Prioritization of new candidate genes for rare genetic diseases by a disease-aware evaluation of heterogeneous molecular networks

Lorena de la Fuente¹,²,³, Marta Del Pozo-Valero¹,², Irene Perea-Romero¹,², Fiona Blanco-Kelly¹,², Carmen Ayuso¹,², Pablo Mínguez¹,²,³#

¹Department of Genetics, Health Research Institute–Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain

²Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain

³Bioinformatics Unit, Health Research Institute–Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain

#Corresponding author: Pablo Minguez (pablo.minguez@quironsalud.es)

ABSTRACT

The screening for pathogenic variants in the diagnosis of rare genetic diseases can be now performed in all genes due to the application of whole exome and genome sequencing (WES, WGS). Yet the repertoire of gene-disease associations is not complete. Several computer-based algorithms and databases integrate distinct gene-gene functional networks to accelerate the discovery of gene-disease associations. We hypothesize that the capacity of every type of information to extract relevant insights dependent on the disease. We compiled 33 functional networks classified in 13 knowledge categories (KCs) and observed a high variability in their ability to recover genes associated with 91 genetic diseases, measured using efficiency and exclusivity. We developed GLOWgenes, a network-based algorithm that applies random walk with restart to evaluate KCs ability to recover genes on a given list associated to any phenotype, and modulates the prediction of new candidates accordingly. A comparison with other integration strategies and tools shows that our disease-aware approach can boost the discovery of new gene-disease associations, especially for the less obvious. KC contribution also varies if obtained using recently discovered genes. Applied to 15 unsolved WES, GLOWgenes proposed three new genes to be involved in phenotypes of patients with sydromic retinal dystrophies.

INTRODUCTION

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
A usual first step in Biomedicine is now to use omics to provide a first bunch of hypotheses on gene or protein associations to phenotypes that are afterwards prioritized. In this sense, rare diseases (RDs) are probably the paradigm in the application of bioinformatics tools for prioritization of gene-disease associations. They are mainly Mendelian genetic diseases and in their diagnosis it is now possible to screen the whole gene repertoire or the whole genome using Whole Exome and Genome sequencing (WES and WGS) seeking for causative variants. This extracts, for every patient, a large number of candidate variants beyond the genes already associated to the disease (1), including not only pathogenic mutations but also variants of uncertain significance and variants yet lacking of this classification. Their diagnosis needs to be boosted in order to increase the low ratio of solved cases (2). The challenge is to overcome the small sizes of the cohorts and the small percentage of cases that are expected to be explained by the new genes.

Under this scenario, several computational disease-gene association prediction methods and databases have been developed to help in the prioritization of candidate genes. They can be divided into two general classes: 1) seed-based methods, that do not have a priori information about the trait interrogated but the functional landscape of a set of genes (seeds) provided by the user (3–7); and 2) predefined disease methods (8–10), that initiate the hunt from terms defining the disease. While seed-based algorithms are more flexible in the phenotype definition, predefined-disease methods take advantage of the knowledge accumulated for the pathologies. For both, the strategy for extracting new associations can also vary (11), from using text-mining techniques (DisGeNET (8), DISEASES (9), ENSEMBLE (12)), network-based methods (ToppNet (4), GUILDify (5), SNOW (13)), machine learning methods (ProDiGe (14), Phenolyzer (10)) or algorithms based on functional similarity (Endeavour (3), ToppFun (4)). They have in common the ability to screen large datasets to extract hidden associations. These sources can be of different nature, from literature to the different flavors of omics data, including their integration (5, 7) which has been reported to augment accuracy (15, 16). On the top of this, resources like PanelApp (17) provide manually curated gene candidates for genetics diseases based on the community feedback.

A major challenge in the application of this type of resources to the diagnosis of RDs involves to strengthen the discovery in both, diseases barely studied, so without a solid knowledge background, as well as in diseases where the missing genes has less obvious relationships with the known repertoire. With this objective in mind, we compiled several types of datasets with gene and protein annotation and tested their capacity to retrieve relevant gene-disease
associations on many RDs using network biology. With the conclusions we developed a seed-based algorithm, called GLOWgenes, that is able to adapt its performance to every queried phenotype as well as to potentiate the extraction of less obvious associations. GLOWgenes has been benchmarked against current available tools and it is implemented to work integrated into a variant calling pipeline in the diagnosis of rare genetic diseases.

RESULTS

A compilation of heterogeneous gene-gene functional association networks

We wanted to build a diverse and rich gene functional information framework to be used for the prediction of new gene-disease associations. Thus, we compiled 33 publicly available sources with distinct functional information about human genes (Table S1). Of them, 22 are in a gene-gene network format (18–31) and 11 are gene annotations (32–39) that were transformed to co-annotation networks, with genes as nodes and pairwise relationships as edges (see Methods). When available, we coded the strength of the gene-gene associations using weighted edges (Table S1). We classified the 33 networks into 13 knowledge categories (KCs) covering different aspects of cell regulation and knowledge generation (Figure 1A, Table S1). KCs include: i) gene cocitation in scientific papers, ii) coessentiality as genetic interactions, iii) coexpression, iv) colocalization in cell organelles, v) protein complexes, vi) targets drug sharing, vii) shared gene functional annotation, viii) features from genomic localization over evolution, ix) shared phenotypic annotation from mouse models, x) participation in molecular pathways, xi) shared human gene phenotypes, xii) protein-protein physical interactions (PPIs), and xiii) gene regulation. Regarding the number of sources in every KC, co-essentiality with five datasets is the KC with more source contributors, and STRING (18), the database that contributes with more datasets spread over five KCs, in two of them alone (cocitations and genomic features). The networks have different sizes and shapes as shown by the number of nodes, edges and clustering coefficient (Figure 1B). The regulatory database RegNetwork (30) has the highest number of proteins, while CRISPR screenings the highest number of associations. Cocitation network from STRING stands out with the second largest number of nodes and edges, and with its connectivity based on hubs as suggested by its low clustering coefficient. A grouping based on overlapping coefficients recovers the functional associations of the networks fitting quite well our classification into KCs (Figure S1).
KCs show different capability for the recovery of gene-phenotype associations

