Internal and external forces affecting vaccination coverage: modeling the interactions between vaccine hesitancy, accessibility, and mandates

Kerri-Ann Anderson and Nicole Creanza
Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37212

Abstract:
Society, culture, and individual motivations affect human decisions regarding their health behaviors and preventative care, and health-related perceptions and behaviors can change at the population level as cultures evolve. An increase in vaccine hesitancy, an individual mindset informed within a cultural context, has resulted in a decrease in vaccination coverage and an increase in vaccine-preventable disease (VPD) outbreaks, particularly in developed countries where vaccination rates are generally high. Understanding local vaccine cultures, which evolve through an interaction between beliefs and behaviors and are influenced by the broader cultural landscape, is critical to fostering public health. Vaccine mandates and vaccine inaccessibility are two external forces that interact with individual beliefs to affect vaccine-related behaviors. To better understand the population dynamics of vaccine hesitancy, it is important to study how these external factors could shape individual vaccination decisions and affect the broader health culture. Using a mathematical model of cultural evolution, we explore the effects of vaccine mandates and vaccine inaccessibility on a population’s level of vaccine hesitancy and vaccination behavior. We show that vaccine mandates can lead to a phenomenon in which high vaccine hesitancy co-occurs with high vaccination coverage, and that high vaccine confidence can be maintained even in areas where access to vaccines is limited.
Introduction:

A comprehensive understanding of health behaviors and their potential for exacerbating or mitigating disease risk requires insight into how cultural beliefs influence these behaviors. Local vaccine cultures—the shared beliefs among individuals within a community about vaccine preventable disease etiology, prevention, and treatment—can affect an individual’s vaccine attitudes and decisions [1]. The definition of “vaccine hesitancy” varies between sources, spanning from an attitude of uncertainty about vaccines to the behavior of vaccine refusal. Here we use the definition from [2]: “a state of indecision and uncertainty that precedes a decision to become (or not become) vaccinated.” Vaccine hesitancy was recently named one of the World Health Organization’s ten threats to global health [3] because of its link to reduced vaccination coverage and more frequent outbreaks of vaccine-preventable diseases (VPDs) worldwide. Vaccine hesitancy is a key indicator of the vaccine culture of a population, which is influenced by multiple societal- and individual-level factors, such as the vaccination coverage of the population, the perceived risk of vaccine-preventable diseases, the level of trust in specific vaccines, and the confidence in the healthcare system [4,5].

Two non-cultural factors that play a role in shaping vaccine cultures are vaccine mandates, which drive vaccination uptake (even among vaccine-hesitant people), and vaccine inaccessibility, which hinders vaccine uptake (even among vaccine-confident people). More is understood about the effects of mandates. Compulsory vaccination has been met with opposition since its implementation in the 1800’s [6,7]. This opposition, intertwined with religious and political ideas, led to the allowance of vaccination exemptions based on medical and non-medical (e.g. religious or philosophical) reasons [8]. Though the implementation of compulsory vaccinations generally results in a drastic reduction in disease incidence and mortality [9,10], the high vaccination coverage that follows can facilitate the public perception of reduced disease severity and thus reduced vaccine necessity [11,12]. In this vein, non-medical exemptions to compulsory vaccinations have been increasing, particularly in wealthier countries where belief systems can act as the main barrier to vaccination, as opposed to lack of vaccine access [13,14]. This rise in non-medical exemptions appears to have a non-trivial effect on public health, since these exemptions are correlated with the recent increase in VPD outbreaks [15,16]. However, the circumstances under which vaccine mandates might lead to increased vaccine hesitancy remain uncertain.
Even less understood is the potential association between vaccine (in)accessibility and vaccine attitudes. Vaccine accessibility issues are external pressures that negatively impact vaccination rates and coverage. Challenges to vaccine accessibility are particularly prevalent in low and middle-income countries as well as rural areas in developed countries [17,18]. For example, storage capabilities, distribution logistics, and affordability can limit the number of vaccine doses available in a specific area, and thus reduce the number of individuals who can receive a vaccine, leaving vulnerable communities at risk for a VPD outbreaks [17,19]. This limited access may also interact with psychological and cultural factors, such as distrust in the healthcare system, potentially exacerbating the effects of low vaccine accessibility. Further, vaccine cultures can be shaped by experience with vaccines and the disease: for example, living in a rural area could limit exposure to the disease and alter the perception of disease risk, and a lack of vaccine access for an extended period could entrench certain attitudes about vaccines in a culture. Thus, to explain the differences in vaccination outcomes and resulting disease risk across human populations, it is crucial to better understand how cultural beliefs and behaviors interact with external pressures that increase or reduce vaccination coverage.

