Reporting of Retrospective Registration in Clinical Trial Publications

Martin Haslberger* (MH), https://orcid.org/0000-0002-8067-2856, martin.haslberger@bih-charite.de
Stefanie Gestrich (SG), stefanie.gestrich@charite.de
Daniel Strech (DS), https://orcid.org/0000-0002-9153-079X, daniel.strech@bih-charite.de

Berlin Institute of Health at Charité – Universitätsmedizin Berlin, QUEST Center for Responsible Research, Charitéplatz 1, 10117 Berlin, Germany

* Corresponding author

Keywords: Clinical Trials, Trial Registration, Reporting, Retrospective Registration

Author Contributions
Martin Haslberger – Conceptualization, methodology, investigation, analysis, writing – original draft, project management
Stefanie Gestrich – Methodology, investigation
Daniel Strech – Conceptualization, methodology, supervision, writing – review and editing, funding acquisition

Open Data and Code
All code and the data for this study are available at https://github.com/mhaslberger/retrospective-registration.

Funding
This work was partly funded under a grant from the Federal Ministry of Education and Research of Germany (Bundesministerium fuer Bildung und Forschung - BMBF) [01PW18012]. The funder was not involved in the study design, data collection, analysis, or interpretation, writing of the manuscript, or the decision to submit for publication.

Conflicts
The authors declare no conflicts of interest.

Acknowledgments
We thank Maia Salholz-Hill el for conceptual feedback and technical support. We thank Martin R. Holst and Dr. Delwen Franzen for feedback on the manuscript.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective: Prospective registration of clinical research has been widely implemented and advocated for many reasons: to detect and mitigate publication bias, selective reporting, and undisclosed changes in the determination of primary and secondary outcomes. Prospective registration allows for public scrutiny of trials, facilitates the identification of gaps in research, and supports the coordination of efforts by preventing unnecessary duplication. Retrospective registration undermines many of these reasons but is commonly found. We provide a comprehensive analysis of retrospective registration and the reporting thereof in publications, as well as factors associated with these practices.

Design: For this cross-sectional study, we used a validated dataset of trials registered on ClinicalTrials.gov or DRKS, with a German University Medical Center as the lead center, completed between 2009 and 2017, and with at least one peer-reviewed results publication. We extracted all registration statements from all results publications of retrospectively registered trials, including mentions and justifications of retrospective registration. We analyzed associations between key trial variables and different registration and reporting practices.

Results: In our dataset of 1927 trials with a corresponding results publication, 956 (53.7%) were retrospectively registered. Of those, 2.2% (21) explicitly report the retrospective registration in the abstract and 3.5% (33) in the full text. In 2.1% (20) of publications, authors provide a justification/explanation for the retrospective registration in the full text. Registration numbers were significantly underreported in abstracts of retrospectively registered trials (p < 0.001). Publications in ICMJE member journals had higher rates of both prospective registration and disclosure of retrospective registration, although not statistically significant. Publications in journals claiming to follow ICMJE recommendations showed lower rates compared to non-ICMJE-following journals.

Conclusions: In contrast to ICMJE guidance, retrospective registration is disclosed and explained only in a small number of retrospectively registered studies. Lack of disclosure might lead readers to wrongly interpret the registration as a quality criterion that, in the case of a retrospective registration, rather describes a concern. Disclosure of the retrospective nature of the registration would require 1-2 additional sentences in the manuscript and could be easily implemented by publishers.
Introduction

Prospective registration of clinical trials (i.e., registration before enrollment of the first participant) is an important practice to reduce biases in their conduct and reporting (1). A number of ethical and legal documents call for prospective registration: The Declaration of Helsinki (2) and the WHO registry standards (3) state that registration and results reporting of clinical trials are an ethical responsibility. In addition, many journals, via the International Committee of Medical Journal Editors (ICMJE), encourage or require prospective registration with an appropriate registry before the first participant is enrolled for all trials they publish, as well as the reporting of trial registration numbers in publications for better findability (4,5). Similarly, reporting guidelines such as CONSORT (6) and GPP3 (7) recommend the reporting of trial registration numbers.

