TITLE: A method for identifying causal effects from heterogeneous clinical trials in the absence of a common control group: an individual participant data meta-analysis and validation study

AFFILIATIONS:
1. Department of Mathematics and Statistics, University of San Francisco, San Francisco, CA
2. Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA
3. School of Medicine, University of California, San Francisco, San Francisco, CA
4. Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA
*: Designates equal contribution

GUARANTOR: Vivek A. Rudrapatna. UCSF Bakar Institute, Box 2933, 490 Illinois Street, Floor 2, San Francisco, CA 94143. Email: vivek.rudrapatna@ucsf.edu

AUTHOR CONTRIBUTIONS: VAR conceived the study and obtained access to the data. SW, VGR, DVA, and VAR designed the study, analyzed the data, and drafted the manuscript. AM performed the risk of bias assessment. SW performed an independent review of the analytical code. All authors interpreted the data and critically edited the manuscript.

POTENTIAL COMPETING INTERESTS: VAR received grant support from Janssen Inc and Alnylam Inc for unrelated work during this study. DVA is currently an employee at Bristol Myers Squibb. AJB is a co-founder and consultant to Personalis and NuMedii; consultant to Mango Tree Corporation, and in the recent past, Samsung, 10x Genomics, Helix, Pathway Genomics, and Verinata (Illumina); has served on paid advisory panels or boards for Geisinger Health, Regenstrief Institute, Gerson Lehman Group, AlphaSights, Covance, Novartis, Genentech, and Merck, and Roche; is a shareholder in Personalis and NuMedii; is a minor shareholder in Apple, Meta (Facebook), Alphabet (Google), Microsoft, Amazon, Snap, 10x Genomics, Illumina, Regeneron, Sanofi, Pfizer, Royalty Pharma, Moderna, Suro, Doximity, BioNtech, Invitae, Pacific Biosciences, Edits Medicine, Nuna Health, Assay Depot, and Vet24seven, and several other non-health related companies and mutual funds; and has received honoraria and travel reimbursement for invited talks from Johnson and Johnson, Roche, Genentech, Pfizer, Merck, Lilly, Takeda, Varian, Mars, Siemens, Optum, Abbott, Celgene, AstraZeneca, AbbVie, Westat, and many academic institutions, medical or disease specific foundations and associations, and health systems. Atul Butte receives royalty payments through Stanford University, for several patents and other disclosures licensed to NuMedii and Personalis. Atul Butte’s research has been funded by NIH, Peraton (as the prime on an NIH contract), Genentech, Johnson and Johnson, FDA, Robert Wood Johnson Foundation, Leon Lowenstein Foundation, Intervallien Foundation, Priscilla Chan and Mark Zuckerberg, the Barbara and Gerson Bakar Foundation, and in the recent past, the March of Dimes, Juvenile Diabetes Research Foundation, California Governor’s Office of Planning and Research, California Institute for Regenerative Medicine, L’Oreal, and Progenity. The authors have declared that no actual competing interests exist.

KEYWORDS: individual participant data meta-analysis, randomized clinical trials, Crohn’s disease, comparative effectiveness, comparative efficacy, evidence synthesis, biostatistics

WORD COUNT: 3657

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

The advent of clinical trial data sharing platforms has opened opportunities for making new discoveries and answering important clinical questions using already collected data. However, existing methods for drawing robust inferences from these data require the presence of shared control groups across studies, significantly limiting the number of questions that can be confidently addressed. Here we propose a method for meta-analyzing heterogeneous studies despite the lack of a shared control group. We illustrate the use of this methodology in the context of a comparative efficacy analysis using the publicly available, individual participant-level data from 9 clinical trials in Crohn’s disease (N=3392). We validate our method by simulating and successfully reproducing the results of SEAVUE, a recently completed head-to-head trial of ustekinumab versus adalimumab. This method may help expand the scope of what can be learned from these valuable patient datasets and reduce the costs of obtaining high-quality evidence to guide clinical care.

Funding: US National Institutes of Health (National Center for Advancing Translational Sciences, National Institute of Diabetes and Digestive and Kidney Diseases), UCSF Bakar Computational Health Sciences Institute, UCSF Division of Gastroenterology, University of San Francisco
INTRODUCTION:

The individual participant data (IPD) meta-analysis has long been considered the gold-standard of meta-analysis, particularly in the field of clinical research. Access to the raw row-level data from clinical trials affords investigators the opportunity to independently verify published results, ask new questions of these already-collected data, and uncover findings with the potential to directly impact clinical care.

The conventional paradigm for performing IPD meta-analyses requires the existence of many trials with an essentially identical study design and negligible heterogeneity across multiple dimensions. These include the cohort definition (inclusion/exclusion criteria), use of randomization and blinding, the nature of the intervention, use of parallel vs non-parallel study arms, as well as the timing and method of outcome ascertainment.

Requirements that all included trials be homogeneous essentially guarantees, by design, that estimates of the target effects will be unbiased. However, they also substantially limit the number of these meta-analyses that can be performed. Replicate trials are generally rare outside of common diseases like hypertension and diabetes due to the high costs of conducting these studies. As such, there is a significant unmet need to develop methods for analytically overcoming study heterogeneity, and to maximize the value of these expensive and high-quality data.

Here we demonstrate a new method for meta-analyzing clinical trials data and identifying causal effects in the absence of a common control group. We illustrate this method in the context of comparative efficacy research in Crohn’s disease, a chronic immune disorder of the intestinal tract characterized by abdominal pain, diarrhea, anemia, and weight loss. Using data from six placebo-controlled trials of three FDA-approved therapies for Crohn’s disease (N=3153), we begin by developing a statistical model to predict the placebo response in trials where it was not measured. We then apply this model to normalize the data from three placeboless trials of a different drug (adalimumab; N=239) by partitioning the clinical response into drug-independent and drug-attributable effects. We then use these normalized data to predict the comparative efficacy of two drugs via a simulated head-to-head trial. Finally, we validate our method by comparing the results of our simulation to the recently reported results of SEAVUE (NCT03464136), a randomized trial of ustekinumab versus adalimumab. We conclude that this method may enable a broad class of IPD meta-analyses across diseases and support future efforts to improve the efficiency of clinical studies using single-arm designs.

