Mapping the association of polygenic risk scores with autism and ADHD traits in a single city region

Zoe E. Reed¹,²*, Richard Thomas³, Andy Boyd³,⁴, Gareth J. Griffith¹,³, Tim T. Morris¹,³, Dheeraj Raj³,⁵,⁶, David Manley⁷,⁸, George Davey Smith¹,³, Oliver S.P. Davis¹,³,⁵,⁹.

1) MRC Integrative Epidemiology Unit at the University of Bristol, UK.

2) School of Psychological Science, University of Bristol, UK

3) Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK.

4) ALSPAC, Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK.

5) National Institute for Health Research Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK.

6) Avon and Wiltshire Partnership NHS Mental Health Trust.

7) School of Geographical Sciences, University of Bristol, BS8 1SS, United Kingdom.

8) Department of Urbanism, Delft University of Technology, The Netherlands

9) Alan Turing Institute, London, UK.

*Corresponding author: zoe.reed@bristol.ac.uk

Running title: Mapping polygenic risk of autism and ADHD

Keywords: Polygenic risk score, autism, ADHD, geographical, ALSPAC

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The prevalence of autistic traits and Attention Deficit Hyperactivity Disorder (ADHD) traits is known to vary by location. The genetic and environmental aetiology of these traits may also vary spatially, with geographical environments amplifying or masking genetic influences. To investigate this, we constructed polygenic risk scores for autism and ADHD in participants from the Avon Longitudinal Study of Parents and Children (N=4,255 to 6,165). We estimated the association between polygenic risk and autistic and ADHD trait scores across the area surrounding the city of Bristol in the southwest of the United Kingdom. Mapping the results shows how associations between polygenic risk and trait scores varied by location. Our maps suggest that there is evidence of spatial variation in genetic associations for all traits. For social autistic traits and an autistic trait mean factor score, patterns of association were consistent among risk scores constructed at different p-value thresholds. The patterns for ADHD traits were more variable. We examined similarities between these maps and those of environmental variables associated with the prevalence of autism and ADHD, and found that in many cases the spatial distributions were correlated. This finding of spatial variation in genetic associations for autism and ADHD traits will help us better understand the factors that contribute to the complex interplay between the environment and genetic influence.
Introduction

The prevalence of both autism and Attention Deficit Hyperactivity Disorder (ADHD) is known to vary by location (1–6). For example, both more commonly occur in areas of greater urbanicity, although evidence for this is less clear for ADHD than for autism (7–12). Autism appears to be more prevalent in areas with greater socioeconomic position (SEP) and more readily available diagnostic services (13–15). Some studies have suggested lower ADHD prevalence in areas with greater solar intensity (5,16), which is in line with studies suggesting lower vitamin D levels are associated with increased ADHD risk (17). Both traits also show strong genetic influence, with heritability estimated at around 80% (18–21). Recent genome-wide association studies (GWAS) of autism (22) and ADHD (23) have confirmed that both are highly polygenic. Polygenic risk scores (PRS) for autism and ADHD constructed from associated variants have been shown to predict continuous measures of autistic and ADHD traits in other populations (24,25).

It is currently unclear whether this genetic aetiology varies spatially in a similar way to the prevalence. Previous research on autistic traits using twin data suggests there is broad spatial variation within countries in genetic and environmental influences (26,27). However, we do not yet know whether similar variation is apparent at higher spatial resolution within a single city region, or using known genetic variants associated with risk of autism and ADHD, which could be informative for targeting interventions.

In this study we used variants identified in previous GWAS of autism and ADHD (22,23) to construct PRS for participants in the Avon Longitudinal Study of Parents and Children (ALSPAC), a geographically clustered birth cohort. We conducted
weighted analyses across a regular grid of spatial point locations covering the area that surrounds the city of Bristol in the southwest of the United Kingdom (UK), to examine high resolution spatial variation in associations between the PRS and autism and ADHD traits.
Methods

Cohort description

ALSPAC initially recruited 14,541 pregnant women resident in the former county of Avon centred on the city of Bristol, UK with expected delivery dates between 1st April 1991 and 31st December 1992. Of these initial pregnancies, 13,988 children were alive at age 1. When the children were approximately age 7, additional eligible cases who had failed to join the study originally were recruited, resulting in a total sample size of 14,901 children (28–30). The study website contains details of all the data that is available through a fully searchable data dictionary and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/).

