A Scoping Review of the Transcriptomic Perspective of Sepsis, a Move Towards Improved Precision Medicine?

Asrar Rashid1,2, Kwame Wiredu3, Benjamin Hanisch4, Praveen Khilnani5, Christos Koutentis6, Berit S Brusletto7, Mohammed Toufiq8, Zain Hussain9, Govind Benakatti10, Zainab Malik11,12, Rashid Nadeem13, Rayaz Malik14,15, Shripresad Deshpande1, Nuha Kidwai16, Razia Kadwa17, Amrita Sarpa17,18, M.Guftar Shaikh18, Javed Sharief19, Syed Ahmed Zaki19, Rajesh Phatak20, Mishtal Tariq2, Akash Deep21, Mouhamad Al Zouhbi2, Husam Saleh2, Ahmed Al-Dubai1, Amir Hussain1,*Corresponding Author Dr. Asrar Rashid, Doctoral Fellow Napier University

1. School of Computing, Edinburgh Napier University, UK
2. NMC Royal Hospital, Abu Dhabi, UAE
3. Harvard Medical School, MA, USA
4. Children’s National Hospital, Washington DC
5. Rainbow Children’s Hospital, Delhi, India.
6. Department of Anesthesiology, SUNY Downstate Medical Center
7. The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital; Ullevål, Norway
8. The Jackson Laboratory, USA
9. Edinburgh Medical School, University go Edinburgh, Edinburgh, UK.
10. Zulekha Hospital, Dubai, UAE
11. College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
12. Mediclinic City Hospital, UAE
13. Dubai Hospital, Dubai, UAE
14. Institute of Cardiovascular Science, University of Manchester. Manchester, UK.
15. Weill Cornell Medicine-Qatar, Doha, Qatar
16. North London Collegiate, Dubai, UAE
17. Sidra Medicine, Doha, Qatar
18. Department of Endocrinology, Royal Hospital for Children, Glasgow, UK
19. All India Institute of Medical Sciences Hyderabad
20. Pediatric Intensive Care, Burjeel Hospital, Najda, Abu Dhabi
21. Paediatric Intensive Care Unit, King’s College Hospital, London, United Kingdom

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Sepsis is a syndromic response to infection that carries a significant global health burden, with 11 million deaths reported globally in 2017. Many biomarkers have been developed over the years for early identification and prognosis in patients with sepsis. However, they lack the sensitivity and specificity for routine use in clinical practice. A significant challenge in developing a sepsis biomarker has been the lack of a robust pathobiological framework: a factor with a weak immunological basis to assess therapeutic efficacy. The transcript can aid in extrapolating immunological changes to the clinical arena. Given that transcriptomic processing forms a part of a systems biology analysis, we undertook to address the question: What is known about the relationship of the transcript to clinical sepsis?

Objective

Consequently, this review article envisages a systems-based approach to better understand sepsis using mRNA gene expression information. This was achieved through an examination of peer-reviewed literature identifying the relationship of the transcript to clinical sepsis.

Methods

Information sources included peer-reviewed PubMed-indexed journals using the PubMed database. Articles specific to sepsis were selected, being
published between the years 2012 to 2022 inclusive. A content analysis of findings was conducted.

Results
The search strategy elicited 14,048 studies. Keywords and or mesh terms were applied as single terms or Boolean string search combinations, generating 36 studies. Literature was analyzed concerning the specific use of the transcript and its application to sepsis. Five main descriptive Sepsis categories were identified: (1) Definition; (2) Classification; (3) Severity, (4) Molecular Biomarkers, and (5) Benchmarking.

Conclusions
Evidence of the connection of the transcript to clinical sepsis was identified. This provided a systems perspective, interfacing transcriptomic data to parameters important in the clinical arena. The use of transcriptomic data in advancing patient sepsis care, thereby aiming to improve precision, requires further investigation.
2.1 Introduction, Current Challenges in Sepsis Definition, and the value of the Transcript in a Systems Biology Approach

Sepsis remains a significant contributor to in-hospital deaths globally, representing a significant and underestimated public health burden, especially in children. Despite decades of research, tens of thousands of publications, and hundreds of millions of dollars spent, we have yet to identify and adopt into clinical practice a groundbreaking diagnostic approach, therapeutic agent, or prognostic model for sepsis. Consensus international protocols in adult and pediatric sepsis have aimed to counter this situation. They are driving a global response to improve sepsis management. However, despite the best intentions, a modern-day understanding of sepsis pathogenesis remains incomplete. Contributing to the fact that a precise all-encompassing definition of sepsis remains elusive for neonates, children, and adults. Also, expert panels have acknowledged weaknesses in internationally compiled sepsis protocols. Consequently, the lack of a helpful immunomodulator remains elusive, apart from early antibiotic treatment, fluids, and drugs for circulatory support. For example, candidate agents, such as Activated Protein-C and Vitamin C, were introduced without the desired efficacy. This underlines the shortcomings of current scientific approaches to sepsis.

Understanding the immunological response to sepsis is key in driving improved clinical outcomes. An important area of focus is the transition from infection to sepsis. Disease progression, through the
continuum of bacteremia to infection to sepsis, we term the ‘sepsis trajectory.’

Underlying factors determining disease progression include the combination of innate and adaptive immune mechanisms, the severity of infection, host age, adequacy of treatment provided, and genetic susceptibility. Further, host-pathogen interactions are instrumental in triggering an infective state, activating the host immune response, and eventually leading to sepsis. How infection results in septic shock and the dynamic changes involved are not fully understood13. Problematic is the fact that the relationship binding sepsis pathophysiology to immune changes remains elusive.

Further, there is considerable variability in the sepsis host-pathogen response14. The contribution of genetic predisposition is also partially understood. Moreover, variations in clinical care quality also affect the natural history of sepsis. For example, Lorton et al. (2022) demonstrated 10.4 \% mortality and 9.6\% morbidity in a 259-child cohort, of which 34.4\% received sub-optimal care15. Due to such heterogeneity, translating basic science research to the clinical arena remains highly challenging. Clinical consequences of sepsis, unabated, result in severe organ dysfunction. This eventually results in physiological instability and septic shock. Single-organ dysfunction in sepsis is rare, with the subsequent failure of each organ being associated with an increased risk of a poor outcome16.

