were *H. suis*-positive by ELISA (Supplemental data 1). Because the microscopy did not detect either *H. pylori* or *H. suis* in specimen 04150 (Fig. 2j, k, and l), we suggest that the whole-cell lysate of *H. suis* SNTW101c also reacted with anti-*H. pylori* serum antibodies. Among 44 individuals in the non-infection group, two serum specimens (04018 and 04293 from patients with peptic ulcer and gastric MALT lymphoma, respectively) were *H. suis*-positive by ELISA (Supplemental data 1). However, the microscopy did not detect *H. pylori* or *H. suis* (Fig. 2m, n, and o). We presume that the individuals had been infected with *H. pylori* (04018) and *H. suis* (04293) in the past because the serum specimens were clearly positive by ELISA for *H. pylori* infection (04018) and *H. suis* infection (04293) (Supplemental data 1). The successful eradication of NHPH infections has recently been achieved by only proton pump inhibitor (PPI) treatment, without the need for antimicrobial agents. In this study, because only an inhibitor of gastric acid secretion was administered, the infected *H. suis* might not have been entirely eradicated, but merely decreased to a level undetectable by PCR. Alternatively, the bacteria might have
been naturally eradicated along with the disease progression. In addition, *H. pylori* infection in infancy might confer years of protection against *H. suis* infection. If so, the *H. suis* infection rate might have risen with the decline of the *H. pylori* infection rate. Although it was unlikely to result from mixed infection with *H. pylori* and *H. suis* in this study, we are currently conducting a study of *H. pylori* and NHPH infection using multiple testing methods. In this way, we hope to elucidate the true relation between *H. pylori* and NHPH infection.

Our genetic analysis of *H. suis* strains isolated from humans and hogs indicated that *H. suis* strains from humans belonging to clade II accounted for 50% of all *H. suis* strains from humans. Meanwhile, *H. suis* strains from clade III occupied 47% of all *H. suis* strains from hogs (Fig. 3c). The *H. suis* strains belonging to clade II and III may have pathogenic advantages for infecting humans and hogs, respectively. More detailed genetic analyses will be needed to clarify the reasons for these differences between infection in humans and hogs. The *H. suis* strains isolated from the same medical institute tend to belong to the same clade (Fig. 3c). There are thought to be two likely explanations for this phenomenon. (1) *H. suis*-contaminated pork was consumed in this area. (2) Human-to-human transmission occurred. In the case of *H. pylori* infection, because *H. pylori* transmits from humans to humans, the evolution of *H. pylori* parallels that of humans, and the genotype of *H. pylori* is known to be related to both race and region. Because we have no information on whether *H. suis* can be transmitted among humans, further analysis using more *H. suis* strains with different backgrounds, both from pigs and humans, will be needed to elucidate the route of infection.

When *H. suis* infection becomes apparent, eradication of *H. suis* is recommended even if the examinees are not suffering from severe illnesses such as gastric MALT lymphoma, nodular gastritis, or intractable peptic ulcer. The regimen for *H. pylori* eradication has been used for NHPH eradication. In most cases, patients are treated with triple-agent eradication therapy consisting of an inhibitor of gastric acid secretion such as a PPI or a P-CAB along with two antibiotics such as amoxicillin and clarithromycin or amoxicillin and metronidazole for 7 to 14 days.\(^{16,42-46}\) Because the antibody titers of all examinees declined time-dependently after the eradication of *H. suis*, the eradication therapies were all considered successful (Fig. 4). There were two patterns of eradication—namely, a faster or slower decline in anti-*H. suis* antibody titer after eradication treatment (Fig. 4). We previously reported the antimicrobial susceptibilities of the *H. suis* strains isolated from humans, and identified the mechanisms of the antibiotic resistance by means of genomic analyses\(^5\). However, as we analysed only several strains, further investigation and monitoring of antimicrobial resistance in human isolates of *H. suis* are needed. In this study, we propose that a serological assay of *H. suis* infection would be beneficial as a follow-up medical examination to confirm eradication.

Motos *et al.* have proposed that because NHPH may be present in the human stomach, even if only in very small amounts, a specific NHPH screening should be included in the diagnostic routine.\(^{47}\) Clearly,
a large-scale epidemiological investigation of NHPH infection is urgently needed so that clinical practice guidelines can be established for the treatment of NHPH infection.

Contributors
H.M., E.R., and K.S. conceptualized the research. E.R. and S.A. performed the cultures and PCR. M.S. performed the genomic analysis. H.M. performed ELISA. H.O. performed microscopy. K.M. and K.T. performed the *H. suis*-eradication treatment. K.M., K.T., H.S., M.S., T.U., H.T., S.N., A.T., M.S., S.T., and T.S. collected specimens. H.M., E.R., and K.M. prepared the manuscript. All authors verified the underlying data and approved the final version of the manuscript for publication.