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. Consent for biological samples has been collected in accordance with the Human Tissue Act (2004). The participants included in these analyses were restricted to those residing in the area in and around Bristol at the time measures were obtained.

Phenotypic measures

Attention-deficit hyperactivity disorder traits

We used parent responses on the Strengths and Difficulties Questionnaire hyperactivity/inattention subscale (31), completed when children were a mean age of 9.64 (SD=0.12). This scale has good internal consistency (Cronbach’s alpha of 0.78)
(32), test-retest reliability (0.81) (33), sensitivity (75.4%) (34) and specificity (84.4%) (35) for ADHD diagnosis. It can also sufficiently distinguish between clinical and community samples (36). The scale consists of the following five items: ‘Restless, overactive, cannot stay still for long’, ‘Constantly fidgeting or squirming’, ‘Easily distracted, concentration wanders’, ‘Think things out before acting’ (reverse scored), ‘Sees tasks through to the end. Good attention span’ (reverse scored). Responses are scored as ‘Not true’ = 0, ‘Somewhat true’ = 1 and ‘Certainly true’ = 2, with a maximum total score of 10. The distribution of total scores is provided in Supplementary Figure 1.

Autistic traits

We used two measures of autistic traits. The first, which we refer to as social autistic traits, was administered on a single occasion, at a similar age to our measure of ADHD traits (mean age 10.72, SD=0.12). We used total scores from parent responses to the Social and Communication Disorders Checklist (SCDC) (37). The SCDC is a screening questionnaire for social and communication difficulties and has high internal consistency (Cronbach’s alpha of 0.93), test-retest reliability (0.81), sensitivity (0.90%) and specificity (0.69%) when discriminating between those with and without an autism diagnosis (37). It consists of 12 items, with responses scored as ‘Not true’ = 0, ‘Quite/Sometimes true’ = 1, and ‘Very/Often true’ = 2, giving a score between 0 and 24. The distribution of total scores can be seen in Supplementary Figure 2.

The second measure, which we refer to as the autistic traits mean factor score, was derived from 93 measures (including SCDC measurements) obtained at multiple time points from age 6 months to 9 years (38). The SCDC measure described above
is a more specific measure of autistic social traits, but the autistic traits mean factor score encompasses a broader measure of autistic traits, and provides a useful test of the sensitivity of the results to changes in phenotypic measurement. Further details can be found in the Supplementary Materials (Section 1 and Figure 3). We flipped the sign of the score so that a more positive score corresponds to a stronger indication of autistic traits. The phenotypic correlation between the two measures was 0.44.

Covariates

We included the child’s sex and age at assessment as covariates in analyses of social autistic and ADHD traits. For the autistic traits mean factor score we included sex as a covariate, but not age since the score is a composite of measures at multiple time points. However, we note in the original article that there was variation in the factor structure across time, with more factors with increasing age. We also included the first 20 principal components (PCs) of population structure in our unweighted analyses to assess whether this may influence our findings.

Location data and weightings

We conducted analyses at a regular hexagonal grid of 1036 locations (see Supplementary Figure 4) across the ALSPAC recruitment area, comprising the three health districts that existed in the old county of Avon in the UK (Southmead, Frenchay, and Bristol and Weston District Health Authorities). This spatial resolution was chosen as it allowed a good trade-off between greater resolution and the number of data points that were manageable for analysis in a multi-step model where the ALSPAC team and the researchers exchanged datasets several times to
allow the use of accurate spatial information from participants without it being
released to researchers. See Supplementary Materials (Section 2) for further details.