Prospective registration has been widely implemented and advocated for many reasons: to detect and mitigate publication bias (i.e., the non-reporting of studies, or aspects of studies, that did not yield a positive result) and selective reporting (i.e., the selective reporting of only statistically significant primary outcomes). Prospective registration allows for public scrutiny of trials, identification of research gaps and to support the coordination of efforts by preventing unnecessary duplication (9). When trials are registered retrospectively, i.e., their registry entry is created after study start, this undermines the many of the reasons for registration. While prospective registration has increased over the past decade, retrospective registration is still widespread (10–14). Some registries, such as DRKS, explicitly mark retrospectively registered entries as such, whereas others, such as ClinicalTrials.gov, do not. While some publishers allow retrospectively registered trials to be published, others do not. Journals following ICMJE guidance should in principle mandate prospective registration, but this principle is not always enforced (12,15,16).

Our study aims to investigate the conduct of retrospective registration and its transparent reporting further. In a previous study in a cohort of 1509 trials conducted at German University Medical Centers, registered in DRKS or ClinicalTrials.gov, and reported as complete between 2009-2013, 75% were registered retrospectively (17). This rate dropped to 46% for the 1658 trials completed between 2014-2017 (18). Using the data from these two studies on trials registered in two large registries, led by German University Medical Centers, completed between 2009 and 2017, and with at least one available peer-reviewed results publication (17,18), we investigate whether and how authors report retrospective registration in the results publication. We also explore trends over time and how retrospective registration is associated with other practices such as reporting the trial registration number.

Methods

Data sources and sample. We based our sample on two related projects that were conducted at our research group (17,18). The projects have drawn a full sample (n = 3113) of registry entries for interventional studies reported as complete between 2009 and 2017, led by a German University Medical Center and registered in one of two registries: The ClinicalTrials.gov platform (CT.gov) and the Deutsches Register Klinischer Studien (DRKS), which is the WHO primary trial registry for Germany. Our dataset also includes the earliest results publication found for 68.4% (2129/3113) of the trials, which was identified by a combination of automated and hand-searches until September 1st, 2020. We retrieved the combined data from the two projects from a GitHub repository (https://github.com/maia-sh/intovalue-data, accessed 22.02.2022).

Eligibility criteria. We included any trial that [1] was registered as an interventional study in either the ClinicalTrials.gov or the DRKS database, [2] was completed between 2009 and 2017, [3] reports a
German University Medical Center (UMC) listed as the responsible party or lead sponsor, or with a principal investigator from a German UMC, [4] has published results in a peer-reviewed journal. Detailed descriptions of how these variables were derived are provided in the original publications of the dataset (17,18). Retrospective registration was determined based on the registration and study start dates in the registry entries: dates were set to the first of the respective month and studies with a registration date more than one month after start date counted as retrospectively registered.

Data extraction. For all retrospectively registered trials, we manually searched the abstract and the full text of the publications, including editorial statements, whether they reported

- the fact that the study was registered (binary),
- a trial registration number (binary),
- the exact wording used to report the registration, including any provided registration numbers (free text),
- the date of the retrospective registration (binary), and
- the fact that the study was retrospectively registered (binary).

We also assessed whether (binary) and how authors justified or explained the retrospective registration (free text).

One rater (MH) used the keywords “regist”, “nct”, “drks”, “eudra”, “retro”, “delay”, and “after” to search for registration numbers and wording pointing to retrospective registration in all publications. We considered a retrospective registration statement transparent if the authors explicitly mentioned that the registration was retrospective, e.g., “this study was retrospectively registered in [registry], [TRN]”. Reporting of the registration date alone was not considered as transparent reporting of retrospective registration, except if the date of registration was mentioned in combination with the study start date in the same paragraph.

ICMJE journals. We created additional variables for whether journals follow the ICMJE recommendations (list available on http://www.icmje.org/journals-following-the-icmje-recommendations/, accessed 07.04.2022).

Cross-registrations. We classified all retrospectively registered studies in our sample that report a registration in EudraCT in the publication as prospective, as registrations on the platform are required prior to the approval of regulatory agencies or research ethics committees (19).

Reliability assessment of ratings. To assess the reliability of the data extraction, another rater (SG) performed three validation steps: first, a sample of 100 publications was screened using the same extraction form, during the main screening to refine category definitions. Second, another sample of 100 publications for which no registration number reporting was noted by MH to check for false negative ratings. Third, all cases with either date, or reporting of retrospective registration or justification were screened, to check for false positives.