In a guilt-by-association approach, functional networks are a useful tool to associate genes to new functions or phenotypes based on their neighbourhood (40). We aimed to assess the capability of the different KCs to recover the information from gene-disease associations. To perform this assessment, we selected 91 gene sets (or panels) used in the diagnosis genetic diseases, classified in 20 disease families, from the PanelApp (17) resource (see Methods, Table S2) and applied a random walk with restart (RWWR) model (41) to every network using a training subset with 70% of the genes. The remaining genes of the gene sets (30%) were used to validate the prediction capability of every network calculating two parameters: 1) efficiency (recall) reflecting the true associations caught between genes and phenotype, and 2) exclusivity, or capacity to recover genes others cannot, measured as the average of gene specificity (42). Both parameters are represented as the average of a 20 times performance. For every KC we select a single individual network as the best representative based on their area under the precision-recall-gain (AUPRG) (43), (see Methods). This selection varies for every disease, particularly in regulation networks (Figure S2).

To compare KCs, the efficiency and exclusivity of their best performing networks were calculated at the n-top, taking n as the number of genes in the input disease panel. In a general view, KC efficiency varies substantially even within diseases of the same family (Figure 2A). In Figure 2A KCs are sorted by their overall performance. Generally, phenotype and cocitation KCs achieve the best performance, although all KCs show alternatively a high relevance in particular diseases (Figure S3). Some KCs work well in specific disease families: complexes in ciliopathies (Wilcoxon signed-rank test, WST, p-value=6.08e-03), drug sharing in tumour syndromes (WST, p-value=6.01e-04) or coessentiality in metabolic disorders (WST, p-value=2.31e-03) (Figure 2A, Figure S4). Remarkably, there is a high intra disease family variation with KCs outperforming the general trend for particular diseases (Figure S5). A focus on the efficiency for four distinct diseases (pilot diseases) accentuates the differential importance of specific KCs (Figure 2B).

We also calculated the exclusivity of KCs recovering gene-disease associations at n-top to measure their capacity to detect genes uniquely. The scenario here is much more diverse than the observed with the efficiency, there are no KCs that concentrate the exclusivity but all are important in almost every disease family (Figure 2C, Figure S6). Interestingly, some KCs with low and medium general recall, as regulation or mouse phenotypes (Figure 2A), increase their importance in exclusivity having third and fourth best general performance respectively (Figure
2C). On the other hand, in terms of exclusivity other KCs are globally downgraded, as the case of PPIs, falling from 4th to 11th place (Figure 2C).

Figure 2D displays a close look into the efficiency and exclusivity of KCs in the recovery of genes associated with our four pilot diseases. We observe no clear correlation between efficiency and exclusivity, instead we found several KCs with very low efficiency but high exclusivity.

The history of the knowledge acquired on a disease influences KC contribution to the recovery of disease associated genes

Since the discovery rate of gene-disease associations can vary over the years depending on several factors (disease prevalence, genetic heterogeneity or scientific/monetary efforts), we hypothesize that the knowledge accumulated on each disease at the moment of the analysis can be also an aspect to be taken into account in the gene discovery process. Thus, we tested whether the contribution of KCs in recovering genes for a particular disease changes if time is also considered. Thus, using 246 gene sets describing diseases and phenotypes from DisGeNET (44) (see Methods) we compared KCs contribution using: 1) a random cross-validation (30% of the genes), and 2) a validation on recently discovered genes (time-aware validation) (Figure 3A). The comparisons were made using an integration score that considers efficiency and exclusivity (see Methods).

Using the time-aware approach we observe a strong decrease in the contribution of the KC cocitation (WST, p-value = 3.21 e-25) (Figure 3B). Same trend is reported for the KCs functional annotation and drug sharing (WST, p-values = 5.22 e-05 and 2.71 e-09 respectively). On the other hand, other KCs like regulation and coessentiality increase their capacity to detect recent gene-disease associations (WST, p-values = 4.42 e-23 and 1.53 e-14 respectively). To illustrate these results, we selected four DisGeNET gene sets with most dramatic changes in KCs contribution (Figure 3C and Methods). As shown before, cocitation displays a severe decrease in its performance for all four diseases. For the rest of the KCs, the patterns on time-aware validation are highly variable. Thus, new genes detected for attention deficit hyperactivity disorder seem to be caught mainly by KCs coexpression, coessentiality, colocalization and drug sharing. In coronary heart disease, with a validation cut-off at year 2012, cocitation still has a predominant role followed by protein complexes and colocalization. In prostate carcinoma, coessentiality, regulation and information from canonical pathways overtake cocitation whose influence using validation on random genes was 50% of the total. The case of toxic hepatitis is
specially striking, conserving the new pattern the same trend but with a significant increase of regulation as KC with more potential to detect late insights (Figure S7).