Cultural niche construction is a process in which humans modify their cultural environments—for example, their beliefs, behaviors, preferences, and social contacts—in ways that subsequently alter evolutionary pressures on the population and its culture [20]. Mathematical models of cultural niche construction have been used to explain the evolution of behaviors related to religion, fertility, and large-scale human conflict [20–25]. Since health cultures can be shaped by or influence the larger cultural landscape, the cultural niche construction framing can give insight into the cultural dynamics shaping disease risk. By using this type of model to simulate the interactions between beliefs and behaviors, we seek to understand how vaccine cultures affect vaccination coverage, as well as how vaccine-related beliefs and behaviors are affected by external forces, such as the availability of vaccines and the degree to which they are compulsory.

We adapted a cultural niche construction framework to model vaccination beliefs and behaviors, incorporating the transmission of vaccine culture both from parents and from the community [26]. Using this model, we previously demonstrated that the overarching cultural landscape, including the likelihood of adopting vaccine hesitancy and the probability of transmitting it to one’s children, determines the equilibrium levels of vaccination coverage and vaccine hesitancy in a population. In addition, we demonstrated that the transmission of vaccine
confidence and positive vaccine perception are imperative to maintaining high levels of vaccination coverage, especially when individuals preferentially choose a partner with shared vaccine beliefs. In this manuscript, we expand the scope of this model to explore how the vaccination coverage and vaccine hesitancy in a population could be affected by external forces. In particular, we focus on vaccine mandates and vaccine inaccessibility, which both lead to a disconnect between parental vaccine beliefs and their vaccination behaviors, but in different directions: vaccine mandates can increase the chances that vaccine-hesitant parents will vaccinate their children, and vaccine inaccessibility can decrease the chances that vaccine-confident parents will vaccinate their children. We explore the effects of these external forces on the dynamics of both vaccine beliefs and vaccination coverage, providing insight into the differences between cultural development in the opposing contexts of mandates and inaccessibility.

Methods:

We build on a more general cultural niche construction framework of [24,26] to assess the effects of vaccine mandates and vaccine accessibility on the resulting landscape of vaccination coverage and vaccine confidence. For a population of individuals, we track the status of vaccination coverage and vaccine confidence over time; within this population, individuals mate, decide whether to vaccinate their offspring, and transmit a vaccine attitude trait. Their decision to vaccinate is influenced by their own beliefs and their vaccination states, and population trait frequencies are further modulated by vaccination frequency dependent cultural selection pressures.

Each individual in our model (depicted in Figure 1) has a vaccination (V) trait, either V\(^+\) (vaccinated) or V\(^-\) (unvaccinated), and an attitude (A) trait, either A\(^+\) (vaccine confident) or A\(^-\) (vaccine hesitant), resulting in four possible phenotypes (V\(^+\)A\(^+\), V\(^+\)A\(^-\), V\(^-\)A\(^+\), and V\(^-\)A\(^-\)) that we initialize with frequencies structured to represent those of the United States: V\(^+\)A\(^+\) (i.e. frequency of vaccinated, vaccine confident individuals) = 0.81, V\(^+\)A\(^-\) = 0.1, V\(^-\)A\(^+\) = 0.07, V\(^-\)A\(^-\) = 0.02. These frequencies were estimated using reports of Measles-Mumps-Rubella vaccination rates and estimates of vaccine attitude frequencies obtained from various sources in the literature [27,28]. In each iteration, individuals mate randomly within the population. Each parental pair vaccinates their offspring with probability B\(_{m,n}\) (i.e., vertical transmission of vaccination); in general, this probability increases with each vaccinated and vaccine-confident parent. This vaccination
probability is influenced by two factors: whether each of the parents are themselves vaccinated (b_m), and whether each of the parents are vaccine confident or hesitant (c_n). The probability that a couple vaccinates their offspring is calculated as $B_{m,n} = c_n \left(\frac{1+b_m}{2} \right)$, to account for the influence of both vaccination states and vaccine attitudes (see Table 1 and Table S1 for an explanation of the m and n subscript assignments). We implement vaccine mandates and inaccessibility by modulating the influence that parental vaccine attitudes have on the likelihood that they vaccinate their offspring (by increasing or decreasing c_n): for example, a vaccine mandate will make a vaccine-hesitant parent more likely to vaccinate their child, and vaccine inaccessibility will make a vaccine-confident parent less likely to vaccinate their child.

