Towards estimating true cholera burden: a systematic review and meta-analysis of *Vibrio cholerae* positivity

Running title: Estimating *Vibrio cholerae* positivity

Kirsten E. Wiens¹,², Hanmeng Xu¹, Kaiyue Zou¹, John Mwaba³,⁴, Justin Lessler¹,⁵,⁶, Espoir B. Malembaka¹,⁷, Maya N. Demby¹, Godfrey Bwire⁸, Firdausi Qadri⁹, Elizabeth C. Lee¹, Andrew S. Azman¹

¹ Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
² Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, USA
³ Centre for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia
⁴ Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
⁵ Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
⁶ Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
⁷ Center for Tropical Diseases and Global Health (CTDGH), Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
⁸ Division of Public Health Emergency Preparedness and Response, Ministry of Health, Kampala, Uganda
⁹ Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Corresponding author
Andrew S. Azman, PhD
Associate Scientist
Department of Epidemiology
Johns Hopkins Bloomberg School of Public Health
615 N. Wolfe Street
Baltimore, MD 21205
azman@jhu.edu

Alternative corresponding author
Kirsten E. Wiens, PhD
Assistant Professor
Department of Epidemiology and Biostatistics
Temple University College of Public Health
1301 Cecil B. Moore Avenue, Ritter Annex 911
Philadelphia, PA 19122
kirsten.wiens@temple.edu

Key points
By pooling results from 113 studies and adjusting for diagnostic tests and study methods, we find that approximately half of suspected cholera cases represent true Vibrio cholerae infections, though this fraction varies widely across epidemiological settings.

Keywords
cholera, Vibrio cholerae, diagnostic test, suspected cholera, confirmed cholera
Abstract

Background: Cholera surveillance relies on clinical diagnosis of acute watery diarrhea. Suspected cholera case definitions have high sensitivity but low specificity, challenging our ability to characterize cholera burden and epidemiology. Our objective was to estimate the proportion of clinically suspected cholera that are true *Vibrio cholerae* infections and identify factors that explain variation in positivity.

Methods: We conducted a systematic review of studies from 2000-2021 that tested ≥10 suspected cholera cases for *V. cholerae* O1/O139 using culture, PCR and/or a rapid diagnostic test. We estimated diagnostic test sensitivity and specificity using a latent class meta-analysis. We estimated positivity using a random-effects meta-analysis, adjusting for test performance and study methodology.

Results: We included 113 studies from 28 countries. *V. cholerae* positivity was lower in studies with representative sampling and lower minimum ages in suspected case definitions. After adjusting for sampling methods, case definitions, and tests, on average half (49%, 95% Credible Interval: 43%-54%) of suspected cases represented true *V. cholerae* infections, although variation across studies was high. Odds of a suspected case having a true infection were 1.64 (95% Credible Interval: 1.06-2.52) times higher when surveillance was initiated in response to an outbreak than in non-outbreak settings.

Conclusions: Burden estimates based on suspected cases alone may overestimate the incidence of medically attended cholera about twofold. However, accounting for cases missed by traditional clinical surveillance is key to unbiased overall cholera burden estimates. Given variability between settings, assumptions about positivity, which are necessary without exhaustive testing, should be based on local data.
Introduction

Current estimates of cholera burden rely on clinical diagnosis of individuals with acute watery diarrhea (i.e., suspected cholera cases) [1,2]. It is unclear how many *Vibrio cholerae* O1/O139 (serogroups that cause current epidemics) infections get missed due to mild symptoms and other barriers to care-seeking or how many get overcounted due to non-specific suspected case definitions. In Bangladesh, previous studies estimated that asymptomatic and unreported infections account for at least half of *V. cholerae* infections [3–5]. Meanwhile, the proportion of suspected cholera cases that represent laboratory-confirmed infections varies widely between studies, from 6% of those tested during routine surveillance in Bangladesh [6] to 72% of those tested during the initial phase of the 2017 outbreak in Yemen [7].

This wide variation in positivity may be caused by differences between sites in *V. cholerae* epidemiology [8], epidemiology of non-cholera diseases causing the same clinical symptoms [9–12], and variations in diagnostic tests and case definitions [13–15]. Typical suspected cholera case definitions have been shown to have high sensitivity but low specificity [14] and can vary by location across seasons [13]. Culture-based methods or PCR are the gold standards to confirm cholera in clinical samples and generally have high specificity. Lateral flow rapid diagnostic tests (RDT) may also be used and can be as sensitive as PCR [16]. Although recommended by the Global Task Force on Cholera Control (GTFCC) [17], systematic microbiological confirmation in surveillance is not always implemented, particularly during outbreaks when resources are limited [8].

