Feasibility of Conducting Comparative Effectiveness Research and Validation of a Clinical Disease Activity Score for Chronic Nonbacterial Osteomyelitis

Eveline Y. Wu, MD, MSCR¹ (ORCID 0000-0002-6394-6843), Melissa Oliver, MD, MS², Joshua Scheck, BS³, Sivia Lapidus, MD⁴, Ummusen Kaya Akca, MD⁵, Shima Yasin, MD, MSc⁶, Sara M. Stern, MD⁷, Antonella Insalaco, MD⁸, Manuela Pardeo, MD⁹, Gabriele Simonini, MD⁹, Edoardo Marrani, MD⁹, Xing Wang, PhD¹⁰, Bin Huang, PhD¹¹, Leonard K. Kovalick, PNP¹, Natalie Rosenwasser, MD³, Gabriel Casselman, BS³, Adriel Liau, BS³, Yurong Shao, BS³, Doaa Mosad Mosa, MD¹², Lori Tucker, MD¹³, Karen Onel, MD¹⁴, Fatma Dedeoglu, MD¹⁵, Marinka Twilt, MD¹⁶, Polly J. Ferguson, MD⁶, Seza Ozen, MD⁵, Yongdong Zhao, MD, PhD³.

¹Division of Rheumatology, Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
²Division of Pediatric Rheumatology, Indiana University School of Medicine, Indianapolis, IN, USA
³Division of Pediatric Rheumatology, Seattle Children’s Hospital, University of Washington, Seattle, WA, USA
⁴Division of Rheumatology, Department of Pediatrics, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center and Hackensack Meridian School of Medicine, Hackensack, New Jersey, USA
⁵Division of Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
⁶Division of Rheumatology, Allergy and Immunology, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
⁷Division of Rheumatology, Department of Pediatrics, The University of Utah, Salt Lake City, Utah, USA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Division of Rheumatology, ERN RITA center, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy

Rheumatology Unit, ERN ReCONNET center, AOU Meyer Children’s Hospital, Florence, Italy

Biostatistics Epidemiology and Analytics in Research, Seattle Children’s Research Institute, Seattle, WA, USA

Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA

Rheumatology and Rehabilitation Department, Mansoura University Hospitals, Mansoura University, Mansoura City, Egypt

Division of Rheumatology, BC Children’s Hospital, University of British Columbia, Vancouver BC, Canada

Division of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA

Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

Division of Rheumatology, Department of Paeditric, Alberta Children’s Hospital, Alberta, Canada.

Corresponding author:
Yongdong Zhao, MD, PhD
4800 Sand Point Way NE
Seattle, WA 98105
E-mail: ydzhao@uw.edu
ORCiD iD: 0000-0003-3618-1379
Word count (max for original articles is 3,500 words and does not include abstract, references, tables, and figure legends): 3,315
Abstract (239 Words)

Objectives: Study objectives were to: 1) determine the frequency of use and safety of each consensus treatment plan (CTP) regimen for chronic nonbacterial osteomyelitis (CNO) and the feasibility of using chronic nonbacterial osteomyelitis international registry (CHOIR) data for comparative effectiveness research and 2) develop and validate a CNO clinical disease activity score (CDAS) using CHOIR.

Methods: Consenting CNO children or young adults were enrolled into CHOIR. Demographic, clinical, and imaging data were prospectively collected. The CNO CDAS was developed through a Delphi survey and nominal group technique. External validation surveys were administered to CHOIR participants.

Results: 140 (76%) CHOIR participants enrolled between August 2018 and September 2020 received at least one CTP regimen. Baseline characteristics from the three groups were well-matched. Patient pain, patient global assessment, and clinical CNO lesion count were key variables included in the CNO CDAS. The CDAS showed a strong correlation with patient/parent report of difficulty using a limb, back, or jaw and patient/parent report of disease severity, but a weak correlation with patient/parent report of fatigue, sadness, and worry. The change in CDAS was significant in patients reporting disease worsening or improvement. The CDAS significantly decreased after initiating second-line treatments from 12 (8-15.5) to 5 (3-12). All second-line treatments were well-tolerated. Psoriasis was the most common adverse event.

Conclusion: The CNO CDAS was developed and validated for disease monitoring and assessment of treatment effectiveness. CHOIR provided a comprehensive framework for future comparative effectiveness research.
Key words: chronic nonbacterial osteomyelitis, chronic recurrent multifocal osteomyelitis, comparative effectiveness research, clinical disease activity score, consensus treatment plans

Key messages:

- The **chronic nonbacterial osteomyelitis international registry (CHOIR)** provides comprehensive prospective data for comparison of treatment effectiveness.
- The clinical disease activity score (CDAS) has content and construct validity to assess CNO.
Introduction