Each parental pair also transmits a vaccine attitude trait to their offspring (i.e., vertical transmission of beliefs) with vaccine confidence transmitted at probability C_n and vaccine hesitancy at probability $1-C_n$. We set the probability of transmitting vaccine confidence to be highest for two vaccine-confident parents and lowest for two vaccine-hesitant parents (Table 1).

Next, cultural selection (σ) operates on the resulting phenotype frequencies such that the frequency of vaccination in the population is greater or less than expected given the predicted probabilities that vaccine-confident and -hesitant parents vaccinate their offspring. The proportion of vaccinated individuals in the population is multiplied by $1+\sigma$, such that a positive σ increases the proportion of vaccinated individuals and a negative σ decreases it. This process encompasses the various factors that might make parents more or less likely to vaccinate, including the severity of the disease and the general trust in the healthcare system. Since the perceived benefit of the vaccine might vary based on the vaccination coverage in the population, we allow σ to depend on the frequency of the V^+ trait: when the frequency of vaccination is low, the effects of the disease are more evident and individuals are more likely to vaccinate (high σ), but when the frequency of vaccination is high, the risks of the disease are masked and individuals are less likely to vaccinate (lower σ). The equation relating the frequency of V^+ and σ is given in the (Figure S1).

Finally, oblique interactions (cultural influences from non-parental individuals) then act to further modify trait frequencies in the population. Individuals in the simulation can change their vaccine attitudes based on interactions with others and their perceptions of their surroundings. If the vaccination coverage in the population is low, we consider the negative effects of the disease to be more apparent and thus people will be less likely to adopt a vaccine-hesitant attitude, and if the vaccination coverage is high, the negative effects of the disease are
prevented (amplifying the perception of the vaccine’s risks and costs, however small) and people might be more likely to become vaccine hesitant (Figure S2). Each subsequent iteration of the model begins with the phenotype frequencies produced at the end of the current iteration. The simulation is run until phenotype frequencies reach equilibrium (Figure 1, Table 1). For more detail see Supplemental Text S1 and [26]. All code to run the simulations is provided at www.github.com/CreanzaLab/VaccineModel.

Random Mating
Individuals mate randomly, so the probability of any two phenotypes mating with one another is the product of their frequencies in the population.

Vertical Transmission
After reproduction, parents vaccinate (transmit V+) with probability B_{mn} (informed by influence parameters b_m and c_n) and transmit confidence (A+) with probability C_n.

Oblique transmission
Oblique interactions can influence a change in an individual’s attitude (A) with probabilities dependent on the proportion of the population that is vaccinated (frequency of V+).

Cultural selection
Cultural selection pressures (σ) operate to further adjust the proportion of vaccinated (V+) offspring.

Figure 1. Workflow of a single iteration of the model: The schematic shows the processes within a single model iteration. The model is initialized with the phenotypic frequencies (V^+A, V^-A^+, V^-A^-, V^-A^-) in the population. After individuals mate and reproduce, they vertically transmit vaccination and attitude traits to their offspring. Vaccination trait frequencies are further modulated by cultural selection. Oblique transmission (cultural transmission from non-parental adults in the population) follows, which may lead offspring to alter their attitude state. (Parameters, their definitions, and default values are listed in Table 1.)