An inflammatory cascade termed Systemic Inflammatory Response Syndrome (SIRS) was initially thought to be followed by anti-inflammation17. Transcriptomic analysis suggests this interpretation to be simplistic. For
example, Bauer et al. (2016) showed that anti-inflammatory and immunosuppressive transcript biomarkers improve infection diagnosis and outcome prognostication\(^{18}\). Possibly anti-inflammatory responses and defective adaptive immune reactions occur in unison. Thus suggesting an overlap of anti-inflammation with compromised adaptive immune response. A vital leap occurred when Sepsis was redefined in the 2016 third international consensus definitions for sepsis and septic shock, known as ‘Sepsis-3’\(^{19}\). Here a dysregulated host immune response was a critical differentiator between infection and sepsis, with sepsis resulting in organ dysfunction. Other aspects important in relation to the development of sepsis include sepsis genetic susceptibility from mendelian single-gene mutations as directly causing a susceptible host to more subtle multi-factorial determinants involving genetic variants and gene polymorphisms\(^{20}\).

Omic strategies have aided the translation and application of genomic knowledge to the bedside. Transcriptomic analysis has been utilized as a part of a systems-based approach, helpful in understanding complex biological processes\(^ {21}\). An example is the transcriptome application for precision medicine approaches in sepsis\(^ {22}\). Given the increased application of transcriptomics to various clinical conditions, this paper aims to explore its application in sepsis. Hence, this paper seeks to expand our knowledge of the application of the transcript to the study of sepsis. Specifically, this scoping review aims to examine peer review literature identifying the utilization of transcriptomic information applied to clinical sepsis (2012-2021), including the
exploration for enhanced sepsis biomarking using the transcript23. The aim was to identify and assimilate the application of gene-expression data, thus highlighting existing gaps in knowledge.
2.2 Materials and Methods

A scoping review was undertaken using relevant literature to provide evidence for the idea that gene expression methods are usefully applied to sepsis, allowing a systems-based analysis. The methodological framework for scoping reviews is outlined by Levac et al., 24, as well as the PRISMA-ScR reporting guidelines by Tricco and colleagues 25. A protocol was designed and registered on the Open Science Framework (https://osf.io/3jby2). This is registered as an embargoed registration till the 30th of December 2022, with associated project osf.io/5c2wr.

Identifying the research question

The hypothesis was that transcriptional information in sepsis allows a systems-based analysis of this complex process. The following research question was formulated: What is known from the literature concerning the application of the transcript to sepsis? Based on this question, value is sort in understanding how one can exploit gene expression information to capture the dynamic host-pathogen interaction in sepsis.

Identifying suitable studies

Information sources were peer-reviewed PubMed indexed journals, with the strategic schematic search for sepsis undertaken using the PubMed database (https://pubmed.ncbi.nlm.nih.gov/). Filters included ‘Books and

Study selection

For inclusion, articles were required to meet the following criteria: (1) specific to the context of sepsis, (2) studies in humans, and (3) published from 2012 to 2022. Articles were excluded if they were: (1) conference abstracts and articles where full-text was not accessible or available; or (2) articles were published before 2012. Articles were excluded if the full text was not accessible as information could not be extracted for analysis purposes.

The database search elicited 14,048 studies (see Figure 1). Keywords and or mesh terms were applied as single terms or Boolean string search combinations, generating 36 studies. The following subgroups were identified, sepsis definition, classification, severity, potential molecular biomarkers, and sepsis mortality (Figure 1). Literature was analyzed concerning the specific use of the transcript and its application to sepsis. The research team (AR & PAC)) independently screened the titles and abstracts of the 17 articles chosen to test their agreement. All
disagreements were discussed for a consensus to be achieved. Pertinent information with respect to the application of transcript studies to sepsis was then recorded.

Charting the data

A data extraction form was developed in Microsoft Excel by the researcher (AR). A single person (AR) extracted data from the full-text articles to ensure consistency. Extracted data contained the following information: population and study characteristics (demographics, aim, transcript information, genes of significance, study outcomes, and conclusions).

The collation and reporting of the results

The extracted data were analyzed using descriptive quantitative and qualitative approaches. Descriptive quantitative analyses included summarizing the number of articles based on the data collection method. This allowed all papers to be classified into five categories (described in detail in the Results section). A description of the transcript’s relationship to key sepsis observations shall then be documented.
Results

2.3. Sepsis Definition - Sepsis Beginnings?

A systematic review and meta-analysis by Karakike et al. (2021) confirmed the majority of coronavirus disease 2019 patients hospitalized in the ICU setting met Sepsis-3 criteria. Providing evidence for the potential overlap between SARS-CoV2 and bacterial sepsis, Sohn et al. (2020) studied Covid-19-related Toll-like receptor-4-mediated signaling from peripheral blood mononuclear cells (PBMCs). Here patients with Covid-19 showed TLR-4 activation mediated signaling, similar to that observed with bacterial sepsis, suggesting that the innate host response is pathogen agnostic. Further, like bacterial sepsis, Covid-19 has also been described as a dysregulated process.

Moreover, Barh et al. (2020) also showed that transcriptome studies from pulmonary tissue after SARS-CoV2 infection shared pathways with bacteria, parasites, and protozoa.

In another approach to characterize immune changes in sepsis, Schaack et al. (2018) gathered a meta-expression dataset from 949 microarray samples of patients with early sepsis. Two distinct clusters were found, one large (655 patients) and one minor (294 patients). When each group was compared to healthy controls, the larger cluster showed stronger dysregulation indicating both T-cell and monocyte function loss and granulocytic neutrophil activation. Suggesting immunosuppression, independent of the infectious disease process, occurs early in sepsis.