The treatment of chronic nonbacterial osteomyelitis (CNO), also known as chronic recurrent multifocal osteomyelitis (CRMO), has been empirical and based on personal experience, expert opinion, and retrospective observational data (1–10). According to a survey of treating pediatric rheumatologists in 2015, 95% reported the use of nonsteroidal anti-inflammatory drugs (NSAIDs) as first-line therapy for children with CNO (4). While a majority of children with CNO may initially improve with NSAIDs, approximately 50% will relapse within two years (11). Beyond NSAIDs, there is great variability in selecting second-line treatments which most commonly include methotrexate (67%), tumor necrosis factor inhibitors (TNFi) (65%), and bisphosphonates (46%) (4). Large pediatric patient registries such as Eurofever (5) and the German National Pediatric Rheumatology Registry (12) have a limited number of CNO patients who ever received second-line therapies. A retrospective cohort from three tertiary care centers in the United States (8) reported similar efficacy of TNFi compared to corticosteroids in NSAID-refractory CNO patients, however, bisphosphonates were not evaluated. Due to lack of robust evidence supporting the therapeutic efficacy of any of the second-line treatments, the Childhood Arthritis and Rheumatology Research Alliance (CARRA) CNO working group adopted all three categories of treatments as consensus treatment plans (CTPs) for children with CNO who had an NSAID-refractory course and/or with active spinal lesions (13). The standard dosing of treatments and frequency of monitoring were proposed to reduce center-to-center variations for clinical research purpose.

A challenge in the clinical study of CNO is assessing disease activity due to the lack of standardized evaluation tools and sensitive laboratory findings. Historically, pain has been used
as a surrogate for response to therapy, but this approach is limited due to secondary amplified pain syndrome that can occur in CNO. Magnetic resonance imaging (MRI) can provide detailed information of CNO lesions (14–20) and is used often to evaluate the disease burden for children with CNO at the time of diagnosis. Although whole body MRI (WBMRI) and regional MRI are clinically useful, patients can have asymptomatic lesions in locations not considered at high risk for permanent bone damage, and whether these lesions require treatment is uncertain. More comprehensive measures of CNO disease activity are therefore needed. In 2010, Beck et al. (21) developed a core set of CNO outcome variables, PedCNO. Encompassing key variables into a more holistic CNO scale, PedCNO combines patient reported outcomes, laboratory results, and MRI findings. PedCNO30, 50, and 70 were respectively defined as when at least three out of five variables improved by 30, 50, and 70% and no more than 1 remaining variable did not worsen more than 30, 50, and 70%. Variables initially thought to be helpful included the erythrocyte sedimentation rate (ESR) and childhood health assessment questionnaire (CHAQ). These measures were not sensitive enough to change because the ESR was often normal to mildly elevated at CNO diagnosis. Furthermore, the CHAQ includes many assessments of upper extremity function that are less useful for CNO which primarily affects the lower extremities. MRI scoring tools have been developed (15,19,20), but the clinical significance of asymptomatic MRI lesions remains unknown and the weighting of lesions at different sites has not been systematically identified. Thus, a clinical disease activity assessment tool that is independent of MRI is urgently needed for the assessment of therapies.

The chronic nonbacterial osteomyelitis international registry (CHOIR) is an international observational longitudinal cohort study of children with CNO that was established by the CARRA CNO workgroup in 2018 (ClinicalTrials.gov Identifier: NCT04725422). The data
collection was based on the framework of the CARRA CNO CTPs, and the main target population included children with CNO who failed NSAIDs and/or had high risk lesions for permanent skeletal damage (13). All the participating sites provided standard clinical care to enrolled patients, and the outcome measurements as well as medication usage were recorded as suggested by the CARRA CNO CTPs (13). The objectives of this study were to: 1) investigate the frequency of use and safety of each CTP regimen and determine the feasibility of using CHOIR data for comparative effectiveness research and 2) develop and validate a clinical disease activity score (CDAS) for CNO using CHOIR.

Patients and Methods

Patient cohort

Children with CNO (22,23) were enrolled in CHOIR from 14 sites (8 U.S. sites, 2 Canadian sites, 2 Italian sites, 1 Egyptian site, 1 Turkish site) starting August 1, 2018. Informed consent was obtained for all participants and assent was obtained for age-appropriate children. Institutional Board Review approval was obtained at each registry site. Inclusion criteria were 1) age at enrollment < 21-years-old, 2) presence of bone edema on short tau inverse recovery (STIR) or T2 fat saturation sequence on MRI within 12 weeks of enrollment, 3) whole body imaging evaluation either by WBMRI or bone scintigraphy, and 4) a bone biopsy to exclude infection or malignancy unless the bone lesions followed a typical CNO distribution or there was concomitant inflammatory bowel disease (IBD), psoriasis, or palmoplantar pustulosis (PPP). Patients were excluded if they had a current malignancy or infectious osteomyelitis or any contraindication for the CTP regimens. Between the launching date of CHOIR and September 30, 2020, patients who either had NSAID-refractory disease and/or active spinal lesions were enrolled and treated according to one of the CTP regimens at the discretion of the treating
physician. Patients were not randomized or masked to their treatment assignment. The CTP choices were 1) conventional synthetic disease-modifying anti-rheumatic drug (csDMARD) including but not limited to methotrexate and sulfasalazine; 2) TNFi with or without methotrexate; or 3) bisphosphonates including pamidronate or zoledronic acid. Concurrent use of limited courses of NSAIDs and glucocorticoids were allowed for all regimens (13). After October 1, 2021, we expanded enrollment to all children with CNO regardless of their disease status or need for second-line treatments. Our goal was to use patient questionnaires for the external validation of a newly developed CNO CDAS.