Declaration of Interests
The authors declare no conflicts of interest directly relevant to the content of this article.

Acknowledgments
This work was supported by MEXT/JSPS KAKENHI under grant numbers JP19H03474 (H.M.) and JP20K08365 (T.K.), and by AMED under grant numbers JP20fk0108148 (E.R.) and JP20fk0108133 (M.S.).

Data sharing statement
All data associated with this study are in the article or the supplemental data.

References

22. Taillieu E, Chiers K, Amorim I, et al. Gastric Helicobacter species associated with dogs, cats

37. Kuo SH, Yeh KH, Lin CW, et al. Current status of the spectrum and therapeutics of

Figure Legends

Fig. 1. ELISA for simultaneous identification of H. suis and H. pylori infection.

Serum specimens (n=101) were divided into four groups: an H. suis-infection group (n=20), an H. pylori-infection group (n=17), a group with eradication of H. pylori infection (n=20), and a group with neither H. suis nor H. pylori infection (n=44). (a) ELISA for detecting H. suis infection. ***P<0.0001, the H. suis infection vs. the H. pylori infection, the post-eradication of H. pylori infection, or the non-infection group. The red dotted line indicates the cut-off value (0.997). The bar represents the mean with SD. (b) ROC curve constructed from the H. suis-infection vs. the other H. suis non-infection groups, including the H. pylori infection, the post-eradication of H. pylori infection, and the non-infection group.
The red slanted line is the reference line. AUC: 0.9648; standard error: 0.01794; 95% CI: 0.9297-1.000; $P<0.0001$. (c) ELISA for detecting $H. pylori$ infection. ****$P<0.0001$, the $H. pylori$ infection group vs. the $H. suis$ infection or the non-infection group. #$P>0.05$, the $H. pylori$ infection vs. the post-eradication of $H. pylori$ infection group. The blue dotted line indicates the cut-off value (0.811). The bar represents the mean with SD. (d) ROC curve constructed from the $H. pylori$ infection group vs. the other $H. pylori$ non-infection groups, including the $H. suis$ infection and the non-infection groups. The red slanted line is the reference line. AUC: 0.9200; standard error: 0.02957; 95% CI: 0.8621-0.9780; $P<0.0001$.

Fig. 2. Identification of $H. suis$ and $H. pylori$ in gastric biopsy specimens.

Gastric mucosa sections of the antrum of specimens 04029 (a-c; $H. suis$ infection), 04220 (d-f; $H. pylori$ infection), 04133 (g-i; $H. pylori$ infection) and 04150 (j-l; post-eradication of $H. pylori$ infection), and the body of specimen 04018 (m-o, non-infection) were stained with Giemsa (a, d, g, j, and m), IHC using an anti-$H. pylori$ monoclonal antibody (b, e, h, k, and n), or IHC using an anti-$H. suis$ polyclonal antibody (c, f, i, l, and o). Arrows indicate microorganisms (a, d, and g). Magnification, x450 and x1200 (inset) (a-i); x270 (j-l); x145 (m-o). Scale bars, 25 µm and 10 µm (inset) (a, d, and g); 50 µm (j and m).

Fig. 3. Phylogenetic analysis of Helicobacter strains.

(a) A phylogenetic tree was constructed using the 23S rRNA gene sequences of 57 Helicobacter spp. strains, including 29 strains isolated from this study (13 strains of $H. suis$ and 16 strains of $H. pylori$) and 28 reference strains of gastric Helicobacter species. Light blue and pink indicate $H. suis$ and $H. pylori$ strains, respectively. Numbers indicate a bootstrap percentage, and the scale bar indicates the number of base substitutions per site. Filled and open circles indicate strains isolated from this study and reference strains (NCBI reference sequences), respectively. (b) A pattern of branching in the phylogenetic tree was created from 618 core gene sequences of $H. suis$ strains from 14 humans (light blue), 15 pigs (orange), 4 rhesus macaques (purple), and 3 cynomolgus macaques (green). Core genes alignment was performed using Roary version 3.13.0. The scale bar indicates the number of base substitutions per site. (c) The genomic comparison was created from 1044 core gene sequences of $H. suis$ strains from 14 humans and 15 pigs. Numbers indicate bootstrap percentages, and the scale bar indicates the number of base substitutions per site. Using the phylogenetic tree, the $H. suis$ strains were divided into three groups: clade I (reddish brown), clade II (green), and clade III (blue). Examinees with $H. suis$ infection were found in five medical institutions; these are anonymously designated institutions A (orange), B (light green), C (yellow), D (green), and E (blue). The scale bar indicates the number of base substitutions per site. ST: sequence type; MALT: gastric MALT lymphoma; PU: peptic ulcer.