Additionally, literature shows that immunosuppressed patients are less likely...
to die from an episode of bacteremia. Also, in characterizing bacterial sepsis according to cell types, Reyes et al. (2020) employed scRNA-seq analyses and found 16 immune cell states based on clustering of their gene expression profiles. Further, a CD14+ mono state was identified and validated. Another challenge in defining sepsis is the need to compensate for host heterogeneity. For example, Wyn et al. (2011) compared transcriptomic responses in different childhood subgroups, including neonates, infants, toddlers, and children of school age. Neonates with septic shock showed reduced gene expression of critical pathways associated with the innate and adaptive immune response. This was in contrast to the mainly unregulated transcriptome of the other groups.
2.4 Sepsis Classification

2.4.1 Classification According to Sepsis Associated Organ Dysfunction

Classifying patients with sepsis can be beneficial for applying principles of precision medicine. In one approach, transcript analysis correlates to organ dysfunction in sepsis, for example, concerning sepsis-associated acute kidney injury (SA-AKI)34. Here the risk of children developing SA-AKI was successfully predicted from an increased expression using a 12 gene panel 35. Chew et al. (2018) showed the importance of noncoding RNAs (ncRNAs) as key regulators in inflammatory signaling in sepsis-related cardiac dysfunction 36. Beltran-Garcia et al. (2021) further showed that cardiac dysfunction reflects patterns of ncRNA expression 37.
2.4.2 Enrichment and Endotype Classification in Sepsis

Sweeney et al. (2015) found 11 genes that differentiated infectious from sterile inflammation, of which five were under-expressed (KIAA1370, TGFBI, MTCH1, RPRGIP1, and HLA-DPB1) and 6 were over-expressed (CEACAM1, ZDHHC19, C9orf95, GNA15, BATF, and C3AR1). This 11-gene panel was also tested on three cohorts with neonatal sepsis against neonatal controls, showing areas under the ROC curve (AUC) of 0.92 - 0.93, i.e., highly predictive. Further, Sweeney et al. developed a bacterial versus viral classifier consisting of 7 genes. Genes IFI27, JUP, and LAX1 showed up-regulation in viral infections, and genes HK3, TNPIP1, GPAA1, and CTSB were up-regulated in bacterial infections. All genes, except GPAA1, have been linked to leucocyte activation. Also, a two-gene transcript signature (FAM89A and IFI44L) could distinguish patients with bacterial from a viral infection with 100% sensitivity and 96.4% specificity validated in children with a mean age of 19 months. This 2-transcript RNA signature was also helpful in infants younger than 60 days of age, with a sensitivity of 88.8% and specificity of 93.7%. Further, in 4 cohorts, this 11-gene panel effectively separated septic trauma patients from matched non-infected trauma patients.

Other patient classification methods exist, for example, according to microbial characteristics based on gram staining. Cernada et al. (2021) differentiated patients with gram-positive versus gram-negative neonatal sepsis using transcript patterns. Using blood samples from septic infants with very low birth weight (VLBW), 21 genes were shown to be
significantly differentially expressed. In another method for Sepsis
categorization, leucocyte transcriptome profiling of patients is possible. In this
method, Leite et al. (2021) combined transcriptome data from leucocytes
combined with proteomic analysis in sepsis patients versus controls. In so
doing, they identified 122 co-differentially expressed genes/proteins showing
gene expression trends.

Wong et al. (2019) advocated enrichment strategy, allowing the
sub-classification of patient groups according to specific criteria, clinical,
physiological, or biological characteristics, including response to treatment or
other outcome measures. This enrichment approach using unsupervised
transcriptomic clustering to define patient sepsis endotypes has been
repeated across other studies (Table 1). Endotype grouping was similar, with
SRS1 and MARS1 being associated with gene repression in innate and
adaptive immune mechanisms. SRS1 and SRS2 subgroups were found in a
prospective study of septic patients. In all of the studies, sub-group
differences strengthen the relevance of the sub-grouping strategy undertaken.
Using the transcript to define endotypes was taken further by simplifying the
original analysis by using only four genes to determine endotype A or
endotype B. Endotype A was associated with down-regulation of
glucocorticoid receptor signaling, with corticosteroids being associated with a
four-fold increase in mortality.

Further, endotype switching was noted during sepsis, with the persistence of
the Endotype A label consistent with a poor outcome. Ma et al. (2021) used
transcriptomic analysis to differentiate patients with sepsis-induced Acute Respiratory Distress Syndrome (ARDS) from non-sepsis-induced ARDS49. Also, functional enrichment analysis demonstrated an altered immune response in sepsis-induced ARDS. Further, using protein-protein interaction network analysis, the TOP2A gene was identified as a critical regulator in sepsis-induced ARDS.

Using the Sequential Organ Failure Assessment (SOFA) score, Meidert et al. compared septic patients with controls to describe molecular networks 50. Criteria included hypoxia, impaired Glasgow Coma Score, circulatory failure, a low platelet count, and increased serum creatinine and bilirubin. This study identified 82 miRNAs and 3254 mRNAs as differentially expressed between sepsis and control patients. Also, 76 mRNA’s and six miRNA transcripts specific to SOFA criteria were identified. Additionally, specific signaling networks were identified, suggesting a biological basis for the SOFA score.
2.5 Genes as markers of disease severity and role in prognostication

Aschenbrenner et al. (2021) looked at the whole blood transcriptome of Covid-19 patients. Using this, they could stratify Covid-19 patients according to neutrophil signatures\(^{28}\). Here, enrichment in Neutrophil activation-associated signatures was noted in patients with severe Covid-19, showing pronounced neutrophil-related alteration. Gene enrichment strategies have been employed in sepsis studies, combining clinical information with an understanding of the disease mechanisms\(^{51}\). This strategy has also been suggested for Sepsis-Associated AKI (SA-AKI) studies where gene-expression biomarkers have had modest clinical value.\(^{52}\) As such, enrichment methods show value in clinical-end-point-risk-stratification. Like in Gene enrichment, the endotype classification may also be useful from a disease severity and outcome perspective. For example, Baghela et al. (2022) classified patients according to five distinct endotypes\(^{53}\). They also elicited a sepsis gene signature predicting organ dysfunction and mortality, lacking a determinate relationship with disease severity. In a study of patients with community-onset sepsis, a 30-day mortality prediction model generated using transcriptomic data from 16 studies demonstrated AUROCs from 0.765 to 0.89\(^{54}\).