RESULTS:

STUDY OVERVIEW

Our overall approach is summarized in Fig. 1. The methodology discussed here was originally developed in the context of an existing effort to study comparative efficacy in Crohn’s disease using an IPD meta-analytic approach. As the first step towards this goal, we sought to address the problem of analyzing disparate data with possible heterogeneity and the lack of a common control group.

DATA ACCESS

We ran searches on clinicaltrials.gov and performed manual review to confirm 16 trials as meeting the following criteria: completed, phase 2-4, randomized, double-blinded, interventional trials of FDA-approved treatments for Crohn’s disease as of June 2019 (Fig. 1a, Online Methods, Extended
Fig. 1: Overview of modeling process

a, Clinical trials were found using clinicaltrials.gov and sought for retrieval on the YODA and Vivli platforms. Individual participant data (IPD) from trials that collected CDAI scores at week 8 visits were then aggregated and harmonized. b, Two linear mixed effect models - placebo-attributable and ADA-attributable - were developed from the harmonized data to partition the CDAI reduction a participant experience based on baseline covariates (age, sex, BMI, etc.). Disease reduction was partitioned into placebo-attributable (square) and drug-attributable (circle) effects; IPD (solid lines) were used to predict or simulate data (dashed lines). c, Using the ADA-attributable model, a simulated ADA arm was developed. d, Results from a simulated head-to-head trial were compared against a recently completed head-to-head trial, SEAVUE, to externally validate the proposed method.

Extended Data Fig. 1 PRISMA-IPD flow diagram

Flow diagram illustrating selection of studies.

*Some studies met more than one criterion.†All 15 studies were retrieved and consolidated on the Vivli platform; however, only 9 studies were used for analysis as these studies captured CDAI measurement at week 8 and could be compared with the SEAVUE study.
Extended Data Table 1 Major inclusion/exclusion criteria of included studies

<table>
<thead>
<tr>
<th>Trial</th>
<th>Age ≥ 18</th>
<th>Baseline CD4 220-450</th>
<th>ileal and/or colonic involvement</th>
<th>Disease activity by biochemical/ endoscopy</th>
<th>TNF intolerance/ failure</th>
<th>TNF naïve*</th>
<th>Stable concomitant medications</th>
<th>No symptomatic stricture</th>
<th>No abscess</th>
<th>No recent surgery</th>
<th>No stoma or ostomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRECISE1</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>ENACT</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>X</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>ENCORE</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CERTIFI</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>UNIT1</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>UNIT2</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>CLASSIC</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>EXTEND</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>X</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NCT02492783</td>
<td>✓</td>
<td>X</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

If the trial protocol was not publicly available, and if the corresponding manuscript or clinical study report was silent on a given criteria, the field was annotated as NA. If the trial protocol was available and it was clear that a given criterion was not applied for cohort selection, the field was annotated with an X. In many trials (e.g., ENACT, ENCORE), a history of TNF naïve or intolerance/failure was not a requirement and was captured as a participant-specific covariate for regression-based control. In other scenarios, the trial-specific covariate implicitly applied to all trial participants (e.g., TNF naïve status in PRECISE1). Trials were generally consistent on the target patients of study in terms of inclusion and exclusion criteria. To address the possibility of residual heterogeneity due to the lack of perfectly consistent eligibility criteria or unmeasured covariates, a trial-specific random effect was included in the final regression models.

Extended Data Fig. 2 Risk of Bias

Cochrane’s risk-of-bias tool for randomized trials version 2 (ROB2). Green, yellow, and red indicate low, moderate, and high risk of bias respectively.
Data Fig. 1). Included trials had common inclusion and exclusion criteria, or had participant-level covariate data available to control for heterogeneity in these criteria across studies (Extended Data Table 1). They all measured the same endpoint (Crohn’s Disease Activity Index; CDAI) at week eight and were at low risk of bias (Extended Data Fig. 2). We successfully obtained access to the IPD for 15 studies (N=5703), corresponding to trials of all six FDA-approved biologics as of 2019.

STUDY DESIGN

We designed this study to emulate the result of a hypothetical head-to-head, parallel-design, comparative efficacy trial randomizing participants to two treatment arms. Although a typical study design would have involved the pooling of trial cohorts that had each participated in an internally controlled, parallel-arm study, this was not possible in our use case for several reasons (Fig. 2). Several studies involved open-label induction followed by a randomization event to continue or discontinue the treatment. Others involved the use of gating logic using post-randomization measurements, particularly at the end of treatment induction (week six or eight for most studies).

To overcome this heterogeneity in study design, we defined our primary outcome as the absolute reduction in CDAI at week eight, and we filtered the provided data to include only those trial cohorts that had at least eight weeks of uninterrupted observation time on either placebo or a drug relative to baseline. However, we noted that nine out of the 15 obtained studies did not include a parallel arm placebo cohort randomized at week 0 and followed for eight weeks. Thus, for the purposes of this post-hoc study, they were considered uncontrolled.

We sought to develop a method to overcome this common barrier to meta-analyses, the lack of a shared placebo group across all studies, and to externally validate this method by direct comparison to SEAVUE, a recent head-to-head trial in Crohn’s disease. As a first step towards this goal, we restricted our initial analyses to just the placebo-controlled trials (six trials; N=3153; Table 1).

QUALITY CONTROL, HARMONIZATION, MISSING DATA

We performed extensive quality control evaluations of the included trials and data (Fig. 1a, Online Methods). These include reproducing previously published results from each trial cohort and identifying suitable variables for the study (Extended Data Fig. 3 and 4). We used domain knowledge to select nine variables that were universally available across trials for downstream modeling: Age, Sex, body mass index (BMI), baseline CDAI, c-reactive protein (CRP), history of tumor necrosis factor-alpha inhibitor (TNFi) use, oral steroid use, immunomodulator use, and ileal involvement. Some variables of a priori importance could not be included in this study. Ethnicity was not collected in most trials. Race was missing in some trials, but when it was captured, it reflected significant imbalance (88% of participants were white). Other disease-specific variables such as disease behavior and duration were also not uniformly captured across studies and thus could not be included in this meta-analysis.