Fig. 4. Measurement of anti-$H. suis$ antibody titers after the eradication of $H. suis$ infection.

(a) Six individuals underwent $H. suis$-eradication treatment, and then were monitored for serum...
anti-\textit{H. suis} antibody titers by ELISA. The red dotted line indicates the cut-off value. (b) The estimated time to decline until the cut-off value was plotted. The bar represents the mean with SD (n=6). (c) Three selected individuals (corresponding to specimens 94058, 94059, and 04080) were re-monitored for the serum anti-\textit{H. suis} antibody titers by ELISA after the eradication of \textit{H. suis}. (d) Three selected individuals (corresponding to specimens 04252, 04262, and 14005) were re-monitored for the serum anti-\textit{H. suis} antibody titers by ELISA after the eradication of \textit{H. suis}.
<table>
<thead>
<tr>
<th>Year of age</th>
<th>Sex (%)</th>
<th>Disease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.5</td>
<td>man</td>
<td>gastritis</td>
</tr>
<tr>
<td></td>
<td>woman</td>
<td>gastritis</td>
</tr>
<tr>
<td>49</td>
<td>man</td>
<td>gastritis</td>
</tr>
<tr>
<td></td>
<td>woman</td>
<td>gastritis</td>
</tr>
<tr>
<td>52</td>
<td>man</td>
<td>gastritis</td>
</tr>
<tr>
<td></td>
<td>woman</td>
<td>gastritis</td>
</tr>
<tr>
<td>53.5</td>
<td>man</td>
<td>gastritis</td>
</tr>
<tr>
<td></td>
<td>woman</td>
<td>gastritis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H. suis infection</th>
<th>Post-eradication of H. pylori infection</th>
<th>Non-infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=20)</td>
<td>(n=17)</td>
<td>(n=44)</td>
</tr>
<tr>
<td>48.5 (44.5-53.75)</td>
<td>49 (40-55)</td>
<td>52 (40-55)</td>
</tr>
<tr>
<td>17 (85.0)</td>
<td>10 (58.8)</td>
<td>10 (45.0)</td>
</tr>
<tr>
<td>3 (15.0)</td>
<td>3 (15.0)</td>
<td>11 (55.0)</td>
</tr>
<tr>
<td>0 (0.0)</td>
<td>1 (5.9)</td>
<td>4 (22.7)</td>
</tr>
<tr>
<td>15 (75.0)</td>
<td>10 (58.8)</td>
<td>20 (45.0)</td>
</tr>
<tr>
<td>1 (5.9)</td>
<td>0 (0.0)</td>
<td>24 (55.0)</td>
</tr>
<tr>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

Table 1. Examinee background characteristics.

- H. suis infection
- Post-eradication of H. pylori infection
- Non-infection
Table 2. ELISA to identify *H. suis* infection. Positive includes the *H. suis* infection group (n=20). Negative includes the other *H. suis* non-infection groups (n=81). All specimens (n=101) were classified into two groups: a group with an *H. suis*-infection value greater than or equal to the cut-off value (n=26) and a group with an *H. suis*-infection value smaller than the cut-off value (n=75). Cut-off value, 0.997; sensitivity, 20/(20+0)=100%; specificity, 75/(6+75)≈92.5%; PPV, 20/(20+6)≈76.9; NPV, 75/(0+75)=100%.

<table>
<thead>
<tr>
<th>Absorbance at 450 nm</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥0.997</td>
<td>20</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td><0.997</td>
<td>0</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>81</td>
<td>101</td>
</tr>
</tbody>
</table>
Table 3. ELISA to identify *H. pylori* infection. Positive includes the *H. pylori* infection group (n=17). Negative includes the *H. suis* infection group and the non-infection group (n=64). All specimens (n=81) were classified into two groups: a group with an *H. pylori*-infection value greater than or equal to the cut-off value (n=23) and a group with an *H. pylori*-infection value smaller than the cut-off value (n=58). Cut-off value, 0.811; sensitivity, 15/(15+2)=88.2%; specificity, 56/(8+56)=87.5%; PPV, 15/(15+8)=65.2%; NPV, 56/(2+56)=96.6%.

<table>
<thead>
<tr>
<th>Absorbance at 450 nm</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥0.811</td>
<td>15</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td><0.811</td>
<td>2</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>64</td>
<td>81</td>
</tr>
</tbody>
</table>
Fig. 1

(a) Absorbance at 450 nm for different infection statuses.

(b) Sensitivity vs. 100% - Specificity.