Participants’ contributions to each analysis were weighted by a function of their
Euclidean distance from the analysis location. Participants were assigned locations
corresponding to the centroid of their residential postcode area at age 10. A
postcode area groups a mean of 15 neighbouring properties and covers a mean
area of 43,830m². The weighting function is given below, where \(x_i \) is the participant’s
location, \(x \) is the analysis location, \(d \) is the Euclidean distance between these
locations, and \(w_i \) is the resulting weight for each participant:

\[
d = |x - x_i| + |y - y_i|
\]

\[
w_i(x) = \frac{1}{d^{0.5}}
\]

The power parameter we have used is 0.5, as this allows for a trade-off between
more accurate estimation of the association and accurately localising this, where
estimates are smoothed somewhat towards population means whilst still allowing for
patterns of variation to be observed.

This allowed each participant to contribute to each analysis, with participants living
closer to an analysis location contributing greater weight to the analysis.

To preserve participants’ anonymity, locations were matched, and distances
calculated by the ALSPAC team, who returned an anonymised dataset for each
location to the researchers for analysis.
Genetic data

Genetic data for children and mothers were obtained from a combination of blood and buccal samples (further details in Supplementary Materials Section 3). After quality control and removing those who had withdrawn consent, there were 8,252 children and 7,914 mothers with genotype data available.

Polygenic risk score construction

The construction of PRS is described in detail in Supplementary Materials (Section 4). Briefly, we used Plink (version 2) (39) to construct weighted PRS for each participant from GWAS summary statistics for ADHD (23) and autism (22) by summing the number of risk alleles present for each SNP (0, 1 or 2) weighted by the effect of that SNP in the GWAS discovery sample. We generated maps for multiple PRS constructed at the p-value thresholds (p_T) $p < 5 \times 10^{-8}$, $p < 1 \times 10^{-5}$, and $p < 0.5$ in the discovery GWAS, and for the threshold that explained the most variance in the phenotype in the full, unweighted ALSPAC sample. We standardised PRS to z scores, so results are presented on the scale of standard deviation (SD) changes in PRS.

Statistical analysis

Spatial variation using weighted polygenic risk score analyses

Initially we conducted analyses without weighting by location to obtain estimates for the association of the PRS with the phenotypes (see Supplementary Materials Section 5). We then ran local linear regression models for each of 1,036 locations, with participants’ contributions to each analysis weighted by the Euclidean distance from the analysis location. We compared the spatial distribution of results for
different pT with the Lee statistic (spdep R package, version 1.1-2) (40–42). This is a
global bivariate spatial correlation test, which integrates an aspatial bivariate
measure (Pearson’s correlation) and a univariate spatial measure (Moran’s I). This
allows it to capture spatial co-patternning and therefore the extent to which bivariate
associations are spatially clustered. Results are interpreted as the spatial similarity of
the two distributions (a combination of the correlation between the measures and
spatial clustering). We have no strong hypothesis about the direction of effect and
results in either direction were of interest. Therefore p-values reflect two-tailed tests.

Maps of environmental characteristics

We examined several environmental variables previously found to be associated
with the prevalence of autism and ADHD, as described in the introduction: population
density (7,43,44)(10,45–47); parental education level, neighbourhood educational
attainment and SEP (13,48) (6,49); and low exposure to sunlight (5,50,51).

To assess whether these environmental characteristics were also correlated with
differences in the strength of the association between polygenic risk scores for
autism and ADHD and the phenotypes themselves, we created maps of each
environmental measure over the same area, using data from external sources. We
quantify these in our model by including measures of population density, average
qualification level, level of urbanicity, the index of multiple deprivation (IMD) and
hours of bright sunshine (see Supplementary Materials Section 6 and
Supplementary Table 1 for further details). Data for population density and IMD were
log transformed due to positive skews. We used the Lee statistic to compare the
spatial distributions of these environmental variables to the maps of variation in PRS
association.
Associations between polygenic risk scores and participation and migration measures

To index sampling bias, we tested the association between children’s and mothers’ PRS, participation rates and migration out of the Avon area. Loss to follow-up could be associated with polygenic risk for autism and ADHD, as suggested in a previous study (52). To check for this, we created separate measures of each child’s and each mother’s participation in ALSPAC, up to child age 11 (see Supplementary Materials Section 7). For analyses using mother’s PRS we adjusted for mother’s age.
Results

Sample description

After excluding those without the phenotypic, location and genetic data required, we included between 4,255 and 6,165 children in each analysis (see Table 1).
Table 1. Descriptive statistics for participants included in analyses for social autistic traits, autism mean factor score and ADHD traits.