A disease-aware algorithm to integrate several sources of knowledge

As the contribution of KCs in the recovery of causing genes is disease specific, we developed a novel algorithm, named GLOWgenes, that adapts its performance to the special capabilities of every KC to recover genes associated with specific phenotypes. Thus, given a gene set associated to a particular disease (GAD), or any trait of interest, GLOWgenes applies two steps in parallel (Figure 4): 1) evaluates each network (N=33) performance in recovering genes from the gene set (step repeated 20 times), where the algorithm performs a RWWR for all the networks using 70% of the genes as seeds, calculates KC weights based on their efficiency and exclusivity using the rest of the genes from the gene set (test genes), and chooses best performing network of each KC; and 2) rank genes for every KC (using best network from each selected in step 1). If provided, seeds and test genes can also be defined using a cut off defined by the year of publication of the gene-disease associations. Finally, GLOWgenes uses KC weights (step 1) to modulate the gene rankings (step2) and produces a single gene ranking where genes in the GAD have a value of zero and the rest are sorted in descending order with 1 as the most associated.

We compared our disease-aware integration strategy with two alternative approaches widely used for disease gene candidate prediction (Figure 5A): 1) integration of datasets in a composite network previous to the gene prioritization (15, 45, 46); and 2) combination of multiple rank lists using order statistics (3, 47, 48), represented by two methods, data fusion (47) and robust rank aggregation (3, 48). We applied these three methods, and ours, to disease gene sets from PanelApp. In order to evaluate the predictive capability in a gene-discovery scenario, we used as validation sets, their collection of candidate genes, called red genes (RGs). A total of 63 PanelApp gene sets, with more than 10 RGs, were used. Recall was calculated at various n-top genes. Using the same input information for all four algorithms (see Methods), results show that our disease-aware integration approach achieves the best average performance across disease gene sets, with a mean AUPRG=0.92 (Figure 5B) outperforming the rest data integration approaches together in 52% of the diseases looking only at the first 16 predicted genes (n-top=16), and in 80% of the diseases considering the first 256 genes (n-top=256) of the rankings (Figure 5C). The composite network performs second in the global ranking with 10 and 32 diseases with the best and second best recalls considering the same
number of genes than the validated set (Figure S8).

Comparative assessment of disease gene candidates prioritization methods

To extend the evaluation of GLOWgenes beyond the integration method, we compared its performance against other tools that predict disease-gene associations using a list of genes as seeds and do not need a preselection of candidates, here called seed-association (SA) methods. In addition, we introduced as external references, methods that predict associations using disease terms instead of lists of genes, called here predefined disease (PD) methods (9, 44, 49). In total, we selected six SA methods, including: DIAMOnD (6), Guildifyv2.0 (5), ToppNet (4, 50), ToppGene (4, 51), Endeavour (3) and GeneMANIA (7), and three PD methods, including: DISEASES database (9), BEFREE (44, 49) (as extracted from DisGeNET) and predictions from DisGeNET (see Methods, Table S3-4). First we tested the ability to recover genes with well supported evidence in their association to the disease, represented by the PanelApp Green-Ambar validation genes (GAG) in our four pilot diseases. Figure 6A shows that PD methods in general outperform the SA methods over the four diseases with better recall levels at different number of top genes selected. Only GLOWgenes has similar or better (cardiomyopathies) recall than DisGeNET, BEFREE and DISEASE predictions, and performs widely better than its counterpart methods with only ToppGene (4) reaching similar recall levels in severe microcephaly (Figure 6A).

Next, a similar benchmark was carried out using PanelApp RGs from the same diseases as a proxy to test the ability to catch new gene-disease associations beyond the current knowledge. We observe a general decrease of the recall obtained by all methods, with SA and PD methods performing similarly (Figure 6B). In this scenario, GLOWgenes outperforms all other methods in three out of four evaluated diseases and gets similar recall levels in the case of hearing loss. After GLOWgenes, BEFREE, DisGeNET, GeneMANIA, ToppGene and Endeavour ranked in alternating positions. GLOWgenes is also the method that more unique genes capture (Figure S9). Among all considered tools, only 3 of them provide programmatic access options for automatic task execution (NetCombo from GUILDIFY2.0, DIAMOnD and GeneMANIA). We compared their performance using RG validation sets for 63 panelApp disease gene sets with GLOWgenes obtaining the best recall across diseases globally (Figure S10).
Gene discovery on undiagnosed cases with retinal dystrophies using GLOWgenes

A major application of methods for gene-phenotype discovery is to propose new genes implicated in rare genetic diseases. GLOWgenes is adapted to annotate a list of variants provided in table format as it is coupled to our reanalysis pipeline (52). Here we have applied GLOWgenes for the discovery of new genes involved in syndromic forms of retinal dystrophies (sRD). As a proof of concept, 15 unsolved cases with sRD and WES available from the cohort of the Fundación Jiménez Díaz University Hospital (FJD-UH, Madrid, Spain) (2) were analyzed. These samples were previously analyzed at the FJD-UH with no variants found fitting the phenotype in known sRD associated genes (sRD-virtual-panel, 198 genes used in the diagnostic protocol for sRD, Table S5). After variant calling (52) and filtering by: i) quality (Q=100, DP=10), ii) predicted pathogenicity (CADD>15), and iii) allele frequency (gnomADg_AF_POPMAX<0.05/NA), we obtained an average of 1562 variants per sample in around 1000 genes without previous association to sRDs. GLOWgenes was run using the sRD-virtual-panel as seeds to provide a ranking of genes that was used to prioritize the filtered variants of each case.