Gene expression studies have shown value in eliciting genes associated with sepsis mortality. Using sepsis datasets containing survival data, Feng et al. characterized ‘survival DEGs’\(^{55}\). Then mapping onto the protein-protein interaction database known as STRING, Feng et al. listed genes related to S1PR3. A set of S1PR3 survival-related molecular signature genes (S3MS)
were then characterized. Subsequently, a sepsis score based upon S3MS
was statistically discriminatory between non-survivors and survivors. Also
focusing on mortality in sepsis, Giannini used a DEG approach on 161 adult
patients with 36% mortality56. Subsequently, they showed gene enrichment
across T-lymphocyte pathways resulting in dysregulation in the host's innate
adaptive immune response.
2.6 mRNA Biomarking
Using mRNA biomarkers from earlier work, Wong et al. (2012) combined these with plasma protein biomarkers to improve sepsis outcome prediction. A five-protein decision tree for sepsis outcome prediction was validated (PERSERVERE). Using these identified five proteins, combined with four mRNA biomarkers, Wong et al. (2017) were able to increase the predictability of 28-day sepsis mortality, improving the area under the receiver operating characteristic [AUROC] curve from 0.78 to 0.91 (PERSERVERE-XP model).
2.7 Benchmarking Clinical Sepsis using the transcript, with therapeutic implications

Benchmarking allows the comparison of processes against agreed standards. For example, the provision of physiological benchmarks was welcomed through the early pediatric sepsis definitions. This aided the development of a common communication framework that has been instrumental in transmuting coordinated sepsis global research efforts. Such as that exemplified by the Pediatric Taskforce on sepsis categorization. In a benchmark development and comparison strategy, Joachim et al. (2018) hypothesized that children demonstrated a relative resistance to mortality compared to adults, which they suggested represented a resistance effect measurable using transcriptome analysis. They identified age-associated differences in pathway activity generating four clusters—the construction of pathway drug networks correlated to survival in children and adults. Then, a benchmarking exercise was undertaken in the same study, comparing drug-disease relationships generated using Pathway Drug Network against curated, known drug-disease associations from two national databases. Next, challenging the networks resulted in drug leads with 10 of the top-ranked compounds tested for survival effects in an endotoxin model. Consequently, five of the ten compounds identified improved survival. Another benchmarking approach entails the recognition of transcriptomic fingerprints and having these available for other researchers to interpret blood gene expression profiles. Sweeney et al. (2017) showed the value of using
public gene expression datasets for benchmarking purposes. They identified three gene expression classifiers for their ability to discern sepsis from non-infectious inflammation. They were applied to 39 datasets from publicly available data pertaining to a collective of 2604 patients. This research on whole blood time-matched showed AUC between 0.73-0.82, comparing non-infectious inflammation from sepsis datasets. Further, this analysis highlighted the challenge of identifying classifiers and then generalizing them to other studies. For example, when acute infection was compared to sepsis or healthy controls, one classifier, ‘Septicyte Lab,’ performed worse, showing AUCs < 0.7 in 43% of cohorts. Mean validation areas under the receiver operating characteristic curve for discriminating septic patients from patients with noninfectious inflammation for the Sepsis MetaScore, the FAIM3-to-PLAC8 ratio, and the Septicyte Lab were 0.82 (range, 0.73-0.89), 0.78 (range, 0.49-0.96), and 0.73 (range, 0.44-0.90), respectively. Eight datasets had information about pathogen type, and here two classifiers, ‘Sepsis MetaScore’ and ‘FAIM3:PLAC8 ratio’, showed a significant difference (P<0.05) when viral infection was compared to bacterial infection, unlike the ‘Septicyte Lab.’ Amongst the three classifiers, a lack in the difference between gram-negative and gram-positive infection in 9 datasets was suggested as related to non-correction for confounding factors such as differences in microarray types or clinical circumstances.
2.8 Discussion

This scoping review aimed to understand the relationship of transcriptomic analysis to different aspects of clinical sepsis. In particular, it is hoped that transcriptomic analysis can shed light on sepsis pathogenesis in the acute phase. Particularly with sepsis often being described as a ‘dysregulated process.’ Understanding the nature of this dysregulation from an immunological perspective could pave the way for future therapeutic strategies. Consequently, this review of the application of the transcript to sepsis elicited categories related to diagnosis, definition, classification, bio-marking, and benchmarking. Transcriptomic analysis was applied to various aspects of sepsis diagnosis and provided molecular insights which might be necessary for the sepsis definition. Further, the role of the transcript in different elements of sepsis classification was outlined, and its use as a bio marking tool. Finally, the ability to benchmark immunological aspects of the septic process was evaluated. An important secondary goal was to understand the value of the transcript in providing a systems-level framework for improving sepsis management through knowledge developed in critical aspects of sepsis.

Pinnacle to developing the field of sepsis agrees upon a correct definition. The ideal definition encompasses the need for early clinical diagnosis, effective intervention, and improved outcomes. The term ‘sepsis’ has typically been synonymous with a bacterial infection. However, other infectious etiologies can result in sepsis. A case to point is the SARS-CoV-2 pandemic. For example, Karakike et al. (2021) showed that Sepsis-3 definitions apply to SARS-CoV2 sepsis. Also, there is the suggestion that viral and bacterial sepsis share TLR-4 activation pathways. This points to the role of transcriptomic analysis in understanding disease mechanisms, possibly aiding the fashioning of an enhanced definition of sepsis. Barh...
work in pulmonary studies showed that SARS-CoV2 infection shared pathways across different organisms, including bacteria, prosoma, and parasites. This reinforces the idea of a pathogen-independent route to immune activation resulting in sepsis.

A transcriptomic understanding could help understand pathogenic differences and their consequent effects on host genomic, proteomic and metabolic pathways. Thereby transcriptomic analysis could be vital in creating a sepsis definition incorporating diverse pathogen-initiating disease mechanisms. Hamilton’s work in immunosuppression and bacteremia opens the question of the relationship of immunosuppression to the subsequent development of sepsis. Work by Reyes et al. shows the promise of transcriptomic analysis using scRNA-seq methods to document cellular changes, providing clarity of the dysregulated process in sepsis.

Research by Wynn et al. showed the importance of considering age differences when documenting m-RNA responses. Another approach to the definition of sepsis, independent of the understanding mechanism of the disease, is to label sepsis according to the development of certain gene expression patterns or signatures. Hereby Reyes et al. (2020) showed the possibility of seeking a transcriptomic signature in bacterial sepsis. Thus providing an opportunity to label different sepsis types according to a sepsis definition. In a step to show functional immunological changes, Schaaack et al. showed the clustering of a large cohort of sepsis patients into groups according to functional changes with functional loss in T-cells, Monocytes, and the activation of Neutrophils. Ideally, the definition should aid in the interface between immunological and physiological. The transcript analysis might also allow the ability to ensure the limits to a suitable sepsis definition. For example, Hamilton’s work showed that the idea that immunosuppression leads to
morbidity in sepsis is simplistic, given their immunosuppressed cohort was less likely to die from sepsis \(^{31}\).