Development of the CNO CDAS

Our workgroup has followed The OMERACT (Outcome Measures in Rheumatoid Arthritis Clinical Trials) filter 2.1 (24) to develop outcome measurements for CNO (25). A scoping review showed life impact and pathophysiological manifestations (25) to be the main core areas reported in the literature. Using this, CDAS domains were discussed at the CARRA CNO work group monthly meetings and narrowed down to physical exam findings, laboratory findings, patient reported outcomes or physician assessment. At the annual CARRA CNO meeting in 2021, a breakout room session and polling as detailed in the results section were conducted to identify and finalize the core variables for the CNO CDAS.

Validation of the CNO CDAS using CHOIR

Surveys included questions measuring patient reported degrees of difficulty using arms/legs/trunk/jaw, fatigue, depression, worry/anxiety, pain, and global assessment using a 0-10 Likert scale. Additional questions (supplement 1) assessing self-perceived disease activity (inactive, mildly active, moderately active, or severely active), changes in disease activity
compared to the previous visit (improved, worsened, or unchanged), and perception of the treatment effectiveness were also administered to participants.

Data collection

Demographic and disease-related data were collected at baseline visits and follow-up assessments at 3, 6, 9, 12, 18, and 24 months following enrollment. Unscheduled visits occurred if there was a change or adverse event in the CTP medication. Clinical assessments included: 1) patient pain assessment scored on a 0-10 Likert scale; 2) patient/parent global assessment of disease activity scored on a 0-10 Likert scale; 3) physician global assessment of disease activity scored on a 0-10 Likert scale; 4) total number of clinically active CNO lesions defined as focal tenderness, and/or swelling, and/or warmth in addition to patient’s report of pain at a known CNO lesion site (recording sheet is detailed in supplement 2); and 5) total CNO lesion count on MRI (13). A CNO CDAS was calculated by summing the patient pain and patient/parent global assessment of disease activity scores and total number of clinically active CNO lesions. Adverse events (AEs) were also collected with special interest on new-onset psoriasis, new-onset autoimmune/inflammatory disease, infection requiring intravenous antibiotics, fracture, and any hospitalization or life-threatening events related to second-line treatments.

Statistical analyses

Descriptive statistics were used for demographic and clinical characteristics. For continuous variables, medians and interquartile ranges (IQR) were calculated, and for categorical variables, frequencies and percentages were calculated. Mann–Whitney U tests or Fisher's exact tests were used to assess any significant differences in baseline patient characteristics between CTPs. Log-transformed linear mixed effect models with random participant intercepts were performed to assess CDAS changes after non-NSAID treatments. Wilcoxon signed rank test with
continuity correction was performed to determine the change of the CDAS among reported improved, worsened, and unchanged groups. Spearman’s rank correlation test was performed to determine the relationship between the CDAS and reported disease status by patient/families. Participants with missing values or loss to follow-up were excluded from that particular analysis. All computations were performed using R software (version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria). All tests were two-sided, and the results were considered significant if p<0.05.

Results

Demographic and clinical data

We identified 140 (78%) out of 179 participants enrolled between August 1, 2018 and September 30, 2020 into CHOIR and treated according to one of the CNO CTP regimens. Two received one of regimens for pre-existing IBD prior to the diagnosis of CNO. Demographic and clinical features are summarized in Table 1. The median age at diagnoses was 9.90 years (IQR 7.99-12.20 years), and 55% of the cohort was female and 84% identified as Caucasian. Patients enrolled were treated by at least one of the three CTPs. There were no significant imbalances in baseline characteristics across three groups including csDMARD-first, TNFi-first (may concomitantly start a csDMARD), and bisphosphonate-first treatment groups (Table 2). Specifically, there were no differences between these groups in age, sex, disease duration, interval between diagnosis and treatment start, total MRI lesion count, active spinal lesion, prior exposure to any csDMARD, and presence of a co-morbid condition including psoriasis and inflammatory bowel disease (IBD).