Table 1: List of parameters, their definitions, and baseline values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Vaccination state (V^+ vaccinated, V^- unvaccinated)</td>
<td>A</td>
<td>Vaccine attitude (A^+ confident, A^- hesitant)</td>
</tr>
<tr>
<td>B_{mn}</td>
<td>Probability that parental pairs vaccinate their children, which depends upon the parents’ vaccination states (b_m) and vaccine attitudes (c_n) (given in Table S2)</td>
<td>C_n</td>
<td>Probability that parental pairs transmit vaccine confidence to their children</td>
</tr>
<tr>
<td>b_m</td>
<td>Probability that parental pairs</td>
<td>C_n</td>
<td>Probability that parental pairs</td>
</tr>
</tbody>
</table>

Baseline: $C_0 = 0.01$, $C_1 = C_2 = 0.5$, $C_3 = 0.99$
Table 1: Vaccination parameters reference

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Baseline Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>Comprehensive selection coefficient for V^+, dependent on the population-wide vaccination rate (see Figure S1)</td>
<td>$b_0 = 0.01$, $b_1 = b_2 = 0.5$, $b_3 = 0.99$</td>
</tr>
<tr>
<td>σ_{max}</td>
<td>The highest additional benefit that can be conferred by vaccination</td>
<td>$c_0 = 0.01$, $c_1 = c_2 = 0.5$, $c_3 = 0.99$</td>
</tr>
<tr>
<td>α</td>
<td>Parameter subscripts indicating traits of the mating pair (m and n in b_m, c_n, C_n, and $B_{m,n}$)</td>
<td>$V^+ \times V^-$: $m=0$; $V^+ \times V^-$: $m=1$; $V^+ \times V^-$: $m=2$; $V^+ \times V^-$: $m=3$</td>
</tr>
<tr>
<td></td>
<td>$A^- \times A^-$: $n=0$; $A^- \times A^-$: $n=1$; $A^- \times A^-$: $n=2$; $A^- \times A^-$: $n=3$</td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Vaccination and Vaccine Inaccessibility

We hypothesize that parental vaccine attitudes influence their use of exemptions and thus levels of non-vaccination will differ based on parental attitudes under a mandated vaccination system. Therefore, we simulate the effects of compulsory vaccination by modulating the influence of a couple’s vaccine attitudes on their likelihood of vaccinating their offspring (c_n); in other words, a vaccine mandate alters the influence of a couple’s vaccine attitude on their decision to vaccinate. We assume the implementation of mandates would increase vaccination in couples with at least one vaccine-hesitant individual. If vaccination exemptions are permitted, we expect that $A^- \times A^-$ couples (those with two vaccine-hesitant individuals) would be most likely to obtain exemptions, followed by mixed attitude ($A^- \times A^+$ or $A^+ \times A^-$) couples, with vaccine confident couples ($A^+ \times A^+$) being least likely. Hence, to model the effects of implementing a lenient mandate, we increase attitude influence parameters from baseline values (Table 1) to $c_0 = 0.3$, $c_1 = 0.7$, $c_3 = 0.99$. Assuming mixed attitude ($A^- \times A^+$ or $A^+ \times A^-$) couples exhibit the most variability in their likelihood of transmitting vaccine confidence, we then examined the effect of the interaction between the maximum cultural selection coefficient (σ_{max}) and mixed-attitude confidence transmission probability ($C_1=C_2$) (Figure 2).

Modeling the effects of a vaccine mandate reveals a decoupling of vaccination coverage and vaccine confidence when parents are more likely to transmit vaccine hesitancy (Figure 2C-D). Even when vaccine confidence is very low (specifically at mixed-trait couple confidence transmission probabilities below 0.5; red region in Figure 2D), vaccination coverage is much higher than without the mandate (compare Figure 2C-D to Figure 2A-B). This suggests that an
external pressure to vaccinate is able to overcome the opposing cultural pressure imposed by hesitancy in the population.