Thus, we yielded a total of 3 candidate genes holding mutations that fit the phenotype in 2 sRD samples when interrogating the top 300 predicted gene list (Table 1). We found two variants in compound heterozygosis in patient RP-0758. First, a missense pathogenic variant in gene SHH previously reported to produce phenotypes Holoprosencephaly 3, Microphthalmia with coloboma 5, Schizencephaly and Single median maxillary central incisor and no clear inheritance mode (source: OMIM database). And second, a stop gain pathogenic variant in gene DNAH5, a dynein involved in Ciliary dyskinesia, primary, 3, with or without situs inversus and reported as autosomal recessive (source: OMIM database).

In a second family (Table 1) we found a likely pathogenic variant also in heterozygosis in gene GLI1, associated to two types of polydactyly (phenotype present in our patient) and reported as autosomal recessive (source: OMIM database).

Regarding the contribution of KCs in the prioritization of the three genes proposed, reporting only those that reach >50% of the total score (Figure S11), SHH was found mainly by the signal provided by cocitation (46%) and mouse models (22%) networks. DNAH1 by the cocitation (33%), coexpression (29%) and mouse models (19%) networks. And GLI1 by the cocitation (26%), PPIs (19%) and regulation (10%) networks.
DISCUSSION

Around 50% of patients with RDs do not have an accurate diagnosis (53) and there is an urgent need to reduce this gap (54). One of the limitations is the lack of certainty about the clinical significance of the genomic variation data (1), with 40% of the variants annotated as of uncertain significance in ClinVar database (54). If all genes were suspicious, a regular WES analysis may detect around 20000 single nucleotide variants (55), 200 of them very rare (MAF<0.1%) and an average of 30 not detected in any other individual (56). All these numbers describe a scenario where the use of WES and WGS to diagnose RD patients with causative variants outside the current knowledge needs the application of prioritization algorithms. Current major national and international initiatives focus on these two sequencing techniques (56) in order to assume discovery.

The methods for the prediction of new gene-disease associations evolved from those developed to predict gene and protein function (57, 58) with social network (59) and data integration at the foundations (60). The needs are focus now on the development of specific and accurate resources that can overcome the limitations of every area of application. Here, RDs represent a quite particular challenge. They are over 7000 diseases with different levels of genetic and phenotype heterogeneity. They are mainly Mendelian, so if the variant is in the coding DNA, we search for a single gene. Finally, they generally have small cohorts available so exact genotype and phenotype associations can be difficult to find. Thus, RD diagnosis can become a “needle in a haystack” task where the solution is still far connected to current knowledge. In consequence, to augment their efficiency in the difficult cases, the gene-disease prediction methods are encouraged to use new and various types of functional annotations and combine them accurately (15, 16, 61, 62). We first confirmed that different types of gene-gene functional association networks had different capabilities in recovering known genes associated to a large collection of RDs. Regarding efficiency, the co-annotation network using phenotypes as well as the cocitation network using text-mining data from STRING are the best performing sources in general, with particular diseases having alternative other important sources. The differences were specially evident if considering the genes detected uniquely by a source, what we called exclusivity (Figure 2). This fact might be of essential importance considering its application to Mendelian diseases.

With needs, limitations and preliminary results in hand, we developed GLOWgenes (www.glowgenes.org), a seeds-based algorithm to prioritize candidate genes with main application on the diagnosis of RD using WES and WGS. GLOWgenes applies the guilt-by-
association principle using the RWWR method in multiple networks as different layers of functional information (62–64), preserving not only the nature of the associations but also the topology of the networks. In addition, we tested our integration method using well known representatives of this kind of approaches with good results (Figure 3).

A second benchmark was performed comparing GLOWgenes with state-of-the-art tools to predict gene-disease associations based on seeds. Here, popular PD tools were used as external references. Using well known gene-disease associations as testers (GAGs), PD methods achieved more prediction power than SA algorithms, with GLOWgenes behaving better than SA tools and similarly to PD tools (Figure 6A). If a more real discovery scenario is considered, that is, testing the ability to recover candidate genes (RGs), the difference in the performance of SA and PD methods is less evident, with GLOWgenes also at the top performers. The main difference between PD and SA tools is that PD methods cannot be easily adapted to new, or a combination of, phenotypes as required for instance in genetic syndromes (65). In fact, most PD algorithms are based on text-mining approaches which rewards with a good recall but limit their ability to go beyond the current knowledge. In this work, we provide two results that suggest that text-mining may mask interesting RD gene candidates. First, we observed a dramatic reduction of the importance of text-mining when trying to highlight genes recently discovered, using our time-aware partition strategy, in comparison to recover genes selected randomly (Figure 3). Second, if the efficiency is measured on RGs, the methods based on text-mining, mainly PD methods, reduce their performance (Figure 6B). Another interesting finding is that, in most cases, SA methods aggregating several functional sources (GLOWgenes, GeneMANIA, ToppGene and Endeveour) performed better than network based-approaches using only PPI information (Guildifyv2.0, DIAMonD, ToppNet) (Table S3). In general we observe that GLOWgenes behaves well under any scenario tested, being also the method catching more genes uniquely. Specific caveats of this type of approaches include the overall low recall of the algorithms and the limitations of the available functional associations. In their application to the diagnosis of RDs it has to be taken into account that responsible variants may not be in the coding DNA.