Development of the CNO CDAS
On February 12, 2021, the CARRA CNO workgroup annual meeting was held virtually with 36 participants (comprising 6 family representatives, 24 pediatric rheumatologists, 2 adult rheumatologists, and 4 researchers or research associates). Results from a literature review of existing disease assessment tools including PedCNO (21), CROMRIS (20), RAI-CROMRIS (19), and radiologic index for NBO (RINBO) (15) were presented. The group was divided into six breakout rooms to focus on specific measurements of CNO disease activity from three domains: physical exam findings, laboratory findings, and patient reported outcomes or physician assessment. The following nine measurements were nominated by the group for consideration: total number of bony lesion sites with swelling and/or focal tenderness and/or warmth (clinical CNO lesion count), active joint count, ESR, c-reactive protein (CRP), hemoglobin, alkaline phosphatase, patient/parent global assessment, patient pain, and patient reported outcomes measurement information system (PROMIS) upper and lower extremity function. A ranking poll was carried out, and the three variables ranked the highest were patient pain, patient global assessment, and clinical CNO lesion count. Therefore, the CNO CDAS is calculated as a sum score encompassing these three variables.

Validation of the CNO CDAS

From November 2021, external validation surveys to patients/parents and physicians were administered within CHOIR. We included children with a clinical diagnosis of CNO made by treating physicians who completed the survey and had available core variable values at the baseline and/or follow up visits. Standard of care including NSAIDs and/or second-line treatments were carried out. Degrees of difficulty of using limb/trunk/jaw, fatigue, depression, worry, self-perceived disease activity, improvement/worsening in disease activity, and perception of treatment effectiveness were reported. The construct validity of the CDAS was
determined for three aspects and showed a significant correlation with patient/parent reported
difficulty with using an affected body part, fatigue, sadness, worry, and physician global
assessment (Table 3). There was a strong correlation between the CDAS and reported difficulty
with using a limb, the back, or jaw (rho=0.65, p<0.001), with a weak correlation between the
CDAS and reported fatigue, sadness, and worry (rho=0.24-0.39, p<0.001). Furthermore, the
CDAS was significantly correlated with patient report of inactive disease, mildly active disease,
moderately active disease, and severely active disease (rho=0.75, p<0.001) (Figure 1). The
change of CDAS was significant in patients reporting disease worsening or improvement
(p<0.001) while not significant in those reporting unchanged disease (p=0.526) (Table 4). The
change in the CDAS in patients reporting a significant improvement after treatment initiation
was -2.5 (-5.8-(-0.3)). The CDAS increase in patients reporting significant worsening was 11 (4-12)
(supplement 3). The CDAS significantly decreased after the initiation of second-line
treatments from 12 (8-15.5) to 5 (3-12) (p=0.002) (Table 5).

Response to CTP options

Of the 140 participants enrolled and observed between August 2018 and September 2020,
39 were excluded from analyses due to missing critical variables and/or lack of follow-up.
Among the 101 participants with complete data and 6-month follow-up, 34 were treated with a
csDMARD, 43 with a TNF inhibitor, and 24 with a bisphosphonate. Due to the sequential
exposure or concurrent administration of more than one CTP medication from baseline to
follow-up, responses in clinical assessments were analyzed collectively. Treatment with a
csDMARD, TNF inhibitor, and/or bisphosphonate resulted in significant improvement in clinical
assessments (Table 5). Compared to baseline, patient pain (4 [1-7.5] versus 2 [0-7]) did not
significantly differ, however, patient/parent global assessment of disease activity (6 [3-8] versus
2 [1-5]) and total number of clinically active lesions (1 [0-2] versus 0 [0-1]) all improved with second-line treatment (all p<0.05).

Adverse events to CTP options

The total patient years for each CTP regimen were 351 for csDMARD, 294 for TNF inhibitors, and 89 for bisphosphonates. The most common adverse event was the development of psoriasis. There were 13 new cases of psoriasis, including two cases (among a total of 45 patient years) who developed psoriasis while taking leflunomide, seven cases (among a total of 114 patient years) while taking adalimumab, and four cases (among a total of 77 patient years) while taking infliximab. Two patients developed alopecia, one during treatment with leflunomide and the other with adalimumab. Two patients developed juvenile idiopathic arthritis, including one receiving a combination of pamidronate and methotrexate and one receiving methotrexate monotherapy. There was one patient each who developed a spinal fracture while on methotrexate, type 1 diabetes mellitus while on methotrexate, herpes zoster while on infliximab, and bacteremia requiring intravenous antibiotics while on infliximab and methotrexate. Among reasons to discontinue a CTP medication, only two of 205 occasions were due to adverse events. Both patients discontinued infliximab due to severe psoriasis.

Discussion

Our pilot study demonstrated that the CARRA CNO CTPs are feasible and were used successfully across sites internationally within the CHOIR framework. The lack of significant differences in baseline patient characteristics between CTPs supports the diversity in prescribing patterns and allows the application of causal inference statistics to compare the effectiveness of non-NSAIDs treatments without randomization. Due to the rarity of the disease and the challenge of blinding patients and physicians from the treatments, large-scale randomized control
trials have not been done in children with CNO. Observational registries such as Eurofever (5), the German National Pediatric Rheumatology Registry (12), and now CHOIR can provide real world data to substantiate decision making for physicians and families. Use of biologics is limited in the two other registries but much more enriched in CHOIR. A comparison of adalimumab and bisphosphonate has been proposed by a group of experts as a needed clinical trial (26). Success of our pilot study suggests that CHOIR framework can be used to compare the effectiveness and safety among commonly prescribed medications.