(c) Absorbance at 450 nm for different post-eradication statuses.

(d) Sensitivity vs. 100% - Specificity.
Fig. 3

A

- **H. suis** (this study)
- **H. suis** (reference strains)
- **H. pylori** (this study)
- **H. pylori** (reference strains)

B

- Humans (n=14)
- Pigs (n=15)
- Rhesus macaques (n=4)
- Cynomolgus macaques (n=3)

C

<table>
<thead>
<tr>
<th>Clade</th>
<th>Strain</th>
<th>Status</th>
<th>Host</th>
<th>Disease</th>
<th>Country</th>
<th>Med. Inst.</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>NHP19-4022</td>
<td>ST141</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>B</td>
<td>2019</td>
</tr>
<tr>
<td>I</td>
<td>HS5</td>
<td>ST3</td>
<td>Pig</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>I</td>
<td>HS5</td>
<td>ST5</td>
<td>Pig</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>I</td>
<td>NHP19-0020</td>
<td>ST15</td>
<td>Pig</td>
<td>-</td>
<td>Japan</td>
<td>-</td>
<td>2019</td>
</tr>
<tr>
<td>I</td>
<td>NHP20-4118</td>
<td>ST142</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>B</td>
<td>2020</td>
</tr>
<tr>
<td>I</td>
<td>NHP19-0033</td>
<td>ST15</td>
<td>Pig</td>
<td>-</td>
<td>Japan</td>
<td>-</td>
<td>2019</td>
</tr>
<tr>
<td>I</td>
<td>NHP20-4120</td>
<td>ST143</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>C</td>
<td>2020</td>
</tr>
<tr>
<td>I</td>
<td>HS9</td>
<td>ST10</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>I</td>
<td>NHP21-4094</td>
<td>ST148</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>C</td>
<td>2021</td>
</tr>
<tr>
<td>I</td>
<td>NHP19-4003</td>
<td>ST139</td>
<td>Human</td>
<td>MALT</td>
<td>Japan</td>
<td>A</td>
<td>2019</td>
</tr>
<tr>
<td>I</td>
<td>NHP19-4004</td>
<td>ST140</td>
<td>Human</td>
<td>Pu</td>
<td>Japan</td>
<td>A</td>
<td>2019</td>
</tr>
<tr>
<td>I</td>
<td>NHP20-4101</td>
<td>ST144</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>C</td>
<td>2020</td>
</tr>
<tr>
<td>I</td>
<td>NHP21-4253</td>
<td>ST146</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>E</td>
<td>2021</td>
</tr>
<tr>
<td>I</td>
<td>HS6</td>
<td>ST7</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>I</td>
<td>HS10</td>
<td>ST11</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>I</td>
<td>NHP20-4087</td>
<td>ST147</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>C</td>
<td>2020</td>
</tr>
<tr>
<td>I</td>
<td>HS4</td>
<td>ST4</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>I</td>
<td>NHP21-4209</td>
<td>ST151</td>
<td>Human</td>
<td>MALT</td>
<td>Japan</td>
<td>A</td>
<td>2021</td>
</tr>
<tr>
<td>II</td>
<td>HS8</td>
<td>ST9</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>II</td>
<td>P13_36</td>
<td>ST33</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2013</td>
</tr>
<tr>
<td>II</td>
<td>SNTW101c</td>
<td>ST76</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>II</td>
<td>P13_35</td>
<td>ST31</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2013</td>
</tr>
<tr>
<td>II</td>
<td>P13_32</td>
<td>ST30</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2013</td>
</tr>
<tr>
<td>II</td>
<td>HS1</td>
<td>ST1</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>II</td>
<td>HS2</td>
<td>ST2</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>II</td>
<td>HS7</td>
<td>ST8</td>
<td>Pig</td>
<td>-</td>
<td>Belgium</td>
<td>-</td>
<td>2008</td>
</tr>
<tr>
<td>II</td>
<td>NHP20-4250</td>
<td>ST149</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>D</td>
<td>2020</td>
</tr>
<tr>
<td>II</td>
<td>NHP21-4075</td>
<td>ST150</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>A</td>
<td>2021</td>
</tr>
<tr>
<td>II</td>
<td>NHP20-4259</td>
<td>ST145</td>
<td>Human</td>
<td>Gastritis</td>
<td>Japan</td>
<td>D</td>
<td>2020</td>
</tr>
</tbody>
</table>
Fig. 4

After eradication (months)	Absorbance at 450 nm
0 | 0
6 | 1
12 | 2
18 | 3
24 | 4

Y = -0.099X + 2.35
R² = 0.846

Y = -0.357X + 1.94
R² = 0.886

Absorbance at 450 nm vs. After eradication (months)