CLASSIFICATION

Using gene-expression information allows patient classification and categorization despite the challenges of organ dysregulation in sepsis. As such, transcript analysis has shown value in studying SA-AKI \(^{34,65}\). Also, the role of matching physiological dysfunction to gene expression was noted to be possible in sepsis-associated cardiac dysfunction \(^{37}\). Other classification methods exist, including bacterial versus viral grouping, septic versus non-septic trauma, gram-positive versus gram-negative sepsis, and leucocyte profiles. An endotype strategy has been used by researchers (Table 1). Scoring systems such as the well-established SOFA score help predict the outcome. Meidert et al. used a miRNA and mRNA gene expression to subgroup according to specific SOFA criteria\(^ {50}\). Other classifications include ARDS versus non-ARDS \(^ {49}\). Transcript classification according to disease severity may be possible. For example, covid-19 patients were stratified by Aschenbrenner et al. (2021) using neutrophil signatures\(^ {28}\). Cardiac dysfunction, a significant complication of sepsis, has been studied using transcriptomic analysis \(^ {36,37}\). This re-iterates the future potential value of transcriptomic analysis in assessing sepsis complications. Cernada et al. 2021 showed that genes linked to cell survival and cytokine production were associated with improved survival from gram-positive bacterial infection\(^ {43}\). An essential application of transcriptomics is validating established clinical tools such as the SOFA score by Meidert et al. \(^ {50}\). Thereby providing an objective link between the transcript and clinical application. Such insights could have several uses, one being the application of precision strategies to
affect biological mechanisms through the linkage of the SOFA score to changes in gene expression.
SEVERITY & MOLECULAR BIOMARKING

The use of transcriptomic strategies applied to disease stratification was illustrated by Odum (2021) et al., using gene enrichment. Gene enrichment allows combining clinical information with an understanding of disease mechanisms. Future endotype classification may also allow categorization according to disease severity and outcome\(^5^3\). Given the critical role of white cells in the innate response to sepsis, analysis of the white cells in this regard provides an important perspective. Accordingly, Enriched neutrophil transcript signature from Covid-19 patients allowed stratification of Covid-19 patients\(^2^8\). Sweeney et al. (2018) collated data from 16 studies developing a mortality prediction model\(^5^4\). Also, survival DEG panels useful for mortality prediction have been presented\(^5^5,5^6\). Wong et al. developed a combination of plasma protein biomarkers combined with mRNA biomarkers to improve mortality prediction\(^5^8\).

BENCHMARKS

Finally, the challenge in sepsis is applying benchmarks using transcriptomic data, given the heterogeneity inherent in the host-pathogen interaction\(^1^4\). Joachim (2018) tested the value of benchmarking using transcription analysis comparing adults with children to develop benchmarks\(^6^1\). Thus illustrating the value of a transcriptomic approach to benchmarking and generating drug leads. These were then used to identify compounds tested using an endotoxin model. The idea of creating a transcriptomic fingerprint library for future benchmarking has been presented\(^6^2-6^4\).

Analysis of transcript data has numerous limitations, including the portability of insights from one RNA-based study to another. Many reasons exist for
this, including heterogeneity caused by different platform types, the timing of specimen collection, and host-pathogen differences, including demographic differences such as age. For example, chronological aspects of the immunological response to acute sepsis remain ambiguous. Also, sequential tracking of immune changes in sepsis is rudimentary, with clinical reliance on biomarkers that are analyzed clinically daily. Thus the inability to track immune changes across shorter time durations. Further, making sense of sepsis pathogenesis is fraught with difficulties inherent due to multiple host and pathogen factors, resulting in heterogenic complexity. A limitation concerning the clinical literature is the lack of temporal transcriptomic clinical studies, which highlights a gap in the clinical literature.

We believe this review to be unique in showing the possibility of using transcriptomic information to help piece together areas critical to the understanding and application of clinical sepsis. Further, the scoping review showed that to make sense of sepsis pathogenesis, given the dynamic nature of the condition, the use of gene expression data might be helpful. Moreover, the mRNA signal is not a constant feature, changing according to the milieu of the cell. This might make the transcript useful in indicating changes in genes and, thus, cellular function. Hence, as a part of the systems approach, transcript information would be related to cellular changes from which deductions as to effects at the organ level could then be deduced. Insights thus gained could drive our understanding of sepsis. Achieving a temporal sense of changes according to gene function inferred from gene expression data requires a multi-time sequence collection of blood samples. This assumes that mRNA gene expression data incorporates time-associated changes. However, this review paper highlights the lack of temporal sepsis studies in clinical sepsis, underlying a notable
gap in the literature.
2.9 Limitations

Analysis of transcript data has numerous limitations, including the portability of insights from one RNA-based study to another. Many reasons exist for this, including heterogeneity caused by different platform types, the timing of specimen collection, and host-pathogen differences, which include demographic differences such as age, etc. For example, chronological aspects of the immunological response to acute sepsis remain ambiguous. Also, sequential tracking of immune changes in sepsis is rudimentary, with clinical reliance on biomarkers that are analyzed clinically on a daily basis. Thus the inability to track immune changes across shorter time durations. Further, making sense of sepsis pathogenesis is fraught with difficulties inherent due to multiple host and pathogen factors, resulting in heterogenic complexity.
2.10 Conclusion

In this study, an analysis of the RNA transcript and its biological application to sepsis was undertaken. It was shown that transcriptomic information is applicable in enhancing sepsis understanding. Uses of transcript analysis in sepsis research were illustrated, including diagnostic, therapeutic profiling, and prognostication in clinical sepsis. Gene expression approaches showed value in disease classification and outcome prognostics, which could then be usefully applied to understand sepsis pathogenesis and influence clinical guidelines. Further, as computer accessibility increases and scientists develop novel techniques to deliver high throughput gene expression at the bedside, transcriptomic technologies could become more relevant in precision medicine strategies. Therefore, an opportunity to use transcriptomic information to further our interpretation of sepsis exists. Therefore seeking a transcriptomic interpretation directs future developments of sepsis definitions and protocols. Hence enabling improved sepsis-associated outcomes through enhanced therapeutic precision. This could help influence the development of a new direction for novel therapeutics.
2.11 Funding
No Funding requirements