MODELING ASSUMPTIONS

We incorporated several assumptions when developing and interpreting candidate models. We assumed that the observed week eight reduction in CDAI reflected a combination of two distinct and independent effects: a drug-independent (i.e., placebo) effect and drug-attributable effect. These effects were separately modeled as a function of the aforementioned predictors and study year. The
Data harmonization required careful understanding of the study designs. All treatment arms that involved 8 weeks of consistent exposure to either placebo or (blue) or active treatment at the FDA-approved doses (red) were included. R = randomized and blinded; O = open label.
Table 1: Characterization of included studies

| Characterization of baseline covariates of included studies and simulated head-to-head trial. Placebo arms from the CLASSIC, EXTEND, and NCT02499783 studies were not included due to the absence of a 8-week parallel arm placebo group (see Fig. 2). CRP = c-reactive protein, TNF = tumor necrosis factor. |

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Active</th>
<th>Placebo</th>
<th>Age - Mean (SD)</th>
<th>Sex: Female - N (%)</th>
<th>BMI - Mean (SD)</th>
<th>Baseline CDAI - Mean (SD)</th>
<th>CRP (mg/L) - Mean (SD)</th>
<th>History of TNF usefulness - N (%)</th>
<th>Steroid Use - N (%)</th>
<th>Immunomodulator Use - N (%)</th>
<th>Ileal Disease - N (%)</th>
<th>CDAI Reduction - Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>304 (50%)</td>
<td>701 (50%)</td>
<td>37 (±12)</td>
<td>337 (58%)</td>
<td>24 (±5.3)</td>
<td>300 (±61)</td>
<td>16 (±25)</td>
<td>165 (27%)</td>
<td>235 (39%)</td>
<td>236 (39%)</td>
<td>423 (72%)</td>
<td>67 (±03)</td>
</tr>
<tr>
<td>Placebo</td>
<td>243 (51%)</td>
<td>237 (49%)</td>
<td>39 (±13)</td>
<td>502 (57%)</td>
<td>25 (±5.6)</td>
<td>300 (±60)</td>
<td>20 (±29)</td>
<td>351 (49%)</td>
<td>340 (48%)</td>
<td>302 (34%)</td>
<td>876 (77%)</td>
<td>99 (±101)</td>
</tr>
<tr>
<td>Simulated</td>
<td></td>
<td></td>
<td>39 (±13)</td>
<td>284 (59%)</td>
<td>25 (±7.3)</td>
<td>320 (±67)</td>
<td>22 (±23)</td>
<td>223 (46%)</td>
<td>190 (49%)</td>
<td>100 (38%)</td>
<td>355 (74%)</td>
<td>92 (±35)</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
<td>39 (±13)</td>
<td>227 (55%)</td>
<td>22 (±7.3)</td>
<td>320 (±60)</td>
<td>17 (±23)</td>
<td>173 (46%)</td>
<td>253 (45%)</td>
<td>172 (41%)</td>
<td>335 (81%)</td>
<td>86 (±03)</td>
</tr>
<tr>
<td>Simulated</td>
<td></td>
<td></td>
<td>39 (±13)</td>
<td>227 (55%)</td>
<td>22 (±7.3)</td>
<td>320 (±60)</td>
<td>17 (±23)</td>
<td>173 (46%)</td>
<td>253 (45%)</td>
<td>172 (41%)</td>
<td>335 (81%)</td>
<td>86 (±03)</td>
</tr>
<tr>
<td>Simulated</td>
<td></td>
<td></td>
<td>39 (±13)</td>
<td>227 (55%)</td>
<td>22 (±7.3)</td>
<td>320 (±60)</td>
<td>17 (±23)</td>
<td>173 (46%)</td>
<td>253 (45%)</td>
<td>172 (41%)</td>
<td>335 (81%)</td>
<td>86 (±03)</td>
</tr>
<tr>
<td>Simulated</td>
<td></td>
<td></td>
<td>39 (±13)</td>
<td>227 (55%)</td>
<td>22 (±7.3)</td>
<td>320 (±60)</td>
<td>17 (±23)</td>
<td>173 (46%)</td>
<td>253 (45%)</td>
<td>172 (41%)</td>
<td>335 (81%)</td>
<td>86 (±03)</td>
</tr>
<tr>
<td>Simulated</td>
<td></td>
<td></td>
<td>39 (±13)</td>
<td>227 (55%)</td>
<td>22 (±7.3)</td>
<td>320 (±60)</td>
<td>17 (±23)</td>
<td>173 (46%)</td>
<td>253 (45%)</td>
<td>172 (41%)</td>
<td>335 (81%)</td>
<td>86 (±03)</td>
</tr>
</tbody>
</table>

Characterization of baseline covariates of included studies and simulated head-to-head trial. Placebo arms from the CLASSIC, EXTEND, and NCT02499783 studies were not included due to the absence of a 8-week parallel arm placebo group (see Fig. 2). CRP = c-reactive protein, TNF = tumor necrosis factor.
Extended Data Fig. 3 Reproducibility of published data

\(a \), Plots of aggregated data versus published data for baseline covariates and outcome variables as a measure of quality control. Each dot represents the mean variable estimate for a given study treatment group (placebo, active). Data were not displayed if the study did not report the variable mean in its original article. Upper and lower lines in plots correspond to ±10% error bounds.