The distribution of characteristics of children with CNO receiving TNFi and those receiving bisphosphonates was similar and well balanced across groups, suggesting it is feasible to compare the effectiveness of these two medications within CHOIR. There was a sequential usage of csDMARD prior to use of TNFi or bisphosphonates, making it difficult to determine the effectiveness across all second-line treatments in CHOIR. However, retrospective studies (8,11) and surveys from families (27) have clearly showed the inferiority of csDMARDs compared to TNFi and bisphosphonates the treatment of CNO. Thus, a future main goal will be to focus on two second-line treatments used for CNO, TNFi and bisphosphonates, to provide more robust and accurate information as to their comparative efficacies.

The CNO CDAS is a feasible and robust clinical-based disease activity assessment tool that can be calculated without requiring imaging data. Prior to our study, there has not been any validated, standardized outcome assessments in CNO.

CNO CDAS has been validated through external questionnaires to patients/parents and physicians. The changes in CNO CDAS scores after second-line treatments were highly significant, although patient pain as an individual component did not reach significance. This result highlights the comprehensive and robust aspects of the CNO CDAS. The strong
correlation coefficient between functional limitations with impaired use of arms/legs/back/jaw and physician global assessment with the CNO CDAS showed convergent validity, whereas the significant weak correlation between fatigue, depression, and worry and the CNO CDAS showed divergent validity. Furthermore, the excellent correlation of self-reported disease activity by patient/parent and the CNO CDAS established the capacity of the CNO CDAS as a disease severity assessment for future studies. Future study is needed to determine whether the CNO CDAS is a helpful measure that can be used not only in clinical research for CNO, but also in clinical practice.

Safety monitoring has revealed psoriasis as the most common adverse event within CHOIR, occurring in patients treated with leflunomide and monoclonal TNFi. It is well established that TNFi-associated psoriasis occurs in children with CNO (28–30), and the risk of paradoxical psoriasis after TNFi exposure is higher in children with CNO than in children with juvenile idiopathic arthritis or IBD (29). Concomitant use of methotrexate may decrease the risk of developing psoriasis. This is the first report of psoriasis occurring in a CNO patient treated with leflunomide, but further data is needed to determine if this is a new association. We recommend that cutaneous diseases should always be considered during the history taking and physical examination of children with CNO during follow up visits. Other adverse events including the new onset of immune-mediated conditions and bacteremia were rare. Overall, our data suggest that these medications have a favorable safety profile.

Our study has several limitations. First, the observational nature of CHOIR does not allow randomization therefore the selection of treatments may be subject to the individual provider’s bias. However, the distribution of confounding factors is matched across different second-line treatments, which makes it possible to infer the relative effectiveness. Second, the
follow up time is only two years for the inception cohort; however, we intend to continue data collection for 10 years or until patients transition to adult care. Third, missing data components of the CDAS from the visits prior to the validation of the CDAS did not allow for the comparison of treatment effectiveness using the CDAS. Future studies in CHOIR will include all of the components of the CDAS and lead to a clinical-score based assessment of disease activity and treatment response. Lastly, the MRI component of CHOIR has been collected based on site report of the total number of MRI lesions. A centralized imaging scoring will be needed to ensure that the readings of MRIs are reproducible.

Overall, this pilot study provided knowledge and experience that can be applied towards refining the CHOIR framework. Future efforts include building a larger cohort with more long-term data and clinical assessments to optimize analysis of the relative effectiveness of each CTP treatment option using the CDAS. We ultimately hope that results from larger-scale comparative effectiveness studies using this registry-based cohort can inform more robust evidence-based treatment guidelines and improve outcomes for this rare rheumatic disease.

Conclusion

The CNO CDAS was developed and validated for disease monitoring and assessment of treatment effectiveness for children with CNO. CHOIR provides a feasible and comprehensive framework for comparative effectiveness research in the future.

Funding: The CRMO Warriors Guild of the Seattle Children’s Foundation supported the data collection at Seattle Children’s Hospital, coordination of all participating sites, and the statistical analysis. Dr. Zhao’s work was also supported by CARRA, the Rheumatology Research Foundation, ACR, EULAR, and the Washington Research Foundation. Dr. Wu’s work was
supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant KL2TR002490 and through generous donations from The Kioti Tractor Company, The Kim family, and The Smith family. Dr. Oliver was supported by a CARRA-Arthritis Foundation small grant.