<table>
<thead>
<tr>
<th>Trait measure</th>
<th>Median trait score (IQR)</th>
<th>Mean age at measurement (SD)</th>
<th>N</th>
<th>Percentage male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social autistic traits</td>
<td>1.00 (0.00-3.00)</td>
<td>10.72 (0.12)</td>
<td>4,255</td>
<td>49.87%</td>
</tr>
<tr>
<td>Autistic traits mean factor score</td>
<td>0.08 (-0.14-0.25)</td>
<td>Cross-age composite</td>
<td>6,165</td>
<td>50.84%</td>
</tr>
<tr>
<td>ADHD traits</td>
<td>3.00 (1.00-4.00)</td>
<td>9.64 (0.12)</td>
<td>4,309</td>
<td>50.24%</td>
</tr>
</tbody>
</table>

ADHD=Attention Deficit Hyperactivity Disorder; IQR = Inter Quartile Range; SD = Standard Deviation.
Population-level polygenic risk score analysis

Results for population-level PRS analyses, with and without adjustment for 20 PCs of population structure, are presented in Supplementary Tables 2, 3 and 4 for ADHD traits, social autistic traits and the autistic traits mean factor score, respectively. When adjusting additionally for the 20 PCs, the effects are attenuated. The p-value thresholds that explain the most variance are 0.5 for ADHD traits (N=5,258; r^2=0.011), 0.1 for social autistic traits (N=5,200; r^2=0.00068) and 0.5 for the autistic traits mean factor score (N=7,505; r^2=0.0012). We have generated maps for these pT along with the other selected pTs, resulting in 3 analyses for ADHD traits and the autistic mean factor score and 4 analyses for social autistic traits (Figures 1-3).

Spatially weighted polygenic risk score analyses

Maps of spatially weighted PRS for ADHD traits (N=4,309) are presented in Figure 1 (a-c) (pT: 5×10^{-8}, 1×10^{-5} and 0.5, respectively). From visual inspection it is difficult to recognise patterns across the thresholds used. However, there are a few areas that appear more consistent, for example within Bristol, the north-west generally has lower genetic influence whilst the south has higher genetic influence.

FIGURE 1 HERE

Results for spatially weighted PRS for social autistic traits (N=4,255) are presented in the maps in Figure 2 (a-d) (pT: 5×10^{-8}, 1×10^{-5}, 0.1 and 0.5, respectively). These results appear more consistent across the different pT than for ADHD traits, even though the autistic traits PRS explains less variance than the ADHD PRS. We generally see higher effect estimates in the south-west and north-west of the region than in the east. Low estimates are also seen around the most south-west area and
this is most apparent for the 0.5 pT. The area within the city of Bristol shows variation, with north-western areas of the city generally showing higher estimates compared to the south-eastern areas.

FIGURE 2 HERE

Results for spatially weighted PRS for the autistic traits mean factor score (N=6,165) are presented in the maps in Figure 3 (a-c) (pT: 5×10^{-8}, 1×10^{-5} and 0.5, respectively). These results appear less consistent across the different pT than those for social autistic traits. However, there do appear to be some consistencies: the most south-westerly area, with a similar pattern to social autistic traits, is relatively higher at lower pT compared to other areas, and lower at the higher pT. The east has generally low values compared to the west and northern areas, similarly to social autistic traits. We also see within-city variation for Bristol, with the north-western areas showing higher estimates compared to the south-eastern areas of the city of Bristol at higher pT.