Author Contributions

Conceived and designed the experiments: AR
Performed the experiments: AR
Analyzed the data: AR, PAC
Contributed analysis, methods, and tools: AR
Wrote the first draft of the paper: AR
Revised critically for importance and intellectual content: AR, KW, BH, PK, AS, CK, BSB, MT, ZH, GB, ZM, RN, RM, SD, NK, RK, AS, PW, MGS, JS, SAZ, RP, MT, WZ, MAZ, HS, AA, AH

2.12 Data Availability

All cited literature has been used for this scoping review and is available as per the references provided according to journals in the public domain.
Figure 1. The strategic schematic search for sepsis is done using PubMed database (https://pubmed.ncbi.nlm.nih.gov/). The physiologic, pathologic, and biochemical abnormalities of sepsis incidence have been thoroughly reviewed using key terms and mesh terms, that could be applied in the search alone or in combination. Multiple trials have been expected in order to search for recent and relevant studies. Filter types have been applied to deduce the number of search (n=14,048). Studies from ten years ago up to recent have been selected. Titles and abstracts of potentially qualifying research are reviewed to further deduce the selection, followed by full-texts and content methodology. Any study that focuses on the prevalence of sepsis or septic shock, as well as some recent clinical trials in any community have been considered (n=36). Successful searches have been made for sepsis definition, classification, severity, potential molecular biomarkers, and sepsis mortality. Note that Kaforou et al., (2017) was using the dataset of Mahajan et al., (2016, NCBI Accession dataset GSE64456) - this has been counted as two separate studies.
Figure 2. Application of a Systems-based Approach using the Sepsis Transcript to Structure Sepsis Guidelines.

Figure 2. The application of the transcriptome to enhance the backbone of understanding required to enhance sepsis guidelines is shown here. Herein such host factors as age and timing of infection could be pertinent. Further, the relationship between organ failure and the development of Multi-Organ Dysfunction Syndrome (MODS) is of interest. The application of transcriptional information to various aspects of sepsis requires consideration. There is interest in the correlation to the immune response and host susceptibility to infection. One study area is the relationship of disease subtypes according to distinct pathophysiological mechanisms, also known as Endotypes. The relationship of biomarkers to gene expression is of particular interest, especially from a temporal perspective. Finally, the transcript may have value in benchmarking sepsis, such as correlating to clinical variables and end-points, in the development of prediction tools such as biomarkers. Also, the transcript may be used to follow disease progression using various analytical tools. An essential aim of the transcriptomic analysis is to improve the application of clinical therapies in a more precise approach, mindful of host-pathogen complexity. mRNA is thus vital for cellular function and consists of mRNA protein-coding and non-protein-coding RNA functions. The two facets allow mRNA to have a role in gene code translation for protein synthesis and a gene regulatory role. Essentially, mRNA is the genetic mediator guiding ribosomal protein synthesis based upon information provided in the DNA. At this moment, transcriptomics aims to document gene activity by quantifying mRNA, analyzing gene expression patterns, and measuring gene levels seen in sepsis. Gene to gene connections are shown, with genes illustrated as nodes. The interconnections between the genes then, represent the regulatory relationship. Therefore the network interactions amongst the genes form a Gene Regulatory Network (GRN).
Table 1: Endotyping from Transcript Clustering in Critically ill Sepsis Patients

<table>
<thead>
<tr>
<th>Country</th>
<th>Main Finding</th>
<th>n</th>
<th>Number of Endotypes</th>
<th>Endotype Classes & Mortality (%)</th>
<th>Endotype Functional Characteristics</th>
<th>Treatment Response Testing according to Endotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Endotype Identified in children with sepsis</td>
<td>98</td>
<td>Three endotype subclasses identified (Endotype A-C)</td>
<td>28-day Mortality Endotype A (36%) Endotype B (11%) Endotype C (12%)</td>
<td>Endotype A demonstrating the most deranged signaling pathways, with genes repressed associated with the glucocorticoid receptor signaling, the adaptive immune system and zinc homeostasis. Also both the degree of organ failure and illness severity was highest in endotype A, and also age being the youngest in endotype A</td>
<td>Testing not undertaken</td>
<td>17</td>
</tr>
<tr>
<td>USA</td>
<td>Differential response to sepsis corticosteroids according to Endotype in children with sepsis</td>
<td>168</td>
<td>Endotype A (54-48%) Endotype B (52-66%)</td>
<td>28-day Mortality Discovery Cohort Endotype A Discovery Cohort Endotype B Validation Cohort Endotype A 17% Endotype B 5%</td>
<td>Subclass A displayed higher median PRISM scores, were younger. Also this Endotype demonstrated lower proportion comorbidity compared to Endotype subclass B. Also patients in subclass A showed a lower total white blood cell and absolute neutrophil counts, however with a higher absolute lymphocyte counts, compared to Endotype subclass B patients. Endotype A patients had a higher mortality and complicated course compared to subclass B patients.</td>
<td>Endotype A patients showed an increased mortality in association with corticosteroid therapy</td>
<td>66</td>
</tr>
<tr>
<td>UK</td>
<td>Endotypes identified in Adult ICU patients with sepsis due to community-acquired pneumonia (CAP)</td>
<td>205</td>
<td>Transcriptomic profiling defined two sepsis response signatures SRS1 (35-41%) SRS2 (59-65%)</td>
<td>28-day mortality SRS1 SRS2 Discovery Cohort SRS1 27% SRS2 17% Validation Cohort SRS1 65% SRS2 41%</td>
<td>SRS1 category being associated with switching from oxidative phosphorylation to glycolysis, endotoxin-tolerance, relative immunosuppression, human leucocyte antigen (HLA) class II repression and T-cell exhaustion.</td>
<td>Testing not undertaken</td>
<td>69</td>
</tr>
<tr>
<td>UK</td>
<td>Differential response to sepsis corticosteroids & mortality (SRS2) according to Endotype in adults with sepsis</td>
<td>176</td>
<td>SRS1 (47%) SRS2 (53%)</td>
<td>SRS1 (33-37%) SRS2 (37%) Placebo Group 33% Steroid Group SRS2 (8-42%) Placebo group 42% Steroid Group</td>
<td>The first time SRS1 and SRS2 Endotypes described in sepsis patients from multiple different infection sources. Increased mortality is noted in the SRS2 group in association with hydrocortisone treatment.</td>
<td>Increased mortality is noted in the SRS2 group in association with hydrocortisone treatment</td>
<td>68</td>
</tr>
<tr>
<td>Netherlands and UK</td>
<td>Differential response to sepsis corticosteroids according to Endotype in adults with sepsis</td>
<td>306</td>
<td>Four endotypes Mars1 (1-4) Mars2 (13-29%) Mars3 (34-44%) Mars4 (23-37%) Mars 4 (6-13%).</td>
<td>28-day mortality Mars1 (39%) Mars2 (22%) Mars3 (23%) Mars 4 (53%).</td>
<td>The Mars1 poor-prognosis endotype had an increase in expression of cellular metabolic pathways (fame biosynthesis) and a decrease in expression of genes involved in adaptive and innate immunity (nuclear factor-κB signaling [NF-κB], antigen presentation, Toll-like receptor, antigen presentation, and T-cell receptor signaling). Mars2 and 4 endotype showed up-regulation of cytokine pathways (inducible nitric oxide synthase, interleukin [IL]-6, interferon signaling, NF-κB) and pattern recognition, associated with hyperinflammation. Mars3 the endotype with the lower-risk for mortality showed increased expression of adaptive immune pathways (natural killer cells, IL-4 signaling, T-helper cells, B-cell development). Further, a two-gene expression ratio was derived enabling endotype classification on ICU admission.</td>
<td>Testing not undertaken</td>
<td>70</td>
</tr>
<tr>
<td>USA/SPAIN</td>
<td>Multiple Studies</td>
<td>700</td>
<td>Three response clusters</td>
<td>30-day mortalities into three groups Inflammopathic</td>
<td>increased innate and reduced adaptive immune signal as</td>
<td>Testing not undertaken</td>
<td>71</td>
</tr>
<tr>
<td>Percentage</td>
<td>Pathological Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>Inflammopathic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>Adaptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>Coagulopathic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Inflammopathic** suggested by complement activation, increased expression of IL-1 receptor, pattern recognition receptor activity
- **Adaptive** Reduced innate and high adaptive immune signal, showing interferon signaling
- **Coagulopathic** Irregularities in the coagulation and complement systems, including glycosaminoglycan binding and platelet degranulation.
Table 2: Summary of Literature generated for the Scoping Review