Thus, the initial implementation of GLOWgenes, that we present here, is designed to be coupled to a pipeline of variant calling and annotation of DNASEq data. GLOWgenes is now serving candidate genes in the research of RDs in the FJD-UH annotating variants using our reanalysis FJD-pipeline (52). Although it first motivation is to contribute to the genetic diagnosis of RDs, GLOWgenes is a predictor of new gene-disease associations that can help in other discovery
scenarios. For instance, it has also been used in the search for genomic variants that provide susceptibility to COVID-19 (66). As a proof of concept, we provide here the results of the analysis of 15 WES of patients with syndromic retinal dystrophies. Three genes are reported here to provide new insights in two sRD cases. In the first family we suggest a compound heterozygosis involving gene \textit{SHH}, with a related phenotype and with a role in neurogenesis across the retina in zebrafish (52), and gene \textit{DNAH5}, that has been proposed as candidate for retinal dystrophies using a different method based on the aggregation of variants in non-solved cases compared to controls (1). In a second family we found a monoallelic variant in gene \textit{GLI1}, that has been previously published as explaining partially the phenotype (53). Further analysis are needed to arrive to conclusive diagnostic in both cases.

In conclusion, this work describes special needs and limitations in the prioritization of new candidate genes in the diagnosis of RDs using WES and WGS, and presents a method that is hopefully useful to reduce the diagnostic gap of this type of patients.

MATERIALS AND METHODS

Compilation of gene-gene functional associations from public sources

We gathered gene functional information from various sources (18–27, 29–39, 67) to build 33 networks of gene-gene functional interactions (Table S1). Networks were classified into 13 classes, named here knowledge categories (KCs) according to the nature of the functional information that contain (Table S1). Gene identifiers from sources were all mapped into HGNC gene symbols, excluding interactions involving genes without HGNC mapping.

Gene annotations not represented as gene or protein relationships were transformed into gene-gene co-annotation networks, describing genes (nodes) and their functional relationship (edges). Weighted edges were kept and normalized. If unavailable, edge weights are all set up to 1 (Table S1). Thus, for networks describing human gene phenotype similarity using HPO (32) and phenotype similarity using mouse orthologs from the Mouse Genome Informatics (MGI) (16) we calculated Jaccard similarity for each pair of genes sharing at least one HPO term and constructed a null distribution of Jaccard values to compute z-scores. Significant gene interactions (z-score>1.96; p-values<0.05) were selected to generate the network of phenotypes. Z-scores values were used as edge weights. Direct linking between genes sharing annotations was used for network construction for the drug-gene interaction database (DGIdb) (34) and complexes from CORUM (36). The coexpression network from COXPRESdb (19) was...
created considering gene pairs with Mutual Rank (MR) co-expression correlations under 2000. The inverse of MR was used as edge weights. ProteomeHD (24) co-expression network was filtered to contain only the top-scoring 0.5% pairwise gene co-regulations, as recommended. Coessentiality networks were derived from: i) inferred genetic interactions from CRISPR screens by Rauscher et al. (27), ii) weighted co-essentiality gene interactions obtained by Kim et al. (68) using CRISPR essentiality screens from the Avana Project (31); iii) gene fitness rank correlation coefficients calculated using two different RNAi- and CRISPR-Cas9-based screening datasets and following Pan et al. (35) processing pipeline (rank threshold = 1024; inverse rank threshold as edge weights); and iv) genetic interactions from BIOGRID database (25). Networks derived from GO annotation were constructed using semantic similarity from GOGO (37) for gene pairs sharing at least one GO term. Semantic similarity scores were used as edge weights. DoRoThea evidence levels were transformed into numeric values for regulatory network weighting normalized to 0-1 range.

Comparison of network topology and similarity measurement

Attributes from each network compiled (node size, edge number, average clustering coefficient) were calculated using the NetworkX python package.

For the comparison of the different networks, we computed edge-wise network similarity using the overlap coefficient (OC), also known as the Szymkiewicz–Simpson coefficient. OC is defined as the edge size of the union of two graphs (G1 and G2) over the size of the smaller set between G1 and G2.

Gene sets associated to diseases used in the evaluation of KCs and benchmarks

The evaluation of KCs contribution in gene recovery was performed using gene sets associated to RDs with high and moderate evidence (Green and Ambar genes, GAGs) from the Genomics England PanelApp (17). Disease-associated genomic entities such as copy number variations (CNVs) and short tandem repeats were filtered out from panels. We used PanelApp classification in disease classes to annotate panels. Panels lacking classification were manually curated by clinicians at FJD-UH.

Alternative integration strategies were benchmarked using red genes (RGs) from PanelApp, defined as disease-promising genes that need further evidence for clinical diagnosis of
diseases. Gene-disease prediction tools were benchmarked using both GAGs and RGs.

When using PanelApp gene sets, super panels (involving a mix of phenotypes) were excluded. In the case of using GAGs we selected only panels with at least 40 GAGs (91 panels). When using RGs, only panels with at least 10 RGs were considered (70 panels).

Network signal propagation

Network propagation of signal (trait or disease annotated) provided by gene sets was performed using the random walk with restart (RWWR) model proposed by Kohler et al (69) as implemented in python software NetworkX and modified to generate a degree weighted adjacency matrix for subsequent propagation in order to minimize node degree bias (avoid bias towards highly connected genes). Modification was done following the edge weight transformation proposed by (70) and used by others (71, 72). Restarting walk probability (rwp) was set up to 0.75. The convergence is decided when the probability difference between two consecutive time steps is less than 10e-6. Upon convergence, the frequency with which each node (gene) in the network has been visited is returned as a propagation score vector (S), which represents the probability of genes to be associated to the input gene set. All networks were treated as weighted, if available information, so that adjacency matrices were defined providing edge weight attributes.