Analyses

Associations between prospective registration and other variables
To test the strength of the associations between prospective registration and three variables, we used Pearson’s chi-squared independence test or Fisher’s exact test (for small numbers). These variables are (1) publication in a ICMJE member journal or a journal following ICMJE recommendations, (2) reporting of a registration number, and (3) industry funding.

Associations between reporting of retrospective registration and other variables
To test the strength of the associations between the reporting of retrospective registration and two binary variables, we used Fisher’s exact test. These variables are (1) publication in a ICMJE member journal or a journal following ICMJE recommendations, and (2) industry funding.
Software
We used Microsoft Excel for data collection and R (version 4.0.3) for data analysis and visualization.

Results
Sample of retrospectively registered trials. After applying the above-mentioned exclusion criteria, 1927 (1932 - 5) registered studies with an associated results publication remained. Of these, 1038 (53.7%) were retrospectively registered according to the information provided in Clinicaltrials.gov and DRKS. We screened these 1038 studies for our analysis. 77 (7.8%) of the publications provided an EudraCT number, in which case we reclassified the study as prospectively registered. For statistical comparisons, we used the prospectively registered studies in the dataset as a control group. A flowchart of this study selection is provided in Figure 1.

Figure 1: Flowchart of inclusion/exclusion of studies. From the 1038 trials that were retrospectively registered in Clinicaltrials.gov or DRKS, we excluded 5 publications that clearly did not report clinical study results (e.g., secondary analyses of CT data) and another 77 that reported EudraCT entries in the publications, resulting in 956 retrospectively registered studies from a total dataset of 1927 (971 + 956) studies.

Retrospective registration. Figure 2 shows the extent of retrospective registration over time, which has been falling steadily from 100% in 2004 to 25% in 2017.
Figure 2: Percentage of retrospectively registered (RR) trials over time (per study start year). GAM (generalized additive model) smoother laid over (blue). Bubble sizes indicate the number of trials per year in the dataset.

We describe associations between prospective registration and previously defined binary variables in Table 1: We found no statistically significant association between publications in ICMJE member journals and prospective registration. Trials published in journals reporting to follow ICMJE recommendations were even prospectively registered at a lower rate, compared to non-following journals. It is important to note here that the information on ICMJE-following is based on journals’ requests to be included on the ICMJE website, therefore our results suggest that journals requesting to be featured on the site often do not enforce the recommendations strongly. However, there are other journals, such as many PloS journals, that are not featured on the ICMJE site, but implement the recommendations. Retrospectively registered trials, compared to prospectively registered trials significantly underreported registration numbers in the abstract (p = 0.0007). Industry sponsorship of trials was associated with prospective registration (p = 0.002).

Table 1: Associations between prospective registration and other variables

<table>
<thead>
<tr>
<th>Variable</th>
<th># (%) prospectively registered</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMJE member journal</td>
<td>Y 28 (63.6%)</td>
<td>p = 0.09 (Fisher)</td>
</tr>
<tr>
<td></td>
<td>N 943 (50.1%)</td>
<td></td>
</tr>
<tr>
<td>ICMJE member/following</td>
<td>Y 329 (49.2%)</td>
<td>p = 0.47 (Chi-sq.)</td>
</tr>
<tr>
<td>journal</td>
<td>N 642 (51.0%)</td>
<td></td>
</tr>
<tr>
<td>TRN reporting in abstract</td>
<td>Y 404 (55.4%)</td>
<td>p = 0.0007*** (Chi-sq.)</td>
</tr>
<tr>
<td></td>
<td>N 567 (47.3%)</td>
<td></td>
</tr>
<tr>
<td>Industry sponsorship</td>
<td>Y 163 (59.3%)</td>
<td>p = 0.002** (Chi-sq.)</td>
</tr>
<tr>
<td></td>
<td>N 808 (48.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Reporting of registration. In 783 (81.9%) of the remaining 956 results publications of retrospectively registered trials, the registration was explicitly reported in either the abstract or the full text. In all
except four of these publications, the registration was mentioned by providing the registration
number. In the other cases, the registration was mentioned but without reporting a registration
number.