FIGURE 3 HERE

We compared the maps across the different pT for each trait using Lee’s L statistic (Supplementary Table 5). As is apparent from visual inspection, results for ADHD traits are not strongly spatially correlated across pT, although maps for pT 5×10^{-8} and 1×10^{-5} are more correlated (Lee’s statistic=0.14, $p=0.002$) than maps for pT 1×10^{-5} and 0.5 (Lee’s statistic=-0.008, $p=0.07$). For social autistic traits we observe stronger associations across all pT (Lee’s statistic=0.57 to 0.81, $p<2 \times 10^{-04}$), confirming the observed spatial consistency in the patterns. For the autistic traits mean factor score, the correlations are much weaker (Lee’s statistic=-0.22 to 0.07, $p<2 \times 10^{-04}$).
Risk factor maps and comparison of spatial distributions

Maps of population density, average qualification level, IMD, level of urbanicity and hours of sunshine are shown in Figure 4 (a-e), respectively. Results for the Lee test comparing these maps with the PRS maps, at the pT that explained the most variance, are shown in Supplementary Table 6. To account for multiple testing, we applied a Bonferroni correction and considered a p-value <0.003 to be strong evidence of correlation. For ADHD traits, there is strong evidence of correlations with all the environmental measures. Strong evidence of a positive correlation was found with average qualification level (Lee statistic=0.07, p<2x10^{-04}) and negative correlations with the other measures (Lee statistic=-0.04 to -0.47, p<2x10^{-04}), with the strongest correlation being with hours of sunshine. For social autistic traits, we found strong evidence of positive correlations with average qualification level (Lee statistic=0.07, p<2x10^{-04}) and hours of sunshine (Lee statistic=0.57, p<2x10^{-04}) and negative correlations with population density (Lee statistic=-0.11, p<2x10^{-04}) and IMD (Lee statistic=-0.18, p<2x10^{-04}). The autistic traits mean factor score showed strong evidence of positive correlation with average qualification level (Lee statistic=0.13, p<2x10^{-04}) and negative correlation with IMD, urbanicity and hours of sunshine (Lee statistic=-0.05 to -0.19, p <2x10^{-04}).

FIGURE 4 HERE

Polygenic risk scores and participation and migration measures

There was strong evidence for a negative association of child’s ADHD PRS with child’s participation (β=-0.30; 95% CI=-0.45, -0.15; p=9.05x10^{-05}) and mother’s ADHD PRS with mother’s participation (β=-0.35; 95% CI=-0.54, -0.16; p=2.72x10^{-04})
(Supplementary Table 7). We did not find strong evidence of associations of either autism or ADHD PRS with the migration measures (see Supplementary Table 8).
Discussion

We found spatial variation in genetic influences for both autistic and ADHD traits measured using PRS in a single city region. This corroborates previous research using twin analysis that identified spatial variation in the genetic influence of autistic traits on a national scale (26). Our results were consistent across different pT for social autistic traits, but less consistent for the autistic traits mean factor score and ADHD traits.

This spatial variation in genetic influence on autism and ADHD traits (by which we mean the association between autism or ADHD PRS and these traits) supports interplay between genetic influence and geographical environments, indicative of gene-environment interactions or correlations. Despite the expected low predictive power of the PRS, the association between PRS for autism and ADHD with their phenotypic counterparts does vary spatially, even when accounting for 20 principal components of genetic population structure. This suggests that certain geographically distributed environments draw out or mask genetic influences on autism and ADHD. This highlights the importance of local context when conducting PRS studies, going beyond the typical population-level analyses. However, it is difficult to identify consistent patterns across the pT for ADHD. We note that confidence intervals for each point overlap with those of the corresponding points on the other pT maps, so despite appearances the maps are not necessarily inconsistent. We believe this consistency may become clearer as GWAS of larger samples identify variants associated with autism and ADHD that together account for a greater proportion of the variance in the phenotype.
We investigated specific environmental characteristics that may be correlated with this spatial variation in associations between PRS and respective traits. We found strong evidence of spatial correlation between the variation in these PRS associations and environmental characteristics that had previously been associated with population prevalence, with the exception of population density for the autistic traits mean factor score, and urbanicity for social autistic traits. Many of these environmental characteristics are correlated, so the consistency of associations is reassuring. The relationships we observe with qualification level and IMD suggest that area level education and SEP may amplify genetic influences on these neurodevelopmental traits. This fits with previous phenotypic literature suggesting their prevalence is correlated with SEP (13,48,49). Qualification level tends to be higher in less deprived areas, so the fact we observe opposite correlations for these with the PRS association maps fits with this relationship. As this is consistent across most measures, it may be an interesting relationship to examine in future research.