\(b \), Percentage of missing covariates by study. Approximately 0.2% of BMI values, 2% of CRP values, and 11% of week 8 CDAI values were missing after data harmonization and required imputation. Median imputation by study was used to impute missing BMI and CRP values. Last observation carried forward (LOCF) was used to impute missing week 8 CDAI values; CDAI observations from week 6, week 4, week 3, or week 2 were candidates for LOCF.
Extended Data Fig. 4 Leave-one-trial-out analysis

a, Actual vs Predicted Mean Placebo CDAI Reduction by Trial

b, Mean Residual by Trial

Extended Data Fig. 5 Checking model assumptions

a, Independence of Residuals

b, Homoscedasticity

c, Normality of Residuals

d, Linearity of Continuous Variables

Plotting the placebo-attributable model residuals to visually check linear regression model assumptions. a, Plot of the model residuals versus index to assess residual independence. Dotted lines represent ±2σ. b, Plot of the model residuals versus the fitted values to assess residual homoscedasticity. c, Q-Q plot of the model residuals to assess residual normality. d, Plot of the model residuals versus each continuous covariate to assess linearity between covariates and the outcome variable.
justification for this is briefly summarized below and additionally presented as a directed acyclic graph (Fig. 3, Online Methods).

The placebo effect was modeled as a function of the nine covariates as well as predictors of trial-specific heterogeneity. We assumed that much of the spontaneous improvement seen in placebo-assigned participants was related to regression to the mean, as study participation was limited to patients with active Crohn’s disease at the time of enrollment. Conversely, we assumed that failure to spontaneously improve was likely to reflect chronic and cumulative disease burden with relative stability in symptoms. Thus, variables corresponding to concomitant and prior treatments were treated as proxies of chronic disease burden and included as predictors. Lastly, we considered other influences on overall heterogeneity, including subtle differences in cohort selection, data capture, outcome ascertainment, and study personnel. To account for these time-dependent and independent sources of variation, we included study year as well as trial identifier as additional covariates. In mixed-effect models, trial of origin was included as a random effect. All other covariates were fixed effects.

The drug-attributable effect was separately modeled as a function of these same nine covariates, reflecting drug-specific (interaction) effects on the outcome. Many of these covariates are well-established as effect modifiers of biologic response, such as a history of TNFi use and the concomitant use of immunomodulators. Others are direct (CRP) or indirect (baseline CDAI) proxies of bowel inflammation, the principal target of the medications under study here. These variables were all included to maximize the explained variation in the outcome, in anticipation of performing a head-to-head trial in-silico.

We assumed a single source of model errors affecting the observed outcome of all study participants – both those receiving placebo and active drugs. These errors were assumed to be independent and drawn from a multivariate normal distribution. Conditional on the above covariates, the outcomes were considered homogenous (exchangeable) and thus poolable for the purposes of simulating a head-to-head trial. That is, the estimated drug-attributable coefficients were considered unbiased estimates of the effect of drug treatment within the normalized background of a given clinical trial.

DEVELOPMENT AND ASSESSMENT OF A MODEL FOR THE PLACEBO EFFECT

We fit a linear mixed effects model utilizing all nine predictors as well as study year as predictors of the placebo effect (Fig. 1b, Table 2). To minimize the risks of residual bias due to model misspecification (e.g., non-linearities, unmodeled interaction terms), we compared the predictive performance of this model against other statistical and machine learning models (Extended Data Table 2). We found no significant differences in cross-validated root mean squared error, supporting the decision to select the mixed-effects model for downstream analyses.

We further evaluated this model from the perspective of being used to impute unmeasured placebo effects, and thus normalize different trials to the same background placebo response. A leave-one-trial-out analysis suggested that the model predictions were both robust and unbiased (Extended Data Figs. 4, 5). The trial-averaged residuals were consistent with normality (p=0.4 by the Shapiro-Wilk test).

We note that the unmodeled variation in the placebo effect was relatively large and was independent of the choice of model (Extended Data Table 2). These results explain the large placebo effects that have been seen in Crohn’s disease randomized trials (regression to the mean), and suggest that more work will be needed to improve the measurement of Crohn’s disease activity.
Fig. 3: Directed acyclic graph

a. A directed acyclic graph (DAG) of the drug attributable effect. In addition to the active treatment itself, patient demographics (e.g. age, sex, BMI), baseline Crohn’s disease activity (e.g. baseline CDAI, CRP, location), and treatment history (e.g. prior use of TNFis, current use of oral corticosteroids and immunomodulators) are all modeled as contributing to the drug attributable effect. The non-drug covariates are effect modifiers and are implicitly modeled as two-way interaction terms with the active drug. b. A DAG of the drug independent effect (i.e. placebo effect). The same covariates except for the treatment term are modeled as effect modifiers and are implicitly represented as two-way interactions with the placebo effect. c. Drug attributable and drug independent effects have additive effects on the overall clinical remission at week 8 (CDAI < 150), with any individual trial reflecting a noisy measurement of the true effect due to unmodeled heterogeneity in study design and execution (random effect).

Table 2: Mixed effect models

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Placebo Attributable Model</th>
<th>ADA Attributable Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates</td>
<td>SE</td>
</tr>
<tr>
<td>Intercept</td>
<td>92.18</td>
<td>13.12</td>
</tr>
<tr>
<td>Year (Centered)</td>
<td>-1.89</td>
<td>1.55</td>
</tr>
<tr>
<td>Baseline CDAI (Centered)</td>
<td>0.37</td>
<td>0.04</td>
</tr>
<tr>
<td>Age (Centered)</td>
<td>0.13</td>
<td>0.21</td>
</tr>
<tr>
<td>BMI (Centered)</td>
<td>0.52</td>
<td>0.54</td>
</tr>
<tr>
<td>CRP (mg/L) (Centered)</td>
<td>-0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>Sex: Male</td>
<td>-0.72</td>
<td>5.17</td>
</tr>
<tr>
<td>History of TNFi Use</td>
<td>-37.56</td>
<td>6.32</td>
</tr>
<tr>
<td>Steroid Use</td>
<td>7.15</td>
<td>5.24</td>
</tr>
<tr>
<td>Immunomodulator Use</td>
<td>5.42</td>
<td>5.45</td>
</tr>
<tr>
<td>Ileal Disease</td>
<td>-7.46</td>
<td>5.99</td>
</tr>
</tbody>
</table>