Table 2: Number of retrospectively registered trials and prevalence of key retrospective registration reporting practices.
* "other" includes footnotes, sidebars, etc.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>% (of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total: Retrospectively registered trials</td>
<td>956</td>
<td>100.0%</td>
</tr>
<tr>
<td>Registration reported</td>
<td>783</td>
<td>81.9%</td>
</tr>
<tr>
<td>Registration number reported</td>
<td>779</td>
<td>81.5%</td>
</tr>
<tr>
<td>in abstract</td>
<td>325</td>
<td>34.0%</td>
</tr>
<tr>
<td>in full-text</td>
<td>535</td>
<td>56.0%</td>
</tr>
<tr>
<td>in other*</td>
<td>134</td>
<td>14.0%</td>
</tr>
<tr>
<td>Registration date reported</td>
<td>67</td>
<td>7.0%</td>
</tr>
<tr>
<td>in abstract</td>
<td>45</td>
<td>4.7%</td>
</tr>
<tr>
<td>in full-text</td>
<td>32</td>
<td>3.3%</td>
</tr>
<tr>
<td>Retrospective registration addressed</td>
<td>47</td>
<td>4.9%</td>
</tr>
<tr>
<td>in abstract</td>
<td>21</td>
<td>2.2%</td>
</tr>
<tr>
<td>in full-text</td>
<td>33</td>
<td>3.5%</td>
</tr>
<tr>
<td>Retrospective registration justified/explained</td>
<td>20</td>
<td>2.1%</td>
</tr>
<tr>
<td>in abstract</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>in full-text</td>
<td>20</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Reporting of retrospective registration. The rate of trials for which retrospective registration is
reported transparently increased over the last years up to 15.4% in 2020 (Figure 3). Overall, among
all 956 retrospectively registered clinical studies, only 47 (4.9%) mention explicitly that this
registration was retrospective in the abstract or full text. Among those cases, 20 give some
explanation or justification for why registration was retrospective; we provide examples for these
cases below in Table 2. In 67 (7.0%) cases, the authors reported the registration date alongside the
registration statement, but in 35 of those, the date was provided without giving the necessary
context that the registration was retrospective.
Figure 3: Percentage of retrospectively registered trials reporting retrospective registration transparently in the publication over time (per study publication year). GAM (generalized additive model) smoother laid over (blue). Bubble sizes indicate the number of trials per year in the dataset. Starting in 2013, some authors begin to report retrospective registration. 15% of publications of retrospectively registered trials from 2020 transparently report retrospective registration. Four trials were published before 2009 – in all those cases the study completion dates provided in the registry were after 2009. Study start dates were before 2005 and studies were registered in 2005 (3/4) or later (1/4).

Publications in ICMJE member or -following journals had a higher rate of reporting of retrospective registration (p = 0.004) but we found no association for industry sponsored trials (p = 0.162) (Table 3).

Table 3: Associations between transparent reporting of retrospective registration and other variables

<table>
<thead>
<tr>
<th>Variable</th>
<th># (%) reporting RR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMJE member journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>2 (12.5%)</td>
<td>p = 0.184 (Fisher exact)</td>
</tr>
<tr>
<td>N</td>
<td>45 (4.8%)</td>
<td></td>
</tr>
<tr>
<td>ICMJE member/following journal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>7 (2.1%)</td>
<td>p = 0.004** (Fisher exact)</td>
</tr>
<tr>
<td>N</td>
<td>40 (6.5%)</td>
<td></td>
</tr>
<tr>
<td>Industry sponsorship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>2 (1.8%)</td>
<td>p = 0.362 (Fisher exact)</td>
</tr>
<tr>
<td>N</td>
<td>45 (5.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Justifications of retrospective registration. In 24 cases in which the retrospective nature of the registration was reported, the authors provided further information explaining or justifying the retrospective registration. Table 2 shows the main themes present in authors’ explanations, with text examples.

Table 4. Main themes identified from authors’ explanations of retrospective reporting and example statements.

<table>
<thead>
<tr>
<th>Theme</th>
<th>Example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unawareness of policy</td>
<td>“At the time when the trial was started, the investigators of this study were unfortunately unaware of the policy of the International Committee of Medical Journal Editors (ICMJE), which requires prospective registration of all interventional clinical trials. As soon as we became aware of this policy, we registered the trial.” (PMID: 26812052)</td>
</tr>
</tbody>
</table>
In this study we show that in a sample of 956 results publications from retrospectively registered clinical studies led by German UMCs and completed between 2009 and 2017, only a small number of publications (4.9%) make it the retrospective nature of the registration transparent, and even fewer (2.1%) explain the reasons for retrospective registration. To our knowledge, only two studies have previously addressed the reporting of retrospective registration: Al-Durra et al. (20) found in a sample of 286 publications in ICMJE member journals and published in 2018 that only 2.8% (n=8) of papers of retrospectively registered trials in their sample include justifications or explanations for delayed registration. Loder et al. (21), in their analysis of 70 papers submitted to the BMJ from 2012-2015 and rejected for registration issues, found that 2.9% (n=2) disclosed the registration problem when published in another journal. Our study finds a slightly lower percentage of 2.1% for explanations of the reasons for retrospective registration, but a higher percentage of 4.9% for
disclosure in a larger sample representing a more diverse selection of journals and broader time frame.

There were diverse reasons for retrospective registration brought forth by authors, many of which have been published previously (20,21). In some cases, authors raise points that lie outside their direct responsibility, such as delays caused by the registry or research not being legally required to be preregistered. Several other reasons provided were within authors’ control, such as logistic and administrative issues, miscommunication between researchers or unawareness of registration policies. In some cases, authors report registering a study to meet journal editorial policies even though registration would not be required for the kind of research otherwise. Another identified theme revolves around the confidentiality of methods—however, in this case many other data about the trial could have been preregistered.

Limitations

For feasibility and data quality reasons, our study was based on an existing validated dataset, containing only trials led by German UMCs, which might limit its generalizability to other regions. For example, in Germany, unlike many other countries, there is no legal mandate to register all clinical studies, but the largest funding institutions in Germany (e.g., DFG, BMBF) require the registration of studies as prerequisite for funding. However, the sample also contained multi-center trials with other countries involved and is much larger and from a wider variety of journals than in previous studies (20,21). In addition, due to Germany’s high research output (22) our results in any case highlight a key transparency issue in a major research environment.

Our analysis of retrospective registration is based on trial start dates and registration dates as provided by the two registries used for sampling: Clinicaltrials.gov and DRKS. It is possible that authors did not update their registry entries when delays to the start date occurred. For example, we did not specifically follow up cases in which authors wrote that a trial was registered prospectively, but the registry dates did not reflect that statement. In our analyses involving the classification into ICMJE-following and non-following journals, we relied on the data provided on the ICMJE website (icmje.org), which are self-reported by journals, i.e., a journal must write to the ICMJE that they want to be included in the list. Thus, there are some journals missing in the ICMJE data and therefore in our dataset. For ICMJE member journals (n=16) on the other hand, there is a complete listing available.

Conclusion

The Declaration of Helsinki and many other guidelines for responsible clinical research unanimously recommend prospective registration of all clinical studies. For highly regulated clinical trials this was even codified into law. A major aim of prospective registration is to minimize the risk of undisclosed changes in the protocol after the study started and first results are analyzed. When registration happens retrospectively, this major goal is not addressed. The reporting of study registration is generally considered a best practice to make a study more trustworthy. In the case of retrospective registration, in contrast, reporting registration without transparency on the retrospective nature should rather raise concerns as readers might wrongly interpret the mentioning of registration as a quality criterion. This could be considered “performative reproducibility”, i.e., the “pretense of reproducibility without the reality” (23). Journals could enforce explicit reporting and explanation of retrospective registration, but we found that this rarely happens. A simple note in the registration
statement of the paper would suffice, such as: “This study was retrospectively registered at [Registry], [X] days after the trial started because [Reason]”.
References

https://blogs.biomedcentral.com/bmcblog/2016/04/15(retrospectively-registered-trials-editors-dilemma/)

20. Al-Durra M, Nolan RP, Seto E, Cafazzo JA. Prospective registration and reporting of trial number in randomised clinical trials: global cross-sectional study of the adoption of ICMJE and Declaration of Helsinki recommendations. BMJ. 2020 Apr 14;m982.