Systematic evaluation of evidence networks representing heterogeneous knowledge categories

To assess the performance of a network to prioritize phenotype-associated genes we performed a 20x random sub-sampling validation. Each phenotypic gene set was randomly split into 70%/30% training/test subsets. Training genes (seeds) were then propagated in each individual network using the RWWR model and the resulting gene ranking was evaluated on test genes. Validation results were averaged over the 20 cross-validation rounds. Several metrics are calculated to assess the performance of a given network in a particular disease. Given the high imbalance nature of our dataset (high negative/positive instance ratio), the overall ranking was evaluated using the precision-recall analysis. We calculated the Precision-Recall-Gain (43) curve and its associated area (AUPRG). The network with the highest AUPRG in each KC is selected as the representative KC network and used for further analysis. To emphasize the top-ranked genes instead of testing true/false separation in the total gene ranking we also computed...
recall and gene specificity at different top-k thresholds. Recall evaluates the efficiency of networks to prioritize disease genes while gene specificity is informative of its degree of detection by particular KCs. Gene specificity was calculated for every true positive gene captured as in Martinez et al. 2008 (42). High specificity genes represent genes captured by a single KC while low specificity genes will refer to genes detected by all KCs. The overall KC specificity level was calculated by averaging gene specificity scores and summarizes the ability of a KC to detect specific disease genes, named here exclusivity.

Time-aware network evaluation

The time-aware network evaluation tests whether the contribution of KCs in recovering genes for a particular phenotype changes if time is also considered. As input, the publication year for each gene associated to the phenotype under study must be provided. GLOWgenes takes that time-sorted list of genes and evaluates each individual source of evidence (network) using a time-based validation, which relies on gene publication year to split gene sets in 70/30 train/test partitions. Older genes are used as training set to determine the ability of each network to recover the most recently discovered genes (test set). Partition publication time, metrics, and overall gene prioritization rank using time-printed mode are provided. Moreover, in time-printed mode random vs time-printed network evaluation statistics are also computed.

Gene-disease associations from DisGeNET (44) were used in the evaluation of the time-printed approach. The publication year was recovered from DisGeNET SQLite database and time-printed disease gene sets were generated based on the UMLS Concept ID (CUI) disease classification, comprising Phenotype and Disease categories. We only considered gene-disease associations from curated sources (CGI, CLINGEN, GENOMICS_ENGLAND, CTD_human, PSYGENET, ORPHANET, UNIPROT, GWASCAT, GWASDB, CLINVAR) and limited the analysis to gene sets with at least 70 genes, remaining a total of 246 disease gene sets for time-printed disease gene candidate discovery.

GLOWgenes algorithm

GLOWgenes is based on the integration of gene prioritization results from k heterogeneous knowledge categories (KCs), called here disease-aware prioritization. Gene prioritization results from each KC representative network i are integrated into an unified ranking by incorporating
ad-hoc information about their individual performance on the particular phenotype/disease under study.

The strategy involves three main steps: Step 1. RWWR propagation of \(n \) phenotype/disease-related genes on each individual network \(i \), which results in a gene ranking representing their association strength to the input set of genes; Step 2. Evaluation and selection of networks follows the steps listed in previous section:

- For each network out of the 33 considered in this analysis, we performed a 20x random cross-validation of phenotype-associated input genes (70/30 training/test). For each partition:
 - The training subset is propagated using a RWWR model.
 - Area under the precision/recall gain curve is calculated.
- Networks with the highest mean AUPRG at each KC are selected as KC representative networks and used for further analysis.
- KC exclusivity and efficiency (recall) are calculated at different top-k for each representative KC network.
- Integration scores are calculated as the product of efficiency and exclusivity for each KC as a measure of ability to recover input disease-associated genes.

Step 3. RWWR Scores (step 1) for representative KC networks (step 2) are integrated using the integration scores (step 2). In order to allow unbiased integration of multiple networks, gene scores from network \(i \) are normalized by subtracting the mean of the scores of all nodes from the score of node \(n \) and then dividing by the standard deviation of the distribution. Normalized z-scores for representative KC networks are then merged in a k-n matrix (\(k = \text{KCs}; n = \text{genes} \)) and score imputation is applied for missing values. Disease-aware integration of the k KC representative networks is performed by weighing gene z-scores each network using the performance factor obtained from the evaluation of \(i \) network and subsequent combination of ranks by averaging these weighted scores. It generates a final overall gene ranking. GLOWgenes is available at www.glowgenes.org.

Evaluation of alternative approaches for data integration in gene discovery

We compared the integration approach used by GLOWgenes (disease-aware integration) to two
common strategies for network-based data integration in gene discovery: fusion of rankings generated by individual modeling of datasets by order statistics (3, 47, 48) and construction of a composite network for subsequent modeling (15, 45, 46). Regarding the first, we evaluate two rank aggregation algorithms based on order statistics: a) The optimization of the Stuart algorithm (73) by Aerts (47, 63) and implemented in Endeavour (3), and b) the Robust Rank Aggregation (RRA) algorithm (48). We run implementations of both algorithms using the RobustRankAggreg R package. For network integration strategy, we constructed a composite network using our 33 defined networks by adapting the most optimal configuration of a composite network described by Huang et al. (15). Selection of edges supported by at least two sources from different KCs generated a composite network containing 4509215 edges and 19302 nodes. Alternative strategies were run across 63 PanelApp GAG gene sets and validated in RG genes. Recall-at-k was measured to quantify what fraction of all the disease genes are ranked within the first k predicted genes (k = 8, 16, 32, 64, 128, 256, 512). Best integration methods are selected at recall-at-n (validation set size). Mean area under the Precision-Recall curve (AUPRG) across gene sets was also calculated for each approach.