Mixed effect linear regression outputs for the placebo attributable (n=1310) and ADA attributable (n=239) models. For training, Year was centered by subtracting 2000, Baseline CDAI was centered by subtracting 300, Age was centered by subtracting 35, BMI was centered by subtracting 20, and CRP (mg/L) was centered by subtracting 10. ICC = intraclass correlation coefficient. a. The placebo attributable model (ICC 0.02) trial random intercepts were found to be PRECISE1: -12.808, UNITI1: -7.975, CERTIFI: -6.328, ENACT: 6.077, ENCORE: 8.669, and UNITI2: 12.366. b. ADA attributable model (ICC 0.05) trial random intercepts were found to be CLASSIC: -20.215, EXTEND: 9.439, and NCT02499783: 10.775.
Extended Data Table 2 Model selection

<table>
<thead>
<tr>
<th>Prediction Model</th>
<th>Package</th>
<th>Mean 5-Fold CV RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regression</td>
<td>lm</td>
<td>93.19</td>
</tr>
<tr>
<td>Linear Mixed Effect Model</td>
<td>lm@4</td>
<td>93.19</td>
</tr>
<tr>
<td>Linear LASSO Regression</td>
<td>glmnet</td>
<td>93.14</td>
</tr>
<tr>
<td>Random Forest</td>
<td>randomForest</td>
<td>92.85</td>
</tr>
<tr>
<td>XGBoost (DART)</td>
<td>xgboost</td>
<td>96.20</td>
</tr>
<tr>
<td>Stacked Ensemble</td>
<td>MLJAR</td>
<td>90.81</td>
</tr>
</tbody>
</table>

Mean 5-fold cross-validation (CV) root mean squared error (RMSE) scores of various predictive models. All models were tested against the same stratified 5-fold datasets to ensure results were comparable. RMSE scores reflect the model's ability to predict CDAI reduction at week 8 due to a placebo treatment given baseline covariates (age, sex, BMI, etc.). The stacked ensemble model was built from 9 default base models using the mljar AutoML package.
To further study the placebo effect and identify other opportunities to improve trial efficiency in Crohn’s disease, we reviewed all predictors found significant by Wald testing. A history of TNFi exposure was associated with a 38-point reduction in the placebo effect. We interpreted this as reflecting a greater cumulative disease burden in patients who failed to improve with TNF inhibitors, with disease complications (e.g., minor intestinal strictures) that are unlikely to spontaneously wane over an 8-week period. Similarly, CRP was a negative predictor, suggesting that acute inflammation is unlikely to improve over short periods of time without treatment. The baseline CDAI was a positive predictor, reflecting the requirements for elevated CDAIs at baseline as a key inclusion criterion, and consequent regression to the mean effects. Age, sex, BMI, concomitant medications, and ileal involvement were not found to be significant predictors, potentially due to multicollinearity with other predictors.

ESTIMATION OF THE DRUG-ATTRIBUTABLE EFFECT

Next, we sought to normalize the responses of drug-assigned cohorts that lacked a within-study, parallel-arm control group. Our strategy was to use the finalized placebo model to partition the overall response into drug-independent and drug-dependent (i.e., drug attributable) components (Fig. 1b). We applied this approach to the data from three study cohorts assigned to receive adalimumab at the FDA-approved dose for treatment induction (N=239; Table 1). We selected this medication because it is one of the two drugs that were compared against each other in SEAVUE, the only head-to-head trial of biologics in Crohn’s disease to date and the target of our emulation and validation efforts.

We used the coefficients of the fitted placebo model to predict and remove the placebo-attributable component from the observed outcomes of these participants. The residuals from this process were interpreted as reflecting the adalimumab-attributable effect (Fig. 1b). Across these patients the mean drug-attributable CDAI reduction was 68 points. We used these residuals to fit a second mixed-effects model for the adalimumab-attributable effect (Table 2).

As an exploratory analysis we reviewed the coefficients found to be significant predictors of the response to adalimumab, and specifically compared these to the corresponding results from the placebo model. Although the sample size for covariate estimation was relatively small, we noted a strong signal for age as a negative predictor. Specifically, each increasing decade of life was associated with an 18-point reduction in the response to adalimumab. Interestingly, the direction of this effect was the opposite of that seen in the placebo-only model, suggesting that this coefficient might not have been identified as significant had it not been handled as an interaction term as was done here.

EXTERNAL VALIDATION

A major use case for IPD meta-analyses is to assess comparative efficacy, particularly because head-to-head trials are expensive and rare. To validate our method for use in comparative efficacy research, we designed an in-silico study to emulate SEAVUE, the only head-to-head study of FDA-approved biologics for Crohn’s disease to date. In SEAVUE, biologic-naive patients with active Crohn’s disease were randomly assigned to receive either adalimumab or ustekinumab as induction and maintenance therapy. The primary endpoint was clinical remission at week 52, where clinical remission was defined as a CDAI less than 150 points. Secondary endpoints included clinical remission at the time of all study visits, including week eight in particular.
Table 3: Clinical remission results at week 8

<table>
<thead>
<tr>
<th></th>
<th>Ustekinumab (UST) n/N (%)</th>
<th>Adalimumab (ADA) n/N (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published SEAVUE Results</td>
<td>96/191 (50.3)</td>
<td>93/195 (47.7)</td>
<td>-</td>
</tr>
<tr>
<td>Predicted SEAVUE Results, Primary Analysis</td>
<td>67/149 (44.9)</td>
<td>62/135 (45.9)</td>
<td>0.905</td>
</tr>
<tr>
<td>Sensitivity Analysis: Trials with High Capture of Outcomes</td>
<td>67/149 (44.9)</td>
<td>60/135 (44.4)</td>
<td>1.000</td>
</tr>
<tr>
<td>Sensitivity Analysis: Complete Cases</td>
<td>66/148 (44.6)</td>
<td>65/128 (50.3)</td>
<td>0.398</td>
</tr>
<tr>
<td>Sensitivity Analysis: Information Leakage</td>
<td>67/149 (44.9)</td>
<td>67/135 (49.6)</td>
<td>0.475</td>
</tr>
<tr>
<td>Negative Control, No Normalization</td>
<td>67/149 (44.9)</td>
<td>119/239 (49.8)</td>
<td>0.403</td>
</tr>
</tbody>
</table>