Conflicts of interest: Dr. Wu receives advisory board fees from Pharming Healthcare, Inc. and research funding from Bristol-Myers Squibb, Janssen, and Enzyvant. Dr. Oliver served as a committee member on ACR RheumPAC. Dr. Stern received a Sjogren’s Foundation Grant and served in the Arthritis Foundation Medical Advisory for Idaho and Utah. Dr. Tucker served as a Board member of the Cassie & Friends Society. Dr. Ozen received consulting fees from Novartis and SOBI. Dr. Zhao received research funding from Bristol-Myers Squibb, royalties from UptoDate and consulting fees from Novartis in 2020. Dr. Ferguson is supported by the Marjorie K. Lamb Professorship, serves on the American Board of Pediatrics Pediatric Rheumatology Subboard, has funding from the NIH (NINDS and NICHD) and received a consulting fee from Novartis in 2020. Dr. Dedeoglu receives royalties from UptoDate and received a consulting fee from Novartis in 2020. Dr. Twilt serves on the TMJaw board and has received funding support from CARRA, the Arthritis Society, and CIHR. Drs. Akca, Yasin, Wang, Huang, Rosenwasser, Mosa, Onel, Pardeo, Insalaco, Lapidus, Marrani, and Simonini report no disclosures.

Acknowledgements

The authors thank the CHOIR participants, research assistants and volunteers at all sites including Teresa Dickson, Corinne Lawler, Sumaya Aden, Claire Yang, Thuan Bui, Kyra Shelton, Esha Mahal, Annie Xu, Kellen James, Shayla Nguyen, Zheng Xu, Ava Klein, Chessie Snider, Mabel Ho, Trang Pham, Anna Saack, Paige Trunnell, Emily Deng, Ana Park, Cailey...
Karshmer, Emma Leisinger, Mary Ellen Riordan, and Justine Griswold. We appreciate the help from Ingrid Goh, Mariana Correia Marques, and Min-Lee Chang for the testing of the registry database and the training material. In addition to the authors, the following CARRA CNO workgroup members participated in the February 2021 meeting: Hermann Girschick, Ingrid Goh, Brian Nolan, Tzielan Lee, Annette Jansson, Aleksander Lenert, Lina Jaberi, David Cabral, Lauren Potts, Arielle Hay, Karine Toupin-April, Akaluck Thatayatikom, Ingram Chang, Piya Lahiry, Anja Schnabel, Christian Hedrich, Mikhail Kostik, Nathan Rogers, Achille Marino, Dita Cebecauerova, Phillip Mease, Lindsey Bergstrom, Suzanne Li, Deborah McCurdy, Alex Theos, Matthew Hollander, Samira Nazzar, Farzana Nuruzzaman, Beverley Shea, Ronald Laxer, and Chris Obrien.
References