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Objective</th>
<th>Study Design</th>
<th>Participant/Target Population</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karakiike</td>
<td>European</td>
<td>Focused on the prevalence of viral sepsis in patients with Covid-19.</td>
<td>A systematic review and meta-analysis</td>
<td>COVID-19 patients with sepsis and organ dysfunction</td>
<td>3,825 articles searched, 151 were analyzed, with only five reporting sepsis prevalence.</td>
</tr>
<tr>
<td>Sohn 2020^27</td>
<td>Korea</td>
<td>Characterise the immune response in critically ill patients, including those with COVID-19.</td>
<td>A Prospective cohort study</td>
<td>COVID-19 patients</td>
<td>8 severe and 20 mild COVID-19 patients</td>
</tr>
<tr>
<td>Schaack 2018^30</td>
<td>Germany</td>
<td>Whole blood transcriptomic analysis of adult patients with early in the sepsis episode.</td>
<td>A systematic review and meta-analysis</td>
<td>Adult patients with sepsis admitted to ICU from 135 GEO and 75 ArrayExpress studies</td>
<td>949 septic patients and 135 healthy controls</td>
</tr>
<tr>
<td>Reyes 2020^32</td>
<td>USA</td>
<td>Blood profiling of sepsis patients using scRNA-seq technology.</td>
<td>A cohort study</td>
<td>UTI patients with and without sepsis</td>
<td>29 sepsis patients and 36 controls</td>
</tr>
<tr>
<td>Wynn 2011^33</td>
<td>USA</td>
<td>Identification of gene expression across different aged neonates with septic shock.</td>
<td>A cohort study</td>
<td>10 years of age children with septic shock</td>
<td>1</td>
</tr>
</tbody>
</table>
Classification