Comparison of clinical remission rates at week 8 for the TNF-naive ustekinumab (UST) cohort and TNF-naive adalimumab (ADA) cohort for the SEAVUE study, our primary analysis (simulation of SEAVUE), sensitivity analyses, and negative control. Because missing week 8 CDAI values were highest for trials PRECISE1 and ENACT, their participant-level data was removed (N=1482) from the first sensitivity analysis to account for potential bias from missing not at random (MNAR) data. In the complete case sensitivity analysis, all participants with missing week 8 CDAI values (n=361) were removed. In the information leakage sensitivity analysis, participants from an ustekinumab study (n=1191) were removed from training the placebo-attributable model to avoid potential information leakage when simulating the adalimumab (ADA) arm (Fig. 1c). The negative control summarizes the clinical remission rates at week 8 for TNF-naive participants from the adalimumab studies without applying our regression-based correction method. The final column corresponds to the results of null hypothesis testing, that of no statistically significant difference between each simulated result and the published SEAVUE results.
We began by identifying all participants from the three ustekinumab-related trials who were biologic-naive. We identified 149 subjects who were assigned to ustekinumab and 135 participants who were assigned to the placebo arm. We noted that the observed responses of the 135 placebo recipients reflected a combination of individual-specific variability and trial-specific variability (Fig. 3). We therefore reasoned that to simulate the effect of treatment assignment, we needed to ‘add back’ the conditional mean effect associated with adalimumab to the outcomes of the placebo recipients (Fig. 1c). Using the model coefficients identified in the adalimumab-attributable regression model (Table 2), we computed and added this extra reduction in the CDAI to the observed week eight outcomes of the placebo cohort.

Finally, we computed the proportion of patients who were in clinical remission at week eight, comparing the results of the observed ustekinumab recipients with the results of the patients simulated to have received adalimumab and subject to the same background placebo effect (Fig. 1d). We found that ustekinumab and adalimumab appeared to be equally efficacious, with 45% and 46% of the cohorts in remission at week eight. This result closely matched that of SEAVUE (p=0.9), which found 50% and 48% of these corresponding cohorts to be in remission (Table 3). Our simulated trial was similar in sample size to SEAVUE, with 149 and 135 patients receiving ustekinumab and adalimumab in our study, compared to 191 and 195 in SEAVUE.

We tested the robustness of this replication result using three sensitivity analyses. In the first we removed two trials (PRECISE 1, ENACT) associated with the greatest degree of outcome missing data (Extended Data Fig. 3). In the second, we performed a complete case analysis (deleted patient data associated with missing outcome measurements) as an alternative to the method of last observation carried forward for the primary analysis. In the third we removed all participant data from any placebo recipient who participated in a trial of ustekinumab from the dataset used to train our placebo model. This was done to confirm that our final results were not influenced by the possibility of information leakage. Our results remained unchanged over all sensitivity analyses (Table 3), supporting the robustness of our primary findings as well as the validity of our overall methodology.

Finally, we sought to evaluate the value of using the more complex modeling approach that we performed here compared to a far simpler approach involving an aggregate data meta-analysis from the published trial results. One barrier we noted to the latter was the fact that the aggregated response of the TNFi-naive subcohorts at week eight was only ever published in one out of the 6 trials that we included for this comparison of ustekinumab and adalimumab, making it impossible to emulate SEAVUE using published results alone. Separate from this concern, and to specifically evaluate the value of modeling the placebo effect and using this to normalize disparate cohorts, we simulated the potential results of our head-to-head assessment without this normalization step. Under this scenario, the observed (unnormalized) ADA cohort response was 50% (Table 3). While this was not a statistically significant difference relative to the observed ustekinumab response of 45% (p=0.4), it does reflect a trend towards a difference. We interpreted this as reflecting a degree of bias that could plausibly result in false positives in other similar studies, but one that is analytically controllable using the method proposed here.

DISCUSSION:

We developed a new method for meta-analyzing individual participant data (IPD) from heterogenous randomized controlled trials despite the lack of a shared control group. We validated our methodology by emulating and successfully replicating a major endpoint of SEAVUE, a recently published head-to-
head trial of biologic therapies in Crohn’s disease. Our method involved several steps: identifying and isolating all parallel arm cohorts from the available randomized trials, harmonizing, and performing quality control on the provided data, separately modeling the placebo effect from drug-attributable effects, and sequentially partitioning and assembling different sources of variation to accurately simulate the outcomes of a suitably normalized comparator group.

After decades of calls for greater data sharing by a wide range of authorities we are finally seeing multiple new platforms for accessing the raw data from clinical trials, accompanied by significant support from industry sponsors. The availability of these data has opened opportunities for researchers to independently verify published results as well as to ask and answer new and important questions of these data. But to our knowledge, few have yet used publicly accessible clinical trials data to better inform new clinical studies. This has never been more important, with the average costs of conducting new phase 3 clinical trials currently at $20M and still climbing.

Although the growing availability of IPD generally portends well for the future of biomedical research, it has brought about a new set of previously unrecognized analytical challenges that will require new methods. IPD meta-analyses have long been considered the gold standard for assessing drug safety and efficacy. However, existing methods typically involve the synthesis of multiple trials with nearly identical study designs, including fully parallel-design cohorts and shared placebo comparator arms across trials. When these criteria are not met, problematic trials are often excluded from a given meta-analysis, sometimes in subtle ways (being filtered out in the very first step of an IPD identification strategy). This substantially limits the numbers of questions that might already be answerable today using existing clinical data. In some cases, this common practice might even introduce bias.