We observe a strong relationship between the maps for PRS associations with social autistic traits and hours of sunshine, where there is greater genetic influence in areas with more sunshine. This may be linked to previous reports of a relationship between decreased vitamin D levels and increased prevalence of autism, where pregnancy may be a critical exposure period (50,51,53,54). Despite a similar association for prevalence (5), the correlation between maps for PRS associations with ADHD traits and annual sunshine was in the opposite direction. This is not inconsistent, because influences on prevalence and aetiology are not necessarily the same. But if true it would suggest a different mechanism of action where for autistic traits genetic influences are more predictive in areas of greater sunshine, whereas for ADHD genetic influences are more predictive in areas with relative lack of sunshine.
However, as noted earlier, the maps for ADHD are not strongly correlated across thresholds (unlike for social autistic traits), so the results for ADHD should be interpreted with caution. We also found negative correlations between maps of genetic influence and maps of population density and urbanicity, suggesting that the genetic variants are more predictive of these traits in rural areas. Alongside previous findings of higher prevalence for autism in more urban and densely populated areas (7,43,44), this might suggest that the impact of urban living is a more direct environmental effect that makes genetic variation relatively unimportant.

Whilst we observe spatial variation in genetic influences in this study, there are a few points to consider when interpreting these results. In our study, we found that greater polygenic risk for ADHD was associated with decreased participation for both children and mothers, in line with a previous study in ALSPAC (52). Therefore, results for analyses including the ADHD PRS may be biased by selection on study participation, which could result in distorted estimated associations. The child participation measures will partially capture mother’s participation as well (e.g., child base questionnaires completed by mothers), but due to the age we examined there were few measures available that were completed by the child. Similarly, migration could plausibly occur due to underlying genetic risk for a trait in parents, which in turn could influence the spatial patterning for offspring genetic risk. However, as we do not find evidence of this, it is unlikely that this will be having a large effect on our findings. The ADHD PRS explained more variance in ADHD traits than the autism PRS with social autistic traits. This is in line with the phenotypic variance explained in the original articles: 5.5% for ADHD compared to 2.45% for autism. However, overall, the variance explained in our study was very low, so the spatial variation in genotype may not reflect spatial variation in the phenotype for this reason. This is
likely to improve as GWAS become larger and more powered and future studies should explore this further as a link between spatial variation in genotype and phenotype could help with health service delivery.

Although both autistic traits and ADHD vary in presentation across the lifespan, most of our measures were obtained only at age 10. However, autism and ADHD are neurodevelopmental conditions with traits arising early so it is likely these will be apparent by the time of measurement. The autistic traits mean factor score also addresses this issue by incorporating measures taken from a range of time points throughout childhood. However, this mean factor score also has its own limitations. For example, because it is an average score it assumes that the measures all explain equal amounts at each time point, so we are assuming a lifetime spatial measurement invariance, which may not be the case. Additionally, the correlation with the SCDC measure is not strong, likely due to the measures capturing different aspects of autistic traits.

There will be measurement error in the estimated effect sizes for individual DNA variants used to construct the polygenic risk scores, which may reduce their precision (55), although the discovery GWAS sample sizes were large, which helps to mitigate this issue. Similarly, there is likely to be a mixture of true and false positive associations in GWAS with many genome-wide significant hits. Modelling associations for a range of p_T and observing consistent patterns, as we have, helps to overcome this potential issue (56). Our analyses were conducted in a population sample of European ancestry, so caution should be exercised when generalising the results to populations from other ancestral backgrounds (57). Assortative mating is also thought to be more common in autism (58), which may bias autism GWAS and
therefore make the PRS less accurate (59). However, the exact impact this would have on our results is not clear.

In summary, our results demonstrate that there is spatial variation in known genetic influences for both autism and ADHD traits in a single city region. This variation is associated with some of the environmental factors that are also associated with prevalence. Future research might aim to establish the cause of these associations and examine a wider range of environmental variables, because there is no reason environments influencing variance should be restricted to those that influence mean levels of a trait. We hope that mapping the landscape of genetic influences may aid the identification of new spatially distributed environments that moderate genetic risk for autistic traits or ADHD. Identifying these factors and how they interact could one day lead to social policy interventions to improve outcomes for those with these developmental traits.
Acknowledgements

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses.

Funding

This work was supported in part by the UK Medical Research Council Integrative Epidemiology Unit at the University of Bristol (Grant ref: MC_UU_00011/1). The UK Medical Research Council and Wellcome Trust (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and ZER and OSPD will serve as guarantors for the contents of this paper. A comprehensive list of grant funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). AB and RT were funded by the Natural Environment Research Council (Grant ref: R8/H12/83/NE/P01830/1) and the Medical Research Council (Grant ref: MC_PC_17210). ZER was supported by a Wellcome Trust PhD studentship (Grant ref: 109104/Z/15/Z). GWAS data for children were generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. OSPD is funded by the Alan Turing Institute under the EPSRC (Grant ref: EP/N510129/1). This study was also supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol (BRC-1215-2011).

Conflict of Interest: The authors have no conflicts of interest
Supplementary information is available at MP’s website
References

47. Madsen KB, Erbsbøll AK, Olsen J, Parner E, Obel C. Geographic analysis of the variation in the incidence of ADHD in a country with free access to healthcare: A

Figure 1. Mapping the association of the polygenic risk score for ADHD with ADHD traits shows a lack of consistency in results across different p-value thresholds over the area of Avon

Spatial variation in genetic influences ranging from low (blue) to high (red). Histograms show the distribution of effect estimates, coloured in the same way.

Figure 2. Mapping the association of the polygenic risk score for autism with social autistic traits shows consistent variation across the p-value thresholds over the area of Avon

Spatial variation in genetic influences ranging from low (blue) to high (red). Histograms show the distribution of effect estimates, coloured in the same way.

Figure 3. Mapping the association of the polygenic risk score for autism with the autistic traits mean factor score shows some consistency in variation across the p-value thresholds over the area of Avon

Spatial variation in genetic influences ranging from low (blue) to high (red). Histograms show the distribution of effect estimates, coloured in the same way.

Figure 4. Maps of population density (a), average qualification level (b), Index of Multiple Deprivation (IMD) (c), level of urbanicity (d) and hours of sunshine (e) (30-year annual average from 1981 to 2010) for the ALSPAC catchment area, in and around Bristol.
The maps in the figures show a) log transformed population density (from 2001 census data) ranging from low (light blue) to high (dark blue), b) average qualification level (from 2001 census data) ranging from low (blue) to high (red), c) log transformed Index of Multiple Deprivation (IMD) (from 2000) ranging from low (light blue) to high (dark blue), d) level of urbanicity (from 2001 census data) showing urban i.e., with a population greater than 10,000 (red), towns/fringe areas which included an settlement area classified as part of a small town or urban fringe (purple) and villages, which included dispersed dwellings, hamlets and villages (blue), the latter two classifications determined based on household densities and e) hours of sunshine (30-year annual average from 1981 to 2010) ranging from low (blue) to high (red). Histograms shows the distribution of the respective measures coloured in the same way.