Benchmark of tools for the prioritization of new disease-related genes

For benchmark, we selected tools that met four criteria: a) accessible, b) updated since 2016, c) predicting gene-disease associations from an user-input set of genes previously linked with a phenotype (seeds), d) no need of an implicit set of user-input candidates genes to operate. A total of six seed-association tools were selected and run across considered disease gene panels with default parameters: Endeavour using whole-genome approach (3), ToppNet algorithm using ToppGenet for selection of first neighboring genes in PPI as candidates (ToppGenet - network based) (4, 50), ToppGene algorithm using also ToppGenet for candidate selection (ToppGenet - functional similarity) (4, 50), NetComb-GUILDIfy (5), DIAMOnD (6) version implemented in GUILDIFY2.0 web server, and GeneMANIA using its own API (74). In all cases a ranked list of gene candidates was derived for performance evaluation. GeneMANIA, DIAMOnD and NetCombo-GUILDIfy provide programmatic access so they were run across 63 PanelApp disease gene sets using RGs as validation sets. Mean recall and error at different top-k was calculated for each approach. The mean area under the Precision-Recall curve (AUPRG) was computed for GLOWgenes and GeneMANIA but not for DIAMOnD and NetCombo-GUILDIfy since they just returned the 500-top rank list of gene candidates.

We also included pre-defined disease methods integrating gene-disease associations:
DISEASES (9) and DisGeNET (44). In the case of DisGeNET, we separate predictions/inferences from curated sources in order to avoid knowledge bias during benchmark. We performed a recalculation of gene-disease association scores from DisGeNET pre-calculated data by removing the proportional score associated to curated evidences, generating our DisGeNET-noncurated dataset. Moreover, we evaluated just DisGeNET predictions by considering only associations derived from biomedical literature using BEFREE (DisGeNET-BEFREE). DISEASES, DisGeNET-noncurated and DisGeNET-BEFREE pre-computed datasets were interrogated for each evaluated PanelApp disease by selecting the gene-disease associations involving disease terms enriched in the corresponding PanelApp gene set (FDR Fisher-test <2e-16). To make seed-association and pre-defined disease comparable we also filtered out the computed rank list by removing genes contained in the PanelApp gene set under study (used as seeds for seed-associated methods).

Main characteristics and evidence sources for both seed-association and pre-defined disease methods are listed in Tables S2 and S3. All methods were evaluated and compared across four selected diseases using both GAG and RG genes as validation sets. The selected diseases were: cardiomyopathies including childhood onset, hearing loss, retinal disorders and severe microcephaly. Using the complete set of diseases was not feasible since most of the tools do not provide programmatic access.

Detection of variants fitting patient phenotype in GLOWgenes candidates using WES

We considered a total of 15 whole-exome sequencing tests (WES) from patients with syndromic retinal dystrophy (sRD) phenotypes for GLOWgene clinical application. All cases have negative genetic diagnosis after clinical analysis of pathogenic variants at known sRD-associated genes. We used an in-house pipeline for the detection and annotation of germline variants(52), available here: https://github.com/TBLabFJD/VariantCallingFJD. Variants were filtered by quality (Q=100, DP=10), predicted pathogenicity (CADD > 15) and low allele frequency (gnomADg_AF_POPMAX < 0.05 or NA). Selected pathogenic WES variants were prioritized using GLOWgenes sRD gene candidate ranking. To generate this sRD gene candidate ranking we run GLOWgenes using as seeds the sRD virtual gene panel used for diagnosis at FJD-UH, which contains 198 genes. Clinical diagnosis was assessed by analyzing GLOWgenes-detected sRD gene candidates holding pathogenic variants in WES cases and considering information about the familiar phenotypic pattern and segregation of each case, when available. GLOWgenes-detected gene candidates overlapping sRD phenotype were classified as
candidates fitting phenotype and selected for further experimental validation.

Relative contribution of each KC to the association to known sRD genes

The relative contribution of each KC to the association to known sRD genes was calculated for each WES-supported novel rRD candidate and represented in pie charts using the GLOWgenes-normalized RWWR propagation score for each KC representative network before KC integration by GLOWgenes.

Ethics Approval and Consent to Participate

The project was reviewed and approved by the Research Ethics Committee of UH-FJD (PIC086-19_FJD) and fulfills the principles of the Declaration of Helsinki and subsequent reviews. All patients signed an informed consent before participating. All samples included in this work were pseudonymized.

Funding

This work was supported by Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (PI18/00579, IMP/00019), the Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036). L.d.l.F. was supported by the platform technician contract of ISCIII (CA18/00017). P.M. is supported by a Miguel Servet program contract from ISCIII (CP16/00116, CPII21/00015).

Data Availability Statement

GLOWgenes is available at https://github.com/TBLabFJD/GLOWgenes including code, gene sets used and networks.

Tables and Figures
Table 1: Syndromic Retinal Dystrophy candidate genes captured by GLOWgenes that hold pathogenic variants and fulfill phenotype in cases analysed by WES. Pathogenity is coded according to ACMG guidelines as: 1 (benign), 2 (likely benign), 3 (uncertain significance), 4 (likely pathogenic) and 5 (pathogenic).

<table>
<thead>
<tr>
<th>Family</th>
<th>Gene</th>
<th>Variant</th>
<th>Consequence</th>
<th>CADD</th>
<th>Max POP Freq</th>
<th>Pathogenity</th>
<th>Genotype</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-0758</td>
<td>SHH</td>
<td>NM_000193.2:c.676G>A</td>
<td>Missense variant</td>
<td>27.3</td>
<td>8.8E-05</td>
<td>5</td>
<td>0/1</td>
<td>AD</td>
</tr>
<tr>
<td>RP-0758</td>
<td>DNAH5</td>
<td>NM_001369.2:c.13486C>T</td>
<td>Stop gained</td>
<td>59</td>
<td>1.34E-04</td>
<td>5</td>
<td>0/1</td>
<td>AR</td>
</tr>
<tr>
<td>RP-1854</td>
<td>GLI1</td>
<td>NM_005269.2:c.762C>T</td>
<td>Splice region variant</td>
<td>15.05</td>
<td>6.67E-05</td>
<td>4</td>
<td>0/1</td>
<td>NA</td>
</tr>
</tbody>
</table>

Figures

Figure 1. Composition of knowledge categories (KCs) and their network properties. A) 13 KCs composed by 33 datasets. The pie chart indicates the number of source contributors by KC, which varies from 1 (drug sharing, cocitation and mouse models) to 5 (coessentiallity). B) Network attributes of the 33 networks generated from the compiles datasets. Here we present number of nodes, number of edges, the mean of their clustering coefficient and whether edges are weighted or not. Color code is assigned by their KC.

Figure 2. Disease-dependent performance of heterogeneous knowledge categories (KC) to recover gene-disease associations. A) Heatmap representing the efficiency of every KC (x axis) in recovering genes in 91 disease gene sets from PanelAp (y axis). Efficiency is measured as the recall at top n (gene set size). Only genes with high and moderate evidence status (Green and Ambar) were considered. Diseases are classified in families. Disease families with only one gene set were discarded for plotting purposes (7 gene sets). Hierarchical cluster analysis at each disease family was performed to arrange diseases based on their efficiency pattern. KCs were also sorted according to median recall levels across disease gene sets. B) Efficiency ranking of KCs for four selected diseases. C) Heatmap representing the exclusivity of every KC (x axis) in recovering genes in 91 disease gene sets from PanelAp (y axis). Exclusivity is calculated as the normalized value of the average of the gene specificity of genes at top n (gene set size). For representation purposes, disease filtering and plot arrangement was done as in A. D) Scatter plot representing KC efficiency vs. KC exclusivity for 4 selected diseases.
Figure 3. Time-aware evaluation of the contribution of knowledge categories (KC) in recovering genes associated to genetic diseases. A) A time-aware evaluation approach is compared to an evaluation based on random partition of initial gene set in assessing the impact of KC contribution in the recovery of genes associated to genetic diseases. Time-aware evaluation consists in dividing the gene set in training and testing subsets based on the year that genes were associated to the disease. Training set is composed by the older genes, and the testing subset by the newest. The KC contribution is measured using the integration score, calculated as the product of efficiency and exclusivity of the KC. B) Comparison of integration scores when considering random and time-aware approaches for 246 curated disease/phenotype gene sets extracted from DisGeNET. Mean recall levels and error bars are represented. KCs are sorted based on the median of integration scores at random evaluation. D. Four disease gene sets ranked at top 10 when sorted by additive KC variation.

Figure 4. General schema of the GLOWgenes algorithm. GLOWgenes takes as input a set of genes associated to a disease (GAD) and performs two steps in parallel: 1) Step 1, the disease-aware network evaluation (red arrows), where an integration score is calculated for each knowledge category (KC). Integration scores merge efficiency and exclusivity obtained for the KC’s best performing network; 2) Step 2, the gene ranking for each KC (purple arrows), where GADs are propagated in every best performing network (Step 1) using random walk with restart (RWWR) algorithm, producing a ranking of all genes for every KC. KCs’ integration scores and KCs’ gene rankings are integrated into a GLOWgenes gen ranking as the KC performance-weighted average of normalized gene scores.

Figure 5. Benchmark of three integration approaches. A) General schema of three approaches for the integration of various datasets applied to the prioritization of phenotype-associated genes. In red, the composite network approach first merged the available networks into a composite network (1) that is subject of the modeling and scoring step (2) to generate the gene ranking. In blue, the data fusion approach that apply first modeling and scoring in every dataset (1) to merge them into a unique ranking using order statistics (2). In green, GLOWgenes approach that takes two steps, the evaluation of the performance of every network (1) and the modeling and scoring of the networks producing a ranking for each of them (2). In a third step, (1) and (2) are merged to produce a single gene ranking (3). B) Recall at various n-top of the performance of methods of data integration. Precision-Recall-Gain curve associated area (AUPRG) is shown for every method. Methods are colored based on the types of approaches describe in (A). C) Percentage of diseases (PanelApp gene sets) where every method obtained the best performance, measure at various n-top. Methods are colored based on the types of approaches describe in (A).

Figure 6. Benchmark of tools for disease gene candidates prioritization. A) Comparative evaluation of 10 tools for the prioritization of gene disease candidates using Green-Ambar gene sets (GAGs, high evidence disease-associated genes) from PanelApp across four selected diseases. Recall levels at
different n-top genes are represented. B) Same to A but using red genes from PanelApp (RGs, low-evidence disease-associated genes) as validation sets.

REFERENCES

Knowledge categories
- Cocitation (gene cocitation in scientific papers)
- Coessentiality (as genetic interactions)
- Coexpression
- Colocalization (in cell organelles)
- Complexes (protein complexes)
- Drug sharing (targets drug sharing)
- Functional annotations (shared gene functional annotations)
- Genomic localization (features from genomic localization over evolution)
- Mouse models (shared phenotypic annotations from mouse models)
- Pathways (participation in molecular pathways)
- Phenotype (shared human gene phenotypes)
- PPIs (protein-protein interactions)
- Regulation (gene regulation)