Figure 2: External factors (vaccine mandates and vaccine scarcity) disconnect levels of vaccine confidence from vaccination coverage. Heatmaps showing equilibrium vaccine coverage and vaccine confidence levels with an accessible vaccine and no mandate (A, B), with an accessible vaccine and a lenient mandate (C, D) and an environment with vaccines somewhat inaccessible (E, F). Assuming mixed-attitude couples might have the most variability in their likelihood of transmitting vaccine confidence to their offspring, we vary $C_1 = C_2$ on the vertical axis), and maximum selection coefficient (σ_{max}) on the horizontal axis. A lenient mandate (C, D) is modeled by $c_0 = 0.3$, $c_1 = c_2 = 0.7$, $c_3 = 0.99$; vaccine inaccessibility (E, F) is modeled by $c_0 = 0.01$, $c_1 = c_2 = 0.3$, $c_3 = 0.7$. Unspecified parameters are given in Table 1. These simulations show an inverse correlation between vaccination coverage and vaccine confidence at $C_n < 0.5$ under a strict mandate, and $C_n > 0.5$ when vaccine access is limited. Baseline conditions (Table 1) are highlighted by black boxes in each heatmap.
Figure 3: Vaccine mandates and inaccessibility drive different distributions of both vaccination coverage and vaccine confidence. Phenotype and trait frequencies are plotted over 100 model iterations. Compared to baseline transmission levels (panel A, parameter values given in Table 1), a lenient vaccine mandate ($c_0 = 0.3$, $c_1 = c_2 = 0.7$, $c_3 = 0.99$; panel B) leads to increased vaccination coverage at equilibrium (black line) but decreased vaccine confidence levels (magenta line). In contrast, when a vaccine is somewhat difficult to access ($c_0 = 0.01$; $c_1 = c_2 = 0.3$, and $c_3 = 0.7$; panel C), vaccination coverage is lower than in panel A but vaccine confidence is higher. The specific simulations shown here are highlighted with black rectangles on the heatmaps in Figure 2.

Table 2: Change from Baseline Equilibrium Frequencies. Final equilibrium frequencies for baseline, a lenient vaccine mandate, and a somewhat inaccessible vaccine are shown along with the percent difference from baseline frequencies. Colored lines in the first row correspond to the line colors in Figure 3. Negative changes are indicated by a red downward pointing triangle; positive changes are indicated by green upward pointing triangle. A vaccine mandate leads to increased vaccination among vaccine-hesitant individuals, and vaccine inaccessibility leads to decreased vaccination and increased vaccine confidence among unvaccinated individuals.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>V'A'</th>
<th>V'A-</th>
<th>V'-A'</th>
<th>V'-A-</th>
<th>V'</th>
<th>A'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Equilibrium Frequencies</td>
<td>0.4634</td>
<td>0.0966</td>
<td>0.2</td>
<td>0.2399</td>
<td>0.5601</td>
<td>0.6634</td>
</tr>
<tr>
<td>Percent Diff. from Baseline</td>
<td>Mandate</td>
<td>0.4217 (-9%)</td>
<td>0.1911 (98%)</td>
<td>0.1458 (-27%)</td>
<td>0.2413 (1%)</td>
<td>0.6129 (9%)</td>
</tr>
<tr>
<td>Inaccessibility</td>
<td>0.3443 (-26%)</td>
<td>0.0433 (-55%)</td>
<td>0.4116 (106%)</td>
<td>0.2007 (-16%)</td>
<td>0.3877 (-31%)</td>
<td>0.7560 (14%)</td>
</tr>
</tbody>
</table>

Next we compared the results of our model of a lenient mandate to those of a somewhat inaccessible vaccine (Figure 2E-F). To represent this scenario, we reduced the influence of
parental vaccine attitudes on vaccination behaviors for couples with at least one confident
individual (i.e. reducing c_1, c_2, c_3 from default values). In this simple representation of a vaccine-
scarce environment, we assume that parents’ confidence in vaccines would have reduced
influence on their ability to vaccinate their offspring, that is, their vaccine confidence does not
ensure their ability to overcome vaccine inaccessibility. Hesitant couples are least likely to
vaccinate their offspring regardless of vaccine availability, but couples who would likely vaccinate
their offspring given the chance would have difficulty doing so due to the lack of access. Attitude
influence parameters were set to $c_0 = 0.01$; $c_1 = c_2 = 0.3$, and $c_3 = 0.5$, and as before, we
modulated the maximum cultural selection coefficient of vaccination (σ_{max}) and confidence
transmission (C_1 and C_2) (Figure 2E-F). Vaccination coverage was noticeably reduced overall,
while vaccine confidence increased slightly across the parameter space. Juxtaposed with the
mandate scenario (Figure 2C-D), our vaccine scarcity models produce an opposite deviation of
vaccination coverage from vaccine confidence levels: when vaccines are mandated, we observe
increased vaccination coverage in low-confidence environments, and when vaccines are
inaccessible, we observe lower than expected vaccination coverage (<50%) in a predominantly
vaccine-confident environment (>90%) (Figure 2).