Table 1. Demographics of the CHOIR inception cohort between 2018 and 2020

<table>
<thead>
<tr>
<th>Variables</th>
<th>Median[IQR] or frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=140</td>
</tr>
<tr>
<td>Age at onset, yr (n=133)</td>
<td>9.04 [7.08, 10.92]</td>
</tr>
<tr>
<td>Age at diagnosis, yr (n=138)</td>
<td>9.90 [7.99, 12.20]</td>
</tr>
<tr>
<td>Disease duration since diagnosis, month (n=133)</td>
<td>26.92 [9.48, 51.02]</td>
</tr>
<tr>
<td>Age at enrollment, yr</td>
<td>11.97 [9.65, 14.31]</td>
</tr>
<tr>
<td>Female</td>
<td>77 (55.0)</td>
</tr>
<tr>
<td>Race, White</td>
<td>118 (84.3)</td>
</tr>
<tr>
<td>Coexisting conditions</td>
<td></td>
</tr>
<tr>
<td>Psoriasis</td>
<td>8 (5.7)</td>
</tr>
<tr>
<td>IBD (Crohn's, UC)</td>
<td>10 (7.1)</td>
</tr>
<tr>
<td>Arthritis (JIA, ERA)</td>
<td>10 (7.1)</td>
</tr>
<tr>
<td>Family history (1st degree relatives)</td>
<td></td>
</tr>
<tr>
<td>Psoriasis</td>
<td>14 (10.0)</td>
</tr>
<tr>
<td>IBD (Crohn's, UC)</td>
<td>10 (7.1)</td>
</tr>
<tr>
<td>Arthritis (JIA, ERA)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Family history (2nd degree relatives)</td>
<td></td>
</tr>
<tr>
<td>Psoriasis</td>
<td>17 (12.1)</td>
</tr>
<tr>
<td>IBD (Crohn's, UC)</td>
<td>11 (7.9)</td>
</tr>
<tr>
<td>Arthritis (JIA, ERA)</td>
<td>4 (2.9)</td>
</tr>
<tr>
<td>Bone biopsy ever obtained</td>
<td>87 (62.6)</td>
</tr>
<tr>
<td>Active spinal lesion on MRI within 12 weeks</td>
<td>17/68 (25.0)</td>
</tr>
<tr>
<td>Active lesion present on MRI within 12 weeks</td>
<td>91/102 (89.0)</td>
</tr>
<tr>
<td>Failed NSAIDs</td>
<td>115 (82.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables, median (IQR) or frequency (%)</th>
<th>DMARD-first n=82</th>
<th>TNFi-first n=31</th>
<th>Bisphosphonate-first n=25</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset, yr (n=133)</td>
<td>9.08 [7.00, 11.04]</td>
<td>8.73 [7.14, 9.55]</td>
<td>9.54 [7.60, 11.54]</td>
<td>0.435</td>
</tr>
<tr>
<td>Age at diagnosis, yr</td>
<td>9.87 [7.70, 12.10]</td>
<td>9.43 [8.62, 11.38]</td>
<td>10.57 [8.79, 13.01]</td>
<td>0.676</td>
</tr>
<tr>
<td>Female</td>
<td>41 (50.0)</td>
<td>17 (54.8)</td>
<td>18 (72.0)</td>
<td>0.153</td>
</tr>
<tr>
<td>Disease duration, yr (n=133)</td>
<td>2.23 [0.98, 3.97]</td>
<td>2.95 [0.68, 5.29]</td>
<td>1.19 [0.55, 3.40]</td>
<td>0.362</td>
</tr>
<tr>
<td>Interval between initiation of treatment and diagnosis (yr)</td>
<td>0.12 [0.00, 0.54]</td>
<td>0.35 [0.05, 1.23]</td>
<td>0.13 [0.07, 0.41]</td>
<td>0.108</td>
</tr>
<tr>
<td>Clinical CNO lesion count* (n=61)</td>
<td>1.00 [0.00, 2.75]</td>
<td>1.50 [0.00, 3.50]</td>
<td>1.00 [0.00, 2.00]</td>
<td>0.861</td>
</tr>
<tr>
<td>Total MRI lesion count* (n=43)</td>
<td>5.00 [2.75, 8.25]</td>
<td>4.50 [2.00, 5.00]</td>
<td>4.00 [3.00, 9.00]</td>
<td>0.909</td>
</tr>
<tr>
<td>Active spinal lesion*</td>
<td>6/25 (24.0)</td>
<td>4/12 (33.3)</td>
<td>8/17 (47.1)</td>
<td>0.299</td>
</tr>
<tr>
<td>Presence of psoriasis</td>
<td>3 (3.7)</td>
<td>2 (6.5)</td>
<td>1 (4.0)</td>
<td>0.842</td>
</tr>
<tr>
<td>Presence of IBD</td>
<td>4 (4.9)</td>
<td>4 (12.9)</td>
<td>1 (4.0)</td>
<td>0.304</td>
</tr>
</tbody>
</table>

*Timing was within 90 days prior to initiation of medications, if there are multiple scores, the closest one to the initiation of medications was used. DMARD: disease modifying anti-rheumatic drug, IBD: inflammatory bowel disease, IQR: interquartile range, MRI: magnetic resonance imaging
Table 3. CDAS convergent and divergent validation using patient reported outcome

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimates</th>
<th>CI</th>
<th>Correlation rho</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician assessment (0-10) (n=809)</td>
<td>0.3</td>
<td>0.27 – 0.33</td>
<td>0.76</td>
<td><0.001</td>
</tr>
<tr>
<td>Difficulty to use limb/back/jaw (n=209)</td>
<td>0.29</td>
<td>0.24 – 0.35</td>
<td>0.66</td>
<td><0.001</td>
</tr>
<tr>
<td>Fatigue (n=208)</td>
<td>0.15</td>
<td>0.10 – 0.20</td>
<td>0.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Sadness (n=207)</td>
<td>0.17</td>
<td>0.09 – 0.24</td>
<td>0.35</td>
<td><0.001</td>
</tr>
<tr>
<td>Worry (n=207)</td>
<td>0.13</td>
<td>0.07 – 0.19</td>
<td>0.24</td>
<td>0.002</td>
</tr>
</tbody>
</table>

CI: confidence interval
Table 4. Correlation of CDAS changes with patient reported disease status change

<table>
<thead>
<tr>
<th>Grouping</th>
<th>n</th>
<th>Median [IQR]</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta CDAS in the reported worsening group</td>
<td>16</td>
<td>9.00[5.25,11.25]</td>
<td><0.001</td>
</tr>
<tr>
<td>Delta CDAS in the reported improved group</td>
<td>64</td>
<td>-3.50[-6.00, -0.75]</td>
<td><0.001</td>
</tr>
<tr>
<td>Delta CDAS in the reported unchanged group</td>
<td>8</td>
<td>-1.00[-3.00, 0.50]</td>
<td>0.526</td>
</tr>
</tbody>
</table>

*Wilcoxon signed rank test with continuity correction comparing to zero
Table 5. CDAS changes after second-line treatments

<table>
<thead>
<tr>
<th>Variables</th>
<th>Before</th>
<th>After</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient pain VAS (n=101)</td>
<td>4.00 [1.00, 7.50]</td>
<td>2.00 [0.00, 7.00]</td>
<td>0.155</td>
</tr>
<tr>
<td>Patient/parent global assessment VAS (n=53)</td>
<td>6.00 [3.00, 8.00]</td>
<td>2.00 [1.00, 5.00]</td>
<td><0.001</td>
</tr>
<tr>
<td>Total number of clinically active lesions (n=126)</td>
<td>1.00 [0.00, 2.00]</td>
<td>0.00 [0.00, 1.00]</td>
<td><0.001</td>
</tr>
<tr>
<td>CNO CDAS (n=41)</td>
<td>12.00 [8.00, 15.50]</td>
<td>5.00 [3.00, 12.00]</td>
<td>0.002</td>
</tr>
</tbody>
</table>

VAS: visual analogue scale, CDAS: clinical disease activity score
Figure 1. Plot of CDAS by the patient-reported disease severity. Spearman’s rank correlation showed rho = 0.75, p<0.001.
Supplement 1. External validation surveys
Patient version (Age 8 and above):

1. How would you rate your function using the rating scale as provided.

☐ Current ease to use your body including arms, legs, back and jaw? Rate the most problematic site from 0 to 10.

0 1 2 3 4 5 6 7 8 9 10

No difficulty Extreme difficulty

☐ Please rate your current pain level from 0 to 10?

0 1 2 3 4 5 6 7 8 9 10

No pain Extremely painful

☐ Please rate your current fatigue from 0 to 10?

0 1 2 3 4 5 6 7 8 9 10

No fatigue Extreme fatigue

☐ How would you rate your current mood from 0 to 10?

0 1 2 3 4 5 6 7 8 9 10

Normal Extremely sad

☐ Please rate your current feelings of worry from 0 to 10?

0 1 2 3 4 5 6 7 8 9 10

No worry Extremely worried
1. How would you rate your current CNO disease activity from 0 to 10?

None Very bad

2. How would you evaluate the current state of your illness?
 - Active disease
 - Inactive disease

3. If there is active disease, please provide an estimation of the overall level of disease activity.
 - Mild disease activity
 - Moderate disease activity
 - High/severe disease activity

4. How would you evaluate the changes of your illness since last visit?
 - Not applicable (1st visit)
 - Much worsened
 - Slightly worsened
 - Stable/unchanged
 - Slightly improved
 - Much improved
Proxy version (age 7 and below):

Patient proxy questionnaire for external validation (Age ≤ 8 years)

1. How would you rate your child’s function using the rating scale as provided.

☐ Current ease to use your body including arms, legs, back and jaw? Rate the most problematic site from 0 to 10.

No difficulty Extreme difficulty

☐ Please rate your child’s current pain level from 0 to 10?

No pain Extremely painful

☐ Please rate your child’s current fatigue from 0 to 10?

No fatigue Extreme fatigue

☐ How would you rate your child’s current mood from 0 to 10?

Normal Extremely sad

☐ Please rate your child’s current feelings of worry from 0 to 10?

No worry Extremely worried

☐ How would you rate your child’s current CNO disease activity?

None Very bad

2. How would you evaluate the current state of your child’s illness?

☐ Active disease

☐ Inactive disease

3. If there is active disease, please provide an estimation of the overall level of disease activity.

☐ Mild disease activity

☐ Moderate disease activity

☐ High/severe disease activity
4. How would you evaluate the changes of your child’s illness since last visit?

- Not applicable (1st visit)
- Much worsened
- Slightly worsened
- Stable/unchanged
- Slightly improved
- Much improved
Supplement 2. Physical exam recording sheet for children with CNO

Please mark with ‘X’ physical exam findings:

<table>
<thead>
<tr>
<th>RIGHT</th>
<th>SITE</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain complaint</td>
<td>Heat/Warmth</td>
<td>Swelling</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITE</th>
<th>Pain complaint</th>
<th>Heat/Warmth</th>
<th>Swelling</th>
<th>Tenderness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sternum (chest bone)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Neck</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Upper spine (Back)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Mid-spine (Back)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Lower spine (Back)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
There are two options for each blank: “present” or “absent”.
Default choice will be “absent”
Supplement 3. The changes of CDAS from groups who reported significantly improved or significantly worsened*

<table>
<thead>
<tr>
<th>CDAS changes in patients who reported significant improvement</th>
<th>n</th>
<th>absolute value, median [IQR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDAS changes in patients who reported significant worsening</td>
<td>22</td>
<td>-2.5[-5.8,-0.3]</td>
</tr>
<tr>
<td>CDAS changes in patients who reported significant worsening</td>
<td>5</td>
<td>11[4,12]</td>
</tr>
</tbody>
</table>

*CDAS changes are calculated using the visit with reported significant improvement/worsening - the adjacent past visit (>30day). IQR: interquartile range.