This work suggests that there may be better ways to handle this heterogeneity in study design, and validly discover many important signals from these data. We believe that this method as well as extensions therein have the potential to substantially increase the numbers of studies that can be done, uncovering new evidence on comparative efficacy, safety, and ultimately precision medicine. Taking the example of Crohn’s disease, a major motivation for performing the SEAVUE trial is the current level of uncertainty regarding the comparative efficacy of approved drugs. Methods such as what we propose here can address these knowledge gaps, particularly as the number of approved therapies grows and thus the number of potential head-to-head comparisons grow exponentially.

While we have illustrated this methodology in the setting of a comparative efficacy analysis, we suspect that this approach may have significant value in clinical research beyond this context alone. Models for the placebo effect, such as we demonstrate here, have the potential to improve the design and statistical power of clinical trials across diseases. Moreover, the use of cohort normalization methods may be useful to improve the robustness of external control arm studies. These are studies that typically utilize real-world data to draw indirect inferences against controlled cohorts, typically single-arm intervention studies. However, our analysis suggests that a major driver of the large placebo effects in Crohn’s disease is the large unmodeled variation in the CDAI (Ext. Data Table 2). Future work will be needed to improve the measurement of Crohn’s disease activity.

We acknowledge several limitations of this study. First, although we did undertake extensive efforts to quality control the provided data, we were unable to identically reproduce all covariates as they were originally published. It is likely that we would have been able to overcome these issues with access to the original analytical code and greater support from the trial sponsors and original study analysts. Nonetheless, the degree of deviations from published results was generally small, and our primary
results remained robust to a variety of sensitivity analyses. Future efforts involving pre-harmonization of these data to a common data model such as from the Clinical Data Interchange Standards Consortium (CDISC) may help improve the reproducibility and feasibility of IPD meta-analyses like these. Second, we were unable to include many covariates of \textit{a priori} importance in this study, such as race and ethnicity. Most of the included studies did not collect ethnicity as a variable. Some studies did capture race, but those that did showed evidence of significant demographic skew towards white participants. This is most likely a reflection of the age of the included studies and historical underrecognition of the importance of these factors. Lastly, we note that our validation was somewhat underpowered and was only performed in the context of a single disease. This is largely a function of the relative rarity of clinical trials (the source of our data and sample size), and especially of head-to-head trials like SEAVUE. This overall issue underscores the importance of methods for learning more from these small but high-quality clinical data. Future studies will be needed to confirm the robustness and generalizability of our methodology to other diseases and use cases.

In conclusion, we developed a new method for meta-analyzing data from potentially heterogeneous clinical trials in the absence of a common control group. We validated this method by reproducing the results of a recently completed comparative efficacy trial in Crohn’s disease using historical clinical trials data. We are sharing the analytical code for others to replicate and build upon the methods here, and ultimately help uncover new evidence from the data we already have to improve patient care.

ONLINE METHODS:

ETHICS, PREREGISTRATION, CHECKLIST

This study was approved by the University of California, San Francisco Institutional Review Board (#18-24588). The study and associated protocol were pre-registered on PROSPERO9 (#157827), the Yale Open Data Access Project10, and Vivli11 websites prior to the initiation of this work and prior to the completion of the SEAVUE study. This study was conducted and reported according to the PRISMA-IPD checklist (Supplemental Data).

DATA ACCESS

In June 2019 we performed a search of clinicaltrials.gov to identify candidate studies to include in this planned meta-analysis (Fig. 1a, Extended Data Fig. 1). Our query resulted in a total of 90 trials that were listed as being completed, phase 2-4, randomized, double-blinded, interventional trials of treatments for Crohn’s disease at the FDA-approved route, dose, and frequency. We manually confirmed 16 trials as meeting these criteria. To ensure comparability of the included cohorts and captured outcomes, we reviewed the major inclusion and exclusion criteria of all studies (Extended Data Table 1) and confirmed that the Crohn’s Disease Activity Index (CDAI) had been captured at week six or eight relative to treatment initiation. We also used the Cochrane Risk of Bias 2 tool to ensure that all included studies were at a low risk of bias (Extended Data Fig. 1). Following inquiries with the sponsors of these trials, we successfully obtained access to the IPD for 15 studies (N=5703). These studies were conducted between 1999 and 2015 and corresponded to all six FDA-approved biologics as of 2019. All sponsors and data sharing partners agreed to place their data on a common, secure computing platform (Vivli) to facilitate downstream analysis.

QUALITY CONTROL, HARMONIZATION, MISSING DATA
We performed extensive quality control evaluations of the included trials and data (Fig. 1a). This included confirming our ability to reproduce published statistics on the trial cohorts at baseline as well as the study primary endpoint (Extended Data Fig. 3). We were able to exactly reproduce most of the study results. Where discrepancies occurred, they were generally minor and fell within a 10% error bound. We reported major discrepancies to the study sponsor as per agreement. We attempted to completely eliminate all discrepancies, but this was not possible due to a variety of factors, including lack of access to the original analytic code or the complete analytic dataset, and inability to contact the original analysts.

We completed an assessment of data availability for all study variables (Extended Data Fig. 4). Target variables included demographic features, CDAI at baseline and week eight, baseline inflammatory biomarkers, concomitant steroid and immunomodulator use, history of treatment with tumor necrosis factor-alpha inhibitors (TNFis), and other disease-related features. We identified nine variables that were universally available across all trials and thus could be used for downstream modeling: Age, Sex, BMI, baseline CDAI, c-reactive protein (CRP), history of TNFi use, oral steroid use, immunomodulator use, and ileal involvement.