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Objective</th>
<th>Study Design</th>
<th>Participant/Target Population</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasson 2021(^{34})</td>
<td>USA</td>
<td>To document the current understanding of sepsis associated Acute Kidney Injury Pathophysiology using Omic interpretations</td>
<td>A Narrative Review</td>
<td>SA-AKI patients</td>
<td>NA</td>
</tr>
<tr>
<td>Chew 2018(^{36})</td>
<td>Singapore</td>
<td>To describe the mechanisms and functions of ncRNAs in the regulation of inflammatory signaling.</td>
<td>A Narrative Review</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Beltran-Garcia 2021(^{37})</td>
<td>Spain</td>
<td>Describe the importance of non-coding RNAs mechanisms in cardiovascular dysfunction associated with sepsis.</td>
<td>A Narrative Review</td>
<td>Patients with sepsis and cardiovascular dysfunction</td>
<td>NA</td>
</tr>
<tr>
<td>Sweeney 2015(^{38})</td>
<td>USA</td>
<td>To describe publicly available sepsis gene data sets to achieve robust set of genes for differentiation patient with sepsis from those with sterile inflammation.</td>
<td>Multicohort study using secondary analysis of Publicly Archived available data.</td>
<td>Gene expression microarray of acute infections from 20 cohort</td>
<td>1057 samples of bacterial and viral infection</td>
</tr>
<tr>
<td>Sweeney 2017(^{39})</td>
<td>USA</td>
<td>Test gene classifiers (11-gene 'Sepsis MetaScore', the Septicyte Lab and FAM3:PLAC8 ratio) on sepsis datasets.</td>
<td>Multicohort study using secondary analysis of Publicly Archived available data.</td>
<td>Sepsis and acute infection from 39 datasets</td>
<td>3,241 whole blood samples from 2,604 patients</td>
</tr>
<tr>
<td>Sweeney 2016(^{40})</td>
<td>USA</td>
<td>Multicohort analysis to derive a set of seven genes for robust discrimination of bacterial from viral infections.</td>
<td>Multicohort study using secondary analysis of Publicly Archived available data.</td>
<td>Gene expression of sepsis from 27 datasets</td>
<td>663 samples from five datasets with 11 genes expressed</td>
</tr>
<tr>
<td>Herberg 2016(^{41})</td>
<td>London</td>
<td>Describe blood RNA expression signature allowing the differentiation of bacterial versus viral infection in febrile children.</td>
<td>A Prospective Cohort Study</td>
<td>Febrile children from the hospitals in UK, Spain, Netherlands and USA</td>
<td>240 patients including 189 from UK, 16 from Spain, and 35 from USA</td>
</tr>
<tr>
<td>Kaforou 2017(^{42})</td>
<td>UK</td>
<td>Distinguishing children with potentially life-threatening bacterial infections from febrile</td>
<td>A retrospective</td>
<td>Febrile infants</td>
<td>89 infants with bacterial infection and 111 with viral infections</td>
</tr>
<tr>
<td>Author</td>
<td>Country</td>
<td>Objective</td>
<td>Study Design</td>
<td>Participant/Target Population</td>
<td>Sample Size</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>---</td>
<td>-----------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Cernada 2021</td>
<td>Spain</td>
<td>children with viral infections using applying a 2-Transcript Host RNA Signature.</td>
<td>A prospective, observational cohort study.</td>
<td>low birth weight infants with sepsis</td>
<td>25 septic preterm infants (17 with Gram-positive bacterial infection and 8 with Gram-negative bacterial infection)</td>
</tr>
<tr>
<td>Leite 2021</td>
<td>Brazil</td>
<td>Using transcriptomic profiles to discriminate between Gram-positive and Gram-negative bacterial sepsis in preterm neonates</td>
<td>A cohort study using a secondary analysis of two Publicly Archived datasets.</td>
<td>Whole blood and leukocytes of sepsis patients from two datasets</td>
<td>478 patients and 42 controls from GSE data, 46 patients and 10 controls from ArrayExpress</td>
</tr>
<tr>
<td>Meidert 2021</td>
<td>Germany</td>
<td>Describe sequence of small non-coding miRNAs and protein-coding mRNAs from blood cells and the SOFA score in patients with sepsis.</td>
<td>A prospective, observational cohort study.</td>
<td>RNA profiles from patients with septic shock</td>
<td>A total of 54 septic shock patients</td>
</tr>
<tr>
<td>Burnham 2017</td>
<td>Fill</td>
<td>Investigation of individual and temporal variations in the transcriptomic response to sepsis caused by fecal peritonitis.</td>
<td>A prospective, observational cohort study.</td>
<td>Sepsis patients in ICU</td>
<td>117 sepsis patients with fecal peritonitis, 126 community acquired pneumonia, and 10 controls</td>
</tr>
<tr>
<td>Antcliffe 2019</td>
<td>UK</td>
<td>Describe transcriptomic endotypes associated with response to either norepinephrine or vasopressin, or to corticosteroids.</td>
<td>A prospective, observational cohort study.</td>
<td>Sepsis patients with varied response to steroids.</td>
<td>176 patients</td>
</tr>
<tr>
<td>Atreya 2019</td>
<td>USA</td>
<td>Application of the principles of precision medicine to pediatric sepsis.</td>
<td>Narrative Review.</td>
<td>Pediatric sepsis</td>
<td>NA</td>
</tr>
<tr>
<td>Mahajan 2016</td>
<td>USA</td>
<td>Using the RNA bio signatures to diagnose infants aged 60 days or younger with fever with or without serious bacterial infections.</td>
<td>A prospective, observational cohort study.</td>
<td>febrile infants aging 60 days or younger</td>
<td>279 febrile infants (89 with bacterial infections, and 190 without bacterial infections), 19 healthy controls</td>
</tr>
</tbody>
</table>

Severity

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Objective</th>
<th>Study Design</th>
<th>Participant/Target Population</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng 2021</td>
<td>USA</td>
<td>To identify S1PR3 gene</td>
<td>Secondary</td>
<td>Sepsis-related</td>
<td>whole blood</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Methodology</td>
<td>Analysis</td>
<td>Dataset Description</td>
<td>Key Findings</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sweeney 2018<sup>24</sup></td>
<td>USA</td>
<td>Prediction of sepsis using gene expression profiles.</td>
<td>A systematic analysis</td>
<td>Sepsis patients with acute infection from selected cohorts.</td>
<td>17 cohorts from public database (gene expression profiles of adults and children), 4 private cohorts (HAI)</td>
</tr>
<tr>
<td>Aschenbrenner 2021<sup>28</sup></td>
<td>Greece and Netherlands</td>
<td>With many describing a dysregulated immune system with COVID-19, RNA-seq analysis is undertaken to characterize COVID-19 patients according to disease severity.</td>
<td>Observational cohort study.</td>
<td>COVID-19 patients</td>
<td>Patients admitted between March 13 and March 30, 2020 with 10 healthy controls, second cohort includes 30 patients.</td>
</tr>
</tbody>
</table>
Molecular Markers

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Objective</th>
<th>Study Design</th>
<th>Participant/Target Population</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng 2021<sup>55</sup></td>
<td>Arizona</td>
<td>To identify S1PR3 gene signature in the development of sepsis.</td>
<td>Secondary Analysis of Archived Datasets.</td>
<td>Sepsis infection from two datasets.</td>
<td>Whole blood transcriptome data from 35 survivors and non-survivors of sepsis</td>
</tr>
<tr>
<td>Cosgriff 2021<sup>56</sup></td>
<td>USA</td>
<td>Characterization of whole blood transcriptome in critical patients with and without sepsis.</td>
<td>Descriptive [Poster]</td>
<td>Whole blood transcripts from critical sepsis patients.</td>
<td>419 transcripts from 161 sepsis patients.</td>
</tr>
<tr>
<td>Stanski 2020<sup>51</sup></td>
<td>USA</td>
<td>Review on the development of precision medicine in sepsis.</td>
<td>Narrative Review.</td>
<td>Sepsis studies.</td>
<td>NA</td>
</tr>
<tr>
<td>Odum 2021<sup>52</sup></td>
<td>USA</td>
<td>Review on the current biomarkers for sepsis-associated acute kidney injury.</td>
<td>Narrative Review.</td>
<td>Pediatric sepsis.</td>
<td>NA</td>
</tr>
</tbody>
</table>
References

42. Kaforou M, Herberg JA, Wright VJ, Coin LJM, Levin M. Diagnosis of Bacterial Infection Using a 2-Transcript Host RNA Signature in Febrile Infants 60 Days or Younger. *JAMA.* 2017;317(15):1577-1578.