Understanding *V. cholerae* positivity among clinical cases could provide insights needed to improve laboratory testing strategies and allow for better estimates of cholera burden and risk, which are often used to allocate cholera resources, including oral cholera vaccines. We sought to address this knowledge gap by modeling the relationship between clinically suspected and laboratory confirmed cholera. Specifically, we aimed to estimate the proportion of
suspected cholera cases that represent true *V. cholerae* O1/O139 infections and identify factors that explain variability in positivity across sites.

Methods

Terminology

We focused on *V. cholerae* O1 and O139 because these are the serogroups that are responsible for the current 7th pandemic and the only ones known to lead to large outbreaks in humans [18]. These are also the serogroups that are targeted by each of the commonly used *V. cholerae* diagnostic tests (culture, PCR, RDT). Throughout this manuscript, we refer to the proportion of suspected cholera cases that represent true *V. cholerae* O1/O139 infections as “*V. cholerae* positivity” or “cholera positivity”. In addition, since the available data did not allow us to evaluate performance of multiple RDTs, we refer to RDT as any rapid diagnostic test for *V. cholerae* O1/O139 and do not distinguishing between different RDT manufacturers or whether the RDT is enriched/direct swab RDT or stool RDT.

Systematic review

We searched PubMed, Embase, Scopus, Google Scholar and *medRxiv* on October 16, 2021 using search provided in the Supplementary Methods. We included studies that: 1) collected human samples, 2) reported the number of suspected and confirmed cholera cases in the sampling frame, 3) used culture, PCR, and/or RDT to test suspected cases for cholera, and 4) had at least one suspected case sample collected on or after January 1, 2000. We excluded studies that: 1) used a case definition not specific for suspected cholera (i.e., we accepted non-bloody watery diarrhea, acute watery diarrhea, or simply suspected cholera but not diarrhea, acute diarrhea, or acute gastroenteritis), 2) sampled only special populations (i.e., people living with HIV or cancer), 3) selected suspected cases based on epidemiological link to other cases...
or environmental sources, 4) tested fewer than 10 suspected cases, 5) were reported in 129 languages other than English, French, Spanish, and Chinese.

Titles, abstracts, and full texts were uploaded to Covidence, a web-based screening tool (https://www.covidence.org/), and were assessed independently by two of the reviewers (ASA, ECL, HX, KEW, KZ, MND) for inclusion. Conflicts were resolved either by a third reviewer or through consensus/discussion. Data were extracted from included studies in a shared spreadsheet (Supplementary Data 1). The key extracted items included study timeframe and location, surveillance type (routine, outbreak, post-vaccination, or hybrid), case definition of suspected cholera (including age constraint and whether dehydrated or hospitalized, if provided), test method(s), sampling strategy for the test (all suspected cases, systematic or random sampling, convenience sampling, or unreported), number of tested and confirmed suspected cases, among other sample characteristics, if included. If the surveillance contained multiple timeframes, tested samples with multiple tests, or reported stratified results, we extracted the data separately into different rows in the spreadsheet.

To identify overlapping samples, we manually reviewed all studies with overlapping timeframes by country. We excluded studies that had shorter timeframes, fewer suspected cases tested, less representative sampling methods, fewer confirmation tests, or reported positive results by two tests but did not disaggregate. Within studies, when suspected and confirmed cases were stratified multiple ways, we included the stratification by surveillance type if available, followed by age, antibiotic use, dehydration status, year, geography, or sex, in that order. When studies used multiple RDTs, we included results for Crystal VC (Arkay Healthcare Pvt. Ltd, Gujarat, India) and direct rapid tests (as opposed to rapid tests performed after an enrichment step) because these were the most common.

Data analysis

Estimating sensitivity and specificity of cholera confirmation tests
We constructed a latent-class model to assess sensitivity and specificity of culture, PCR, and RDT, assuming none had perfect performance. We fit a hierarchical conditional dependence model, similar to that proposed by Wang et al., which takes into account potential pairwise dependence between the tests that could occur if the tests have reduced performance for similar reasons [19]. We performed inference in a Bayesian framework using Just Another Gibbs Sampler (JAGS) through the rjags package in R [20,21]. We pooled estimates across four published studies that reported cholera confirmation results for all three test methods [16,22–24]. We used uninformative prior distributions on sensitivity and specificity of each test with a lower bound set based on plausible values from the literature (Table S1). We ran 4 chains of 100,000 iterations and assessed convergence using the Gelman-Rubin R-hat statistic.