Only 3% of the participants had at least one missing covariate at baseline. Continuous variables were addressed by median imputation, and participants with missing categorical variables were dropped from the dataset (N=86). 11% of the participants had a missing value for the outcome at week eight. To handle this, we used last-observation-carried-forward to impute these values, typically using measurements from week six and four. This is the typical practice for the analysis of these trials in regulatory submissions and was the prespecified approach in the protocols for all included trials. The variable corresponding to a history of TNFi use was available in all recent trials that occurred after the approval of the very first TNFi medication. Older trials of the first TNFis commonly excluded patients who had a history of exposure to other drugs from this class but did not include this feature as an actual variable in the data set. In these cases, we deterministically imputed this variable corresponding to no prior use.

Other variables of a priori importance could not be included in this study. Ethnicity was not collected in most trials. Race was missing in some trials, but when it was captured, it reflected significant imbalance (88% of participants were white). Other disease specific variables such as disease behavior and duration were also not uniformly captured across studies and thus could not be included in this meta-analysis.

STATISTICAL COMPUTING

Programming was performed in the R language, using the packages dplyr\(^{12}\), lme4\(^{13}\), lmerTest\(^{14}\), data.table\(^{15}\), ggplot2\(^{16}\), ggpubr\(^{17}\), sjstats\(^{18}\), patchwork\(^{19}\), and gridExtra\(^{20}\). The analytical code was independently reviewed by a second member of the team.

MODEL FOR ESTIMATING THE PLACEBO EFFECT

We fit a linear mixed effect model to predict the placebo effect on each patient's CDAI reduction at week 8. The model was trained on the placebo arms of the six placebo-controlled trials. We denote them as trial 1 to trial 6 to simplify the notation. The CDAI reduction of patient \(j\) from trial \(i\) in the placebo arm at week 8 is denoted as \(y_{ij}^{\text{placebo}}\) and assumed to be related to the nine predictors \(D_{ij,1}, ..., D_{ij,9}\), the centered study year \(T_i\), and the trial-specific random effect \(S_i\) as in the following equation:
\[y_{ij}^{\text{placebo}} = \beta_0 + \beta_1 D_{ij,1} + \beta_2 D_{ij,2} + \cdots + \beta_9 D_{ij,9} + \gamma_i T_i + S_i + \epsilon_{ij}, \]

\(i = 1, \ldots, 6; \quad j = 1, \ldots, n_i \)

Where \(\epsilon_{ij} \sim N(0, \sigma^2_\epsilon) \), \(S_i \sim N(0, \sigma^2_s) \), and \(n_i \) is the sample size of each trial, respectively.

MODEL FOR ESTIMATING ADALIMUMAB DRUG-ATTRIBUTABLE EFFECT

After fitting the placebo-effect model, we used the coefficients of model (1) to predict the placebo-attributable component of the observed outcomes of the participants from three study cohorts assigned to receive adalimumab at the FDA-approved dose for treatment induction. We name them as trial 7 to trial 9 to simplify the notations. Denoting the observed CDAI reduction at week 8 of patient \(j \) from trial \(i \) as \(y_{ij} \) and the predicted placebo-attributable component as \(y_{ij}^{\text{placebo}} \), we assume the difference \(\epsilon_{ij} = y_{ij} - y_{ij}^{\text{placebo}} \) reflects the adalimumab drug-attributable effect and is related to the same nine predictors and trial-specific random effect of each adalimumab trial as in the equation below:

\[\epsilon_{ij} = \theta_0 + \theta_1 D_{ij,1} + \theta_2 D_{ij,2} + \cdots + \theta_9 D_{ij,9} + S_i + \xi_{ij} \]

\(i = 7, 8, 9; \quad j = 1, \ldots, n_i \)

Where \(\epsilon_{ij} \sim N(0, \sigma^2_\epsilon) \), \(S_i \sim N(0, \sigma^2_s) \), and \(n_i \) is the sample size of each trial, respectively.

MODEL FOR EXTERNAL VALIDATION

To emulate SEAVUE, we identified all placebo-arm participants from the three ustekinumab-related trials who were biologic-naive as the simulated adalimumab cohort. The observed CDAI reduction of the participants at week 8 are denoted as \(y_{ij}^{\text{placebo}} \), where \(k = 1, \ldots, 135 \). We then use the coefficients of model (2) to predict the adalimumab drug-attributable effect of the simulated cohort and denote it as \(\hat{\epsilon}_k \). The CDAI reduction at week 8 of each simulated adalimumab participant is calculated by \(\hat{y}_k = y_{kj}^{\text{placebo}} + \hat{\epsilon}_k \). The number of remission \(N_{\text{rem}} \) is calculated by the count of \(\text{BaselineCDAI}_k - \hat{y}_k \leq 150 \). The remission rate is calculated by \(N_{\text{rem}}/135 \).

ACKNOWLEDGEMENTS: The authors thank all the trial sponsors (Johnson & Johnson, AbbVie, UCB, Takeda, Biogen) for contributing the necessary participant-level data to carry out this study, and the participants of these studies consenting for their deidentified data to be shared in this way. They thank both the Yale Open Data Access Project and Vivli for enabling data access on a single platform. They thank Isabel Elaine Allen, Chiung-Yu Huang, and Mi-Ok Kim for biostatistical advice. They thank Cong Zhou for her contributions to earlier versions of this work.

This study, carried out under YODA Project #2018-3476, used data obtained from the Yale University Open Data Access Project, which has an agreement with JANSSEN RESEARCH & DEVELOPMENT, L.L.C.. The interpretation and reporting of research using this data are solely the responsibility of the authors and does not necessarily represent the official views of the Yale University Open Data Access Project or JANSSEN RESEARCH & DEVELOPMENT, L.L.C.

This publication is based on research using data from data contributors Johnson & Johnson, AbbVie,
UCB, Takeda, Biogen that has been made available through Vivli, Inc. Vivli has not contributed to or approved, and is not in any way responsible for, the contents of this publication.

DATA SHARING PLAN: The raw data are owned by the aforementioned trial sponsors. The data may be accessed for reproduction and extension of this work following an application on the YODA and Vivli platforms and execution of a data use agreement. The analytical code is available as supplemental data files accompanying this manuscript.
REFERENCES:

