A gene expression-based diagnostic classifier for identification of severe COVID-19 and multisystem inflammatory syndrome in children (MIS-C)

Alicia Sotomayor-Gonzalez1#, Conor J. Loy2#, Jenny Nguyen1#, Venice Servellita1#, Sanchita Bhattacharya4, Joan Lenz2, Meagan Williams5, Will Suslovic5, Alexandre P. Cheng2, Andrew Bliss2, Prachi Saldhi1, Jessica Streithorst1, Hee Jae Huh6, Abiodun Foresythe2, Miriam Oseguera1, Katrina de la Cruz1, Noah Brazer1, Nathan Wood3, Charlotte Hsieh3, Burak Bahar5, Amelia Gliwa1, Kushmita Bhakta6, Maria A. Perez6, Evan J. Anderson6,7, Ann Chahroudi6, Meghan Delaney5, Atul J. Butte4, Roberta DeBiasi5, Christina A. Rostad6, Iwijn De Vlaminck2*, Charles Chiu1,8*.

Affiliations:
1Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
2Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
3UCSF Benioff Children's Hospital, Oakland, CA, USA
4Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
5Children's National Hospital, Washington D.C., USA
6Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
6Department of Pediatrics and Center for Childhood Infections at Vaccines, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
7Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
8Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA

#These authors contributed equally

*Co-corresponding authors: charles.chiu@ucsf.edu, id93@cornell.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
KEY WORDS: multisystem inflammatory syndrome in children (MIS-C), SARS-CoV-2, coronavirus disease 2019, cell-free RNA, whole blood RNA, RNA sequencing, RNA-Seq, clinical severity, nucleic acid sequencing, host response, disease biomarkers, classifier models, machine learning, random forest, reverse transcription polymerase chain reaction.

ABSTRACT

MIS-C is a severe hyperinflammatory condition with involvement of multiple organs that occurs in children who had COVID-19 infection. Accurate diagnostic tests are needed to guide management and appropriate treatment and to inform clinical trials of experimental drugs and vaccines, yet the diagnosis of MIS-C is highly challenging due to overlapping clinical features with other acute syndromes in hospitalized patients. Here we developed a gene expression-based classifier for MIS-C by RNA-Seq transcriptome profiling and machine learning based analyses of 195 whole blood RNA and 76 plasma cell-free RNA samples from 191 subjects, including 95 MIS-C patients, 66 COVID-19 infected patients with moderately severe to severe disease, and 30 uninfected controls. We divided the group into a training set (70%) and test set (30%). After selection of the top 300 differentially expressed genes in the training set, we simultaneously trained 13 classification models to distinguish patients with MIS-C and COVID-19 from controls using five-fold cross-validation and grid search hyperparameter tuning. The final optimal classifier models had 100% diagnostic accuracy for MIS-C (versus non-MIS-C) and 85% accuracy for severe COVID-19 (versus mild/asymptomatic COVID-19). Orthogonal validation of a random subset of 11 genes from the final models using quantitative RT-PCR confirmed the differential expression and ability to discriminate MIS-C and COVID-19 from
controls. These results underscore the utility of a gene expression classifier for diagnosis of
MIS-C and severe COVID-19 as specific and objective biomarkers for these conditions.

INTRODUCTION

Multisystem inflammatory syndrome in children (MIS-C) is a severe post-infectious
complication of SARS-CoV-2 infection in pediatric patients that is characterized by severe
disease with systemic hyperinflammation and multi-organ involvement. On average,
symptoms of MIS-C first present two to four weeks after acute COVID-19 illness and can
involve a constellation of respiratory, gastrointestinal, cardiac, renal, dermatologic, and
neurological symptoms that in 60% of cases result in hospitalization and possible ICU stay with
invasive mechanical ventilation required due to inadequate oxygenation. Diagnosis of MIS-C
is challenging due to overlapping clinical features with other hyperinflammatory illnesses, such
as Kawasaki Disease (KD) and Toxic Shock Syndrome (TSS), and the lack of objective
biomarker based diagnostic tests hinders accurate diagnosis and effective management and
treatment for this condition. As of August 2022, the CDC has reported 8,798 cases of MIS-C
and 71 deaths attributed to MIS-C in children, defined as individuals under 21 years of age.

Transcriptome analysis by RNA sequencing (RNA-Seq) has been shown to be useful in
the diagnosis of rare genetic diseases and infections such as Lyme disease, influenza, and
COVID-19. In a previous study, analysis of plasma cell-free RNA from patients with MIS-C
or severe COVID-19 yielded distinct signatures of cell injury and death between these two
disease states, including the involvement of unexpected pathways such as endothelial and
neuronal Schwann cell signaling. These signatures were different from those from whole blood
RNA profiling, which showed upregulation of pro-inflammatory signaling pathways in
COVID-19 but downregulation of T cell-associated pathways in MIS-C. Given the findings of distinct signaling pathways11, we hypothesized that whole blood and plasma would be promising analytes for the development of diagnostic assays for severe COVID-19 and MIS-C.

Here we trained machine learning algorithms to identify panels of differentially expressed genes that can distinguish MIS-C or severe COVID-19 from uninfected controls (donors or patients with other inflammatory diseases). We obtained performance accuracies for the gene panels of 85-100\% and confirmed the differential expression of a subset of genes by qRT-PCR. Our results lay the groundwork for the development and clinical validation of multiplexed RNA gene expression-based assays for MIS-C and severe COVID-19.

RESULTS

Transcriptome profiling using RNA-Seq was performed on 195 whole blood RNA (wbRNA) samples and 76 plasma cell-free RNA (cfRNA) samples from 191 subjects, including 95 MIS-C patients, 66 COVID-19 infected patients, and 30 uninfected controls. A mean of 31 million reads were generated per whole blood sample and a mean of 8.6 million reads were generated per cell-free sample. No batch effect based on collection center was observed.

We divided the samples into two sets, a training set (70\%) and a test set (30\%), with consideration to sample origin and severity of disease (Fig. 1A). Next, we performed feature selection on the training set. We removed genes with low counts and near zero variance. We selected the top 300 relevant features selected using differential expression/abundance analysis in DESeq14 (Benjamini-Hochberg adjusted p-value < 0.05, ranked by fold change).
Using the top 300 relevant features, we trained 13 machine learning classification models and fit a logistic regression to distinguish wbRNA or cfRNA profiles from patients with MIS-C, COVID-19, and good health (Fig. 1B-C). We used five-fold cross-validation and grid search hyperparameter tuning to train the models. To determine classification score thresholds...
that optimize classifier performance, we used Receiver Operating Characteristic (ROC) analysis. Next, we applied the trained models to the test set samples, with the classification score threshold determined from the training step, and we quantified the performance of each model for both wbRNA and cfRNA biomarkers (Fig. 2A).

We observed high classification performance comparing samples from patients with MIS-C and COVID-19 for both wbRNA and cfRNA using 9 machine learning algorithms (Fig. 2A, test and train area under the curve (AUC) > 0.95). The generalized linear models with Ridge and LASSO feature selection performed the best for both wbRNA and cfRNA (Fig. 2B-C, wbRNA: accuracy=0.95, sensitivity=1, specificity=0.83; cfRNA: accuracy=0.93, sensitivity=0.96, specificity=0.89). We also observed high classification performance comparing samples from patients with MIS-C and good health for both wbRNA and cfRNA and for most models, as would be expected. Surprisingly, we observed lower classification performance comparing samples from patients with COVID-19 and good health, particularly in the cell-free RNA samples (Fig. 2A). We attribute this to overfitting of the training model, due to a combination of a small sample size for this comparison and the heterogeneity of the affected population. For the severe versus mild/asymptomatic COVID-19 comparison using wbRNA, the best performing algorithms included Random Forest (RF) Extra Trees, Naïve Bayes (NB), and Classification and Regression Trees (RPART), with all models yielding an accuracy of >85% (Fig. 3A).

Next, we incorporated clinical metadata into our modeling using the Random Forest Extra Trees algorithm (Fig. 4A-B). We observed high classification performance for both wbRNA and cfRNA in differentiating between samples from patients with MIS-C and COVID-19. Incorporating the clinical metadata increased the performance of the cfRNA model, but did
not impact the performance of the wbRNA model (Fig. 4C). Both models were performing well to begin with, and we believe that a larger data set would be needed to better measure the difference incorporating clinical metadata has on classification performance.
Figure 2. Comparison of machine learning classification algorithms using RNA-seq data. (A) Receiver operator curve (ROC) area under the curve (AUC) metrics of 13 machine algorithms for MIS-C vs Healthy Controls and Moderate/Severe COVID-19. (B) Comparison of ofRNA and (C) wbRNA in terms of sensitivity and specificity for MIS-C vs Moderate/Severe COVID-19.
learning algorithms and logistic regression for training and test sets in cfRNA or wbRNA across comparisons. (B) Train and test performance of a generalized linear model machine learning algorithm using Ridge feature selection in distinguishing MIS-C and Moderate/Severe COVID-19 in cfRNA and (C) wbRNA.

Figure 3. Comparison of machine learning classification algorithms at predicting COVID-19 severity. (A) Accuracy, sensitivity, and specificity of 13 machine learning algorithms and logistic regression for training and test sets in wbRNA. (B) Receiver operator
Figure 4. A composite model incorporating RNA-seq and clinical metadata in classifying MIS-C from Moderate/Severe COVID-19 (A) Train and test performance of a Random Forest
Extra Trees classification algorithm in distinguishing MIS-C and Moderate/Severe COVID-19 in cfRNA and (B) wbRNA utilizing RNA-seq and clinical metadata. (C) Comparison of ROC AUC metrics between Random Forest Extra Trees classification algorithms utilizing RNA-seq data with and without the addition of clinical metadata in distinguishing MIS-C and Moderate/Severe COVID-19 in cfRNA and wbRNA.

Finally, we evaluated the performance of gene expression from a subset of top differentially expressed genes (DEGs) in whole blood samples from MIS-C, severe COVID-19 (excluding MIS-C cases), and uninfected controls. A subset of 12 differentially expressed genes (FCER1A, ADAMTS2, CD177, LMOD1, KCNA5, OLAH, OTOF, TIFAB, B3GALT2, ITGA7, PLA267, and IFI27) were randomly selected and tested. The results, expressed in cycle threshold (Ct) values, were concordant with the relative differences in expression levels and direction of gene expression (upregulation or downregulation), as reported in the previous study. Differences in expression between MIS-C or severe COVID-19 and uninfected controls were statistically significant for four genes (ADAMTS2, CD177, OLAH, and TIFAB), whereas the differences between MIS-C and severe COVID-19 were significant for three genes (ADAMTS2, CD177, and OLAH).
Figure 5. Confirmation of differential gene expression by quantitative RT-PCR (qRT-PCR). Twelve genes predicted to distinguish MIS-C and severe COVID-19 from uninfected controls were tested by qRT-PCR with 3 sample replicates and 2 assay replicates per gene. Genes highlighted in red text are downregulated in MIS-C and COVID-19 compared to controls. The symbols and error bars denote the mean and standard deviation, respectively, for the 3 sample replicates.

DISCUSSION

Here we developed classifier models for severe manifestations of COVID-19, including MIS-C and moderate-to-severe, non-MIS-C COVID-19, consisting mostly of pneumonia cases, that can result in hospitalization and adverse clinical outcomes such as ICU admission, end-organ failure, and death15. Transcriptome profiling by RNA-Seq was performed on 195 wbRNA and 76 plasma cfRNA samples from 191 subjects, and sequencing data from 70% of samples assigned to a training set were used to generate models with 100% accuracy in discriminating MIS-C from non-MIS-C, and >85% accuracy in severe COVID-19 versus mild/asymptomatic
COVID-19. We subsequently confirmed differential gene expression among MIS-C, severe COVID-19, and uninfected controls by orthogonal qRT-PCR of 11 genes taken from the final model. These findings underscore the potential clinical utility of gene expression-based classification in the development and validation of diagnostic assays for MIS-C and severe COVID-19.

A high degree of overlap in symptomatology and clinical presentation between severe manifestations of COVID-19 and other acute illnesses in hospitalized patients has been reported\(^3\,^4\). Acute syndromes that can mimic MIS-C include Kawasaki disease\(^3\), toxic shock syndrome\(^3\), bacterial or viral sepsis\(^4\), and even non-infectious conditions such as congestive heart failure, whether or not directly related to MIS-C\(^16\). In contrast, acute illnesses that can mimic severe COVID-19 include many infections\(^17\,^19\), including those caused by respiratory viruses (e.g., influenza virus, parainfluenza virus, adenovirus, etc.), bacterial pneumonia, including tuberculosis, malaria, and chronic obstructive pulmonary disease exacerbation. However, whereas molecular or antigen tests for SARS-CoV-2 from nasal swabs can readily diagnose COVID-19, and diagnostic tests for many other illnesses in the differential diagnosis are available, specific biomarkers and tests for MIS-C are lacking to date. Such diagnostic tests for MIS-C would be useful to inform accurate and timely management of patients with inflammatory diseases that have clinically overlapping presentations. They may also be used as a “companion diagnostic” to clinical trials of drugs and/or vaccines by providing an objective measure of the response to and effectiveness of an intervention\(^20\).

Similarly, there is an urgent need for diagnostic tests that can establish whether a patient has severe COVID-19. This is especially important as the widespread availability of effective vaccines to prevent severe complications of COVID-19 has led to a sharp decline in
the number of cases in the United States and worldwide as of September 202221, which may
decrease clinical vigilance for patients at high risk of life-threatening complications or death
from COVID-19. Timely diagnosis can enable patients to promptly receive antiviral therapies
such as ritonavir-boosted nirmatrelvir(Paxlovid)22, the effectiveness of which wanes in patients
with delayed diagnosis and more severe disease, thereby decreasing lengths of stay in the
hospital and reducing utilization of limited health care resources.

Our study employed orthogonal confirmation of transcriptome profiling results by
multiplex qRT-PCR23. This approach not only supports the accuracy of the gene expression-
based models, but also highlights how these assays may be introduced into the clinical setting
soon. Clinical multiplex qRT-PCR syndromic panels are now widely available for diagnosis of
multiple infectious diseases24-26, including neurological infections, acute respiratory illness, and
diarrheal disease, or gastroenteritis. These panels have the advantage of moderate to high-
throughput, batch testing capability, and low cost, none of which is the case with next-
generation sequencing based platforms. Thus, diagnostic assays based on a condensed panel
of 30-50 genes may be more conducive to clinical laboratory workflows than those based on
next-generation sequencing.

Our study has some limitations. First, we had a very limited number of samples from
patients with “MIS-C-like” illnesses – Kawasaki disease, toxic shock syndrome, and/or acute
bacterial sepsis3,4. Comparisons between MIS-C and these aforementioned diseases is
probably more useful than comparisons between MIS-C and COVID-19 or donor controls.
Second, without longitudinal samples, we were unable to ascertain the prognostic utility of
classifier models in predicting clinical outcomes, whether patients will clinically deteriorate and
develop more severe disease over time. Third, although we used a fully independent test set in
these analyses, the divergence in assay performance between the training and test set data suggests that the models may be slightly overfit; additional sample sizes are likely needed to address this problem.

METHODS

Ethics Statement. The University of California, San Francisco (UCSF) Institutional Review Board (IRB) (#21-33403), San Francisco, CA; Emory University IRB (STUDY00000723), Atlanta, GA; Childrens National Medical Center (CNMC) IRB (Pro00010632), Washington, DC; and Cornell University IRB for Human Participants (2012010003), New York, NY each approved the protocols for this study. All samples and patient information were de-identified for analysis and sharing with collaboration institutions. At Emory University the IRB approved protocol was a prospective enrollment study under which parents provided consent and children assent as appropriate for age. At CNMC and UCSF, the IRB protocols were no subject contact sample biobanking protocols under which content was not obtained and data was extracted from medical charts.

Sample Acquisition UCSF. Samples were acquired from UCSF as previously described11. Briefly, hospitalized pediatric patients were identified as having COVID-19 by testing positive with SARS-CoV-2 real-time PCT (RT-PCR). Whole blood samples were collected in EDTA lavender top tubes and diluted 1:1: in DNA/RNA shield (Zymo Research). Remaining blood was centrifuged at 2500 rpm for 15 min and the available plasma was retained. All samples were stored in a -80°C freezer until used.
Sample Acquisition Emory and Children’s Healthcare of Atlanta. Samples were acquired from Emory and Children’s Healthcare of Atlanta as previously described11. Briefly, pediatric patients were classified as having COVID-19 via SARS-CoV-2 RT-PCR and as having MIS-C if they met the CDC case definition. Controls were healthy outpatients with no known history of COVID-19 who volunteered for specimen collection. Whole blood was collected in EDTA lavender top tubes and aliquoted for plasma extraction via centrifugation at 2500 rpm for 15 min. Samples were stored in a -80°C freezer and shipped on dry ice to either UCSF or Cornell for analysis.

Sample Acquisition Children’s National. Samples were acquired from Children’s National as previously described11. Briefly, pediatric patients were classified as having MIS-C if they met the CDC case definition. Whole blood samples were collected and centrifuged at 1300g for 5 minutes at room temperature. Plasma was aliquoted into a cryovial and frozen at -80°C. A DMSO-based cryopreservative (Cryostor CS10) was added in a 1:1 ratio to the cell pellet and then frozen at -80°C in a controlled rate freezing container (i.e., Mr. Frosty) and then transferred to liquid nitrogen within 1 week.

Clinical Data. Patients were stratified as previously described11. For the purposes of this study, patients were classified as having MIS-C by multidisciplinary teams which adjudicated whether a patient met the CDC case definition of MIS-C. COVID-19 was defined as any patient with PCR-confirmed SARS-CoV-2 infection within the preceding 14 days who did not also meet the MIS-C case definition. Clinical data was abstracted from the medical record and inputted into a shared REDCap database housed at UCSF.
Severity. Patients were assigned a severity using the following criteria:

- **Asymptomatic:** This included patients with evidence of SARS-CoV-2 infection by nasopharyngeal RT-PCR but no symptoms of COVID-19, regardless of whether hospitalized for another cause or not hospitalized.

- **Mild:** This included all outpatient cases (who did not require hospitalization for COVID-19) or if hospitalized, only upper respiratory symptoms, including fever, sore throat, cough, rhinorrhea, loss of sense of smell or taste from COVID-19 only.

- **Moderate:** The patient must have been hospitalized due to COVID-19 respiratory disease and/or any systemic/non-respiratory symptoms attributed to COVID-19 (e.g., neonatal fever, dehydration, new diagnosis diabetes, acute appendicitis, necrosis of extremities, diarrhea, encephalopathy, renal insufficiency, mild coagulation abnormalities, etc.) and/or MIS-C.

- **Severe:** The patient must have been hospitalized for COVID-19 or MIS-C with either high-flow oxygen requirement (high-flow nasal cannula, bilevel positive airway pressure (BIPAP), intubation with mechanical ventilation, or extracorporeal membrane oxygenation (ECMO) and/or evidence of end-organ failure (acute renal failure requiring dialysis, coagulation abnormalities resulting in bleeding or stroke, diabetic ketoacidosis, hemodynamic instability requiring vasopressors) and/or dying from COVID-19 or MIS-C. These patients were almost always admitted to the ICU.

Sample processing and sequencing. Samples were processed as described previously. Briefly, samples were received on dry ice, RNA was extracted, libraries prepared, and...
sequenced on a NextSeq or NovaSeq Illumina sequencer. Sequencing data was processed using a custom bioinformatics pipeline which included quality filtering and trimming, alignment to the human GRCh38 reference genome, and counting of gene features.

Gene expression analyses. Whole blood samples from three different categories (MIS-C, severe COVID-19, and healthy controls) were extracted as previously described and eluted in 200 ul. RT-PCR was performed using 5 ul of TaqMan Fast Advanced Master Mix (Applied Biosystems 4369514), 1 ul of probe (predesigned TaqMan Probes, Thermo Fisher), 6 ul of nuclease-free water, and 8 ul of extracted material. All reactions were performed in a QuantStudio Real-Time PCR (Thermo Fisher) following this thermal-cycling conditions: incubation at 50°C for 2 minutes, enzyme activation 95°C for 20 seconds, and 40 cycles of denature step at 95°C for 3 seconds and anneal/extend 60°C for 30 seconds. Results were analyzed using the QuantStudio software.

Machine learning. Machine learning and model training was done using R (v4.1.1) with packages Caret (v6.0.90), tidyverse (v1.3.1), pROC (v1.18.0), PRROC (v1.3.1), DESeq2 (v1.34.0), and data.table (v1.14.2). Sample metadata and count matrices were loaded as dataframes, and split 70/30 into a training set and a test set. Hospital of origin and severity of disease were considered while splitting the data to minimize differences in the training and test sets. Relevant features for model training were selected by filtering and differential expression/abundance analysis. First, genes with low counts (sum counts per million across samples < 15) and near zero variance (R caret package nearZeroVar function) were removed. Next, the top 300 genes were selected using differential expression/abundance analysis using
DESeq14 as ranked by absolute log2 fold change (adjusted p.value < 0.05, basemean > 5).

Machine learning algorithms were trained using the subset meta data using 5-fold cross validation and grid search hyperparameter tuning. Next, class predictions were predicted for the training set. Accuracy, sensitivity, specificity, and ROC AUC were used to measure test performance. The classification models used are generalized linear models with Ridge and LASSO feature selection (GLMNETRidge and GLMNETLasso), support vector machines with linear and radial basis function kernels (SVMLin and SVMRAD), random forest (RF), random forest ExtraTrees (EXTRATREES), neural networks (NNET), linear discriminant analysis (LDA), nearest shrunken centroids (PAM), C5.0 (C5), k-nearest neighbors (KNN), naive bayes (NB), CART (RPART), and logistic regression (GLM).

Acknowledgements. We would like to acknowledge staff members at the UCSF Clinical Laboratories and the UCSF Clinical Microbiology Laboratories for their help in identifying and retrieving patient whole blood samples. We thank the Cornell Genomics Center and the UCSF Center for Advanced Technology for helping with sequencing libraries. At Emory, we thank Christopher Choi, Caroline Ciric, Khalel De Castro, Theda Gibson, Hui-Mien Hsiao, Wensheng Li, Austin Lu, Lisa Macoy, Kathy Stephens, Madeline Taylor, Ashley Tippett and the Children’s Healthcare of Atlanta Research Laboratory for their contributions to specimen and data collection. We thank the patients and their families for contributing their blood to further our understanding of pediatric COVID-19 and MIS-C.

Author Contributions

Conflicts of Interest

I.D.V. is a member of the Scientific Advisory Board of Karius Inc., Kanva Biosciences and GenDX. C.Y.C. is a founder and a member of the Scientific Advisory Board of Delve Bio. I.D.V. and A.P.C. are listed as an inventor on submitted patents pertaining to cell-free DNA (US patent applications 63/237,367, 63/056,249, 63/015,095, 16/500,929) and receive consulting fees from Eurofins Viracor. C.A.R. received funding to conduct clinical research unrelated to this manuscript from BioFire Inc., GSK, MedImmune, Micron, Merck, Novavax, PaxVax, Regeneron, Pfizer, and Sanofi-Pasteur. She is co-inventor of patented RSV vaccine technology (International PCT Application No. PCT/US2016/058976, filed 12/28/2016 by Emory University), which has been licensed to Meissa Vaccines, Inc. with royalties received. Her institution has received funding from NIH to conduct clinical trials of Moderna and Janssen COVID-19 vaccines. E.J.A has consulted for Pfizer, Sanofi Pasteur, GSK, Janssen, and Medscape, and his institution receives funds to conduct clinical research unrelated to this manuscript from MedImmune, Regeneron, PaxVax, Pfizer, GSK, Merck, Sanofi-Pasteur,
Janssen, and Micron. He also serves on a safety monitoring board for Kentucky BioProcessing, Inc. and Sanofi Pasteur. He serves on a data adjudication board for WCG and ACI Clinical. His institution has also received funding from NIH to conduct clinical trials of Moderna and Janssen COVID-19 vaccines. A.B. is a co-founder and consultant to Personalis and NuMedii; consultant to Mango Tree Corporation, and in the recent past, Samsung, 10x Genomics, Helix, Pathway Genomics, and Verinata (Illumina); has served on paid advisory panels or boards for Geisinger Health, Regenstrief Institute, Gerson Lehman Group, AlphaSights, Covance, Novartis, Genentech, and Merck, and Roche; is a shareholder in Personalis and NuMedii; is a minor shareholder in Apple, Meta (Facebook), Alphabet (Google), Microsoft, Amazon, Snap, 10x Genomics, Illumina, Regeneron, Sanofi, Pfizer, Royalty Pharma, Moderna, Sutro, Doximity, BioNtech, Invitae, Pacific Biosciences, Editas Medicine, Nuna Health, Assay Depot, and Vet24seven, and several other non-health related companies and mutual funds; and has received honoraria and travel reimbursement for invited talks from Johnson and Johnson, Roche, Genentech, Pfizer, Merck, Lilly, Takeda, Varian, Mars, Siemens, Optum, Abbott, Celgene, AstraZeneca, AbbVie, Westat, and many academic institutions, medical or disease specific foundations and associations, and health systems. A.B. receives royalty payments through Stanford University, for several patents and other disclosures licensed to NuMedii and Personalis. Research from A.B. has been funded by NIH, Peraton (as the prime on an NIH contract), Genentech, Johnson and Johnson, FDA, Robert Wood Johnson Foundation, Leon Lowenstein Foundation, Intervalien Foundation, Priscilla Chan and Mark Zuckerberg, the Barbara and Gerson Bakar Foundation, and in the recent past, the March of Dimes, Juvenile Diabetes Research Foundation, California Governor Office of Planning and Research, California Institute for Regenerative Medicine, LOreal, and
Progenity. The authors have declared that none of these companies or competing interests had any role in this work or manuscript.

Data and Code Availability

All code will be made available on Github. Processed sequencing data will be deposited in the National Institutes of Health (NIH) and National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) and Gene Expression Omnibus (GEO) repositories under restricted access via Database for Genotypes and Phenotypes (dbGAP).
REFERENCES