Estimating V. cholerae positivity and sources of heterogeneity

We pooled estimates of V. cholerae positivity across all studies using a meta-analysis with hierarchical modeling, adjusting for sensitivity and specificity of the diagnostic tests as well as study methodology and setting (see Supplementary Methods for the full statistical model). We used the same statistical model to examine factors associated with variation in positivity. To examine between- versus within-study heterogeneity, we calculated the I^2 statistic [25] with

$$I^2 = \frac{\tau^2}{\tau^2 + \nu}$$

where τ^2 was between-study heterogeneity or $\sigma_{logit(p_{pos})}$ following [26]. We calculated the within-study variance, ν, [27] as:

$$\nu = \frac{(k - 1) \sum \omega_i}{(\sum \omega_i)^2 - \sum \omega_i^2}$$

where k was the number of studies or observations included in the meta-analysis, and $\omega_i = 1/\nu_i$ where ν_i was the variance of the proportion positive by culture, PCR or RDT within each.
study/observation. When multiple tests were used in a study, we used the maximum variance estimate across the tests.

Data availability

All input data and analytical code are available at https://github.com/HopkinsIDD/cholera_positivity. This study was approved by the Johns Hopkins University Institutional Review Board and Temple University Institutional Review Board.

Results

Study characteristics

We identified 125 studies that met our inclusion criteria (Figure 1). Of these, 113 studies contained non-overlapping samples and were included in our analysis dataset (Figure 1). The non-overlapping data came from 28 countries and were reported at different geographic levels, including the country level (n=38 study locations) and first (n=57), second (n=76), and third administrative levels (n=34) (Figure S1). Data were from 1992 through 2019 with most data coming from 2015—2019 (n=67 study-periods), followed by 2010—2014 (n=45), 2005—2009 (n=32), and 1997—2004 (n=29) (Figure S2). Most studies were conducted in South Asia and West, Central, and East Africa, with additional studies from Haiti, Yemen, Iraq, Iran, Laos, Vietnam, Papua New Guinea, and the Philippines (Figure S1).

Most of the data were from surveillance studies (77%), followed by diagnostic test accuracy studies (15%) and vaccine effectiveness studies (7%) (Table 1). Thirty percent used high-quality sampling methods (i.e., tested all suspected cases, a random sample, or systematically selected every nth suspected case), while the remaining 70% used convenience sampling or did not report the sampling approach (Table 1). Even though most studies did not include V. cholerae positivity disaggregated by individual-level characteristics, 28% reported the
proportion of suspected cases under age five, 8% reported the proportion severely dehydrated, 8% reported the proportion on antibiotics, and one study reported all three (Table S2).

V. cholerae positivity in unadjusted data

We found that reported *V. cholerae* positivity varied by study methodology. Median positivity was 36% by culture, 37% by PCR, and 56% by RDT, with substantial overlap between distributions (Figure 2A). Positivity was higher across studies that used low quality or convenience sampling methods (40%) compared to those that used high quality or representative sampling (33%) (Figure 2B). Positivity increased with higher minimum ages in suspected cholera case definitions (Figure 2C), and we found a modest negative correlation between positivity and proportion of suspected cases under age five (Spearman $r = -0.51$; 95% Confidence Interval: -0.72 to -0.21) (Figure S3A).

Unadjusted positivity was higher when surveillance was initiated in response to an outbreak (median of 45%) compared to situations where surveillance was routine or post-vaccination (median of 35%) (Figure 2D). We found limited evidence for differences by mean annual suspected case incidence rate in countries where these estimates were available (Figure S3B), though this result should be interpreted with caution because incidence rates are for 2010-2016 [2] which is not the same timeframe as each study.

We found a modest positive correlation between positivity and the proportion of suspected cases severely dehydrated (Spearman $r = 0.52$; 95% CI: 0.01 to 0.90) (Figure S3C). While not statistically significant, we found a weak negative correlation between positivity and the proportion of suspected cases that had received antibiotics prior to testing (Spearman $r = -0.46$; 95% CI: -0.84 to 0.13) (Figure S3D).

Adjusted underlying V. cholerae positivity
Since different imperfect diagnostic tests were used to confirm *V. cholerae* O1/O139, we adjusted positivity estimates from each study to account for test performance. To estimate the average performance of each type of diagnostic test, we pooled estimates of sensitivity and specificity across four studies that reported detailed results for all three tests (see Methods). This included data from Bangladesh [24], South Sudan [16], Kenya [22], and Zambia [23]. We estimated an average sensitivity of 82.0% (95% Credible Interval: 37.5-98.7) and specificity of 94.3% (95% CI: 81.5-99.6) for culture, an average sensitivity of 85.1% (95% CI: 53.6-98.9%) and specificity of 94.2 (95% CI: 81.8-99.7) for PCR, and an average sensitivity of 90.4% (95% CI: 55.2-99.5) and specificity of 88.9% (95% CI: 54.9-99.4) for RDT (Figure 3A, Table S3).

After adjusting for diagnostic test performance (see Methods), we estimated that 49% (95% Credible Interval: 43%-54%) of suspected cases tested were true *V. cholerae* O1/O139 infections (Figure 3, Figure S4, Table S4). This estimate remained constant after additionally adjusting for differences in study methods (i.e., sampling quality and age minimum in case definition) and outbreak setting (Figure 3, Table S4), as well as in sensitivity analysis where we increased variance on all prior distributions (see Methods) (Table S4).

We found substantial heterogeneity between studies (I² = 99.99; τ² = 0.79) (Figure 4). When we used the model to predict positivity for a hypothetical new study site (i.e., posterior predictive distribution), median positivity remained similar but, as expected, uncertainty was much higher (48%, 95% CI: 7.1%-92%) (Figure S4).

Factors associated with variation in *V. cholerae* positivity

We then examined factors that could explain variation in *V. cholerae* positivity. After adjusting for test performance, sampling quality, and outbreak setting, we found that each 1-year increase in the minimum age in the case definition was associated with 1.16 (95% CI: 1.01-1.34) times higher odds of a suspected cholera case having a true infection (Table S5). The highest minimum age set was 10, which was used in a single study (Figure 2C). We observed a
similar trend when we analyzed minimum age in case definition as a categorical rather than continuous variable, though the increases in odds of positivity by age in definition were not significant and had high uncertainty (Table S6).

We estimated that the odds of a suspected cholera case having a true *Vibrio cholerae* O1/O139 infection were 1.64 (95% CI: 1.06-2.52) times higher when surveillance was initiated in response to a cholera outbreak compared to non-outbreak surveillance, after adjusting for test performance, sampling quality, and case definition (Table S5). These estimates remained consistent across sensitivity analyses (Table S7).

Discussion

Here we estimated that on average half of medically attended suspected cholera cases represent true *V. cholerae* O1/O139 infections. We found that *V. cholerae* positivity was higher when higher ages were set in case definitions and when surveillance was initiated in response to an outbreak. Additionally, we found substantial heterogeneity in *V. cholerae* positivity between studies, so that simply dividing suspected cholera case counts by two to estimate the true number of cases will not be appropriate in all settings.

These findings have several implications for cholera surveillance policy. The GTFCC defines suspected cholera in areas where an outbreak has not yet been reported as acute watery diarrhea and severe dehydration or death in individuals two years and older [17]. Our finding that a minimum age of two or five increases specificity for identifying a true *V. cholerae* infection in suspected cases supports this case definition. Laboratory confirmation tests are recommended during the early stages of an outbreak and periodically once an outbreak has been declared, ideally a minimum of five suspected case samples tested per week per health facility [17]. Our finding that high quality sampling also increases specificity for *V. cholerae* suggests that systematically selecting cases to test is important for accurately evaluating endemic cholera. We also found high variability across settings, suggesting that when
systematic testing is not possible, assumptions about positivity based on data at the location and time where cholera control decisions are made may be key to reducing bias in estimates of true cholera incidence.

A remaining question is why only about half of medically attended suspected cholera cases represent true infections. It is possible that we overestimated test sensitivity and have not fully accounted for false negatives; unfortunately, this is difficult to evaluate without a gold standard diagnostic test. A portion of the remaining suspected cases could also be infections with other enteric pathogens, especially those with similar transmission modes as cholera that may have outbreaks or high levels of endemic transmission concurrently. For example, in Uvira, Democratic Republic of the Congo, 36% of suspected cholera cases were positive for Enterotoxigenic *Escherichia coli* and 28% for *Cryptosporidium* [10]. In rural Bangladesh, the majority of acute watery diarrhea in children under 18 months was attributable to rotavirus, while older children were more often infected with *V. cholerae* [12]. In Haiti, 64% of acute watery diarrhea cases tested positive for *V. cholerae* O1, 4% for rotavirus, and <1% for Shigella and *Salmonella*, though rotavirus positivity was higher among children under five [11]. Thus, the relative contribution of non-cholera watery diarrhea varies with age distribution and other location-specific drivers of enteric infections.

One of the limitations of this study was that we could not account for all potential drivers of *V. cholerae* positivity, which contributed to the large heterogeneity we found between studies. In addition, *V. cholerae* positivity may be highest in the early stages of an outbreak [7,9,28], but we could not account for this given the temporal resolution of our dataset. However, a strength of our approach is that we pooled estimates from studies across diverse geographies, time periods, and epidemiological contexts. A further potential limitation is that, without a gold standard diagnostic test, sensitivity and specificity estimates may be biased if the tests are less sensitive and/or specific for shared reasons. The hierarchical conditional dependence model we used accounted for this pairwise dependence and increased uncertainty around our estimates.
accordingly. This approach also allowed us pool test performance estimates across studies from four countries. Thus, to our knowledge, we adjusted our estimates for test sensitivity and specificity using the best generic estimates available. Overall, we have high confidence in our average estimates of *V. cholerae* positivity, despite the difficulty of accurately estimating positivity in a new location/time without confirmation tests.

These estimates of *V. cholerae* positivity address one part of the challenge in establishing the true burden of cholera: cases that are overcounted due to non-specific suspected case definitions. A crucial next step will be to estimate missed cases due to care seeking and poor clinical surveillance. This could be done in part through systematically synthesizing data from studies of care seeking behavior for diarrheal symptoms (for example [29,30]), including where potential cholera cases seek care (e.g., at pharmacies, traditional healers, or hospitals). This could additionally be done through population representative surveys and active case finding, similar to studies conducted in Haiti [31] and Tanzania [32], respectively, which demonstrated higher mortality rates associated with cholera than had been reported through passive surveillance.

Ultimately, a better understanding of *V. cholerae* positivity will help us move towards estimates of true cholera incidence and mortality. Given the large amount of heterogeneity between studies, it will be important to do this in a way that accounts for variation in *V. cholerae* positivity between sites. Moreover, the proportion of suspected cholera cases missed because of milder symptoms or barriers to healthcare seeking needs to be estimated and accounted for. Such estimates will provide crucial information to guide the allocation of limited resources such as vaccines in a way that most effectively supports cholera prevention and control.

Funding

This work was supported by the Bill and Melinda Gates Foundation [grant number OPP1171700] and the National Institute of Allergy and Infectious Disease [grant number
Conflicts of Interest

The authors declare no conflicts of interest.

References

Table 1. Study characteristics

Number of study-observations included in the dataset with each study characteristic. An individual study has >1 study-observations if it reports *V. cholerae* positivity for >1 sampling method or country.

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristic</th>
<th>Number of studies</th>
<th>Percent of studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>Surveillance</td>
<td>96</td>
<td>76.8</td>
</tr>
<tr>
<td></td>
<td>Diagnostic test accuracy</td>
<td>19</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>Vaccine effectiveness</td>
<td>9</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Sampling method quality</td>
<td>High</td>
<td>37</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>88</td>
<td>70.4</td>
</tr>
<tr>
<td>Percent of suspected cases tested</td>
<td>0-4</td>
<td>15</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>5-49</td>
<td>31</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>50-95</td>
<td>22</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>≥95</td>
<td>57</td>
<td>45.6</td>
</tr>
<tr>
<td>Number of tests used (of culture, PCR, and/or RDT)</td>
<td>1</td>
<td>98</td>
<td>78.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>≥3</td>
<td>7</td>
<td>5.6</td>
</tr>
<tr>
<td>Number of suspected cases tested</td>
<td>1-9†</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>10-99</td>
<td>37</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>100-999</td>
<td>62</td>
<td>49.6</td>
</tr>
<tr>
<td></td>
<td>≥1000</td>
<td>25</td>
<td>20.0</td>
</tr>
</tbody>
</table>

†One multi-country surveillance study overall tested ≥10 suspected cholera cases for *V. cholerae* O1/O139 but reported fewer than 10 tested in one country.
Figure legends

Figure 1. PRISMA flow diagram
Diagram illustrating literature selection process, including databases searched, literature screened, and full texts reviewed for eligibility. Reasons for exclusion are indicated along with the number of studies that fell within each category.

Figure 2. *Vibrio cholerae* positivity by study methodology and outbreak context
Proportion of suspected cholera cases that were confirmed positive by A) diagnostic test type, B) quality of sampling methods, where "high" includes all suspected cases or a random or stratified sample and "low" includes convenience or unreported sampling methods, C) age minimum in suspected case definition, where "0" indicates that no minimum age was set, and D) whether surveillance was initiated in response to an outbreak or whether it was routine surveillance or non-outbreak. Each point is a study-observation; individual studies may have multiple points if they reported positivity by multiple tests, reported results for multiple countries or outbreak contexts, and/or multiple sampling methods. Circles represent study-observations with high quality sampling and triangles indicate low quality sampling.

Figure 3. Estimated underlying *V. cholerae* positivity
A) Posterior distributions of pooled percent sensitivity and specificity of culture (top), PCR (middle), and RDT (bottom) for detecting *V. cholerae* O1/O139 infections in suspected cholera cases. Dashed lines represent median values of each distribution. B) "Unadjusted" is mean percent positive (95% confidence interval) from random effects meta-analysis implemented using R package *meta* without any adjustments. "Adjusted" is the underlying true percent positive (95% credible interval) estimated using the Bayesian hierarchical model, adjusted for sensitivity/specificity of the tests, minimum age in case definition, sampling quality, and whether surveillance was initiated in response to an outbreak.
Figure 4. Forest plot of study estimates and underlying positivity

Black points indicate median study-level underlying positivity and 95% Credible Interval (CI). Teal, orange, and purple points indicate the proportion positive reported by study for culture, PCR, and RDT, respectively, and corresponding error bars indicate 95% confidence interval for a binomial probability. Studies are labeled by country ISO3 code, whether they used high quality sampling methods, and whether a minimum age was set in the suspected cholera case definition. Green distribution indicates median and 95% CI of pooled positivity. Pink distribution indicates median and 95% CI of posterior predictive distribution of positivity. Studies are split into outbreak and non-outbreak for ease of interpretation, but the green and pink distributions represent the global estimates across all studies.
Records identified from: PubMed, SCOPUS, and Google Scholar (n = 8209)

Records removed before screening:
Duplicate records removed (n = 271)

Records screened (n = 7938)

Records excluded (n = 7546)

Reports sought for retrieval (n = 392)

Reports not retrieved (n = 66)

Reports assessed for eligibility (n = 326)

Reports excluded:
Case definition not specific for cholera (n = 61)
Number of confirmed cases not reported (n = 42)
Number of suspected cases not reported (n = 36)
Case definitions not reported (n=20)
Fewer than 10 suspected cases tested (n=12)
Test method missing/not PCR, culture, or RDT (n=7)
Duplicate study or data (n=12)
Cases selected based on epidemiological link (n=5)
Sample collection ended before 2000 (n=4)
Not in English, Spanish, French, or Chinese (n=1)
Review (n=1)

Studies included in review (n = 125)
Non-overlapping studies included in dataset (n = 113)
A

<table>
<thead>
<tr>
<th>Posterior Density</th>
<th>Culture</th>
<th>PCR</th>
<th>RDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Unadjusted and adjusted positivity

<table>
<thead>
<tr>
<th>Positivity (%)</th>
<th>Unadjusted</th>
<th>Adjusted: tests</th>
<th>Adjusted: methods</th>
<th>Adjusted: methods, outbreak</th>
<th>Adjusted: tests, methods, outbreak, test priors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted</td>
<td>Adjusted: tests</td>
<td>Adjusted: methods</td>
<td>Adjusted: methods, outbreak</td>
<td>Adjusted: tests, methods, outbreak, test priors</td>
</tr>
</tbody>
</table>

Sensitivity: Green
Specificity: Purple
Outbreak surveillance

Non-outbreak surveillance

Global RE model

Proportion positive

Global RE model

Proportion positive