In the three scenarios examined thus far—baseline (no mandate and accessible vaccines),
a lenient mandate, and somewhat inaccessible vaccines)—most of the variability in equilibrium
frequencies across the parameter space occurs at confidence transmission levels between $C_1 = C_2
= 0.4 – 0.6$ (Figure 2). This threshold region separates definitively higher and definitively lower
vaccination coverage and vaccine confidence outcomes. There is also a noticeable effect of actual
and perceived vaccine fitness (σ_{max}) in this region of the heatmap: as cultural selection for
vaccination increases at any fixed probability of confidence transmission, vaccination coverage
and vaccine confidence levels at equilibrium are increased. Changes in vaccination and
confidence frequencies are not independent of each other, as these effects are the consequence
of changes in phenotypic frequencies. Therefore, for each scenario, we plotted the temporal
dynamics of each phenotype (V_A) and the vaccination (V^+) and confidence (A^+) traits at baseline
parameter values (Figure 3), then calculated the difference in frequency from baseline
equilibrium (Table 2). With an accessible vaccine that is not mandated (Figure 3A, Table 2), the
phenotype frequencies of the system equilibrate generally with either vaccinated and vaccine
confident (V^+A^+) or unvaccinated and vaccine hesitant (V^-A^-) individuals most abundant (Figure
3A, Table 2). Though these two phenotypes remain the most abundant when a lenient vaccine
mandate is implemented, the equilibrium frequency of vaccinated but vaccine-hesitant individuals (V^+A^-) is greatly increased compared to baseline (Figure 3B, Table 2). Interestingly, a mandate also results in a higher frequency of unvaccinated and vaccine-hesitant individuals (V^-A^-), while reducing vaccinated and vaccine-confident individuals (V^+A^+) in the population. Vaccine inaccessibility, on the other hand, resulted in approximately double the frequency of unvaccinated but vaccine-hesitant (V^-A^+) individuals. In summary, compared to baseline outcomes, implementation of a mandate increases vaccination coverage at the expense of confidence by driving vaccination in hesitant individuals, and vaccine inaccessibility promotes confidence despite low vaccination coverage by driving confidence in unvaccinated individuals.

We next examined the effects of varying all of the vaccine confidence parameters in concert (C_0, C_1, C_2 and C_3), instead of focusing on the vaccine confidence transmission of mixed-attitude couples. We varied all C_n parameters simultaneously within a specified range of values (Table S3) across various levels of mandate strictness (Figure 4) and vaccine inaccessibility (Figure 5). As before, we varied these parameters in conjunction with the maximum cultural selection coefficient σ_{max}. The clear disjunction between higher and lower vaccination (V^+) and vaccine confidence (A^+) frequencies observed in Figure 2 is not observed when the probability of confidence transmission is modulated for all couples. When mixed-attitude couples transmit confidence to their offspring at high (C_1 = C_2 > 0.5) or low (C_1 = C_2 < 0.4) probabilities, which skews population attitude frequencies to either highly confident or highly hesitant, the subsequent offspring are more likely to vaccinate (in a confident population) or not vaccinate (in a hesitant population) (Figure 2). Similarly, if all couple types are transmitting confidence at lower probabilities or higher probabilities (i.e. C_0, C_1, C_2, and C_3 are all lower or higher, respectively), vaccination frequencies will equilibrate at either lower levels or higher levels (Figure 4A).

However, if all couples are transmitting confidence at mid-range probabilities (or C_1 and C_2 are closer to 0.5), the population equilibrates at more polymorphic frequencies, that is, both forms of each trait coexist in the population at moderate frequencies.

Equilibrium vaccination coverage increases as cultural selection for vaccination increases in both mandated vaccines (Figure 4C, E) and vaccine inaccessibility scenarios (Figure 5C, E); confidence frequencies remain more consistent across the range of cultural selection pressures (Figure 4D, F, Figure 5D, F). When we model an increase in vaccine mandate strictness (increased difficulty in obtaining exemptions), vaccination frequencies are increased (Figure 4C, E). On the
other hand, greater degrees of inaccessibility lead to larger reductions in vaccination coverage (Figure 5C, E), and lower coverage occurs despite higher levels of vaccine confidence.

Figure 4: Increasing mandate strictness and increased cultural selection drive vaccination coverage.

Heatmaps showing final vaccination coverage (A, C, E) and corresponding vaccine confidence (B, D, F) after 100 time-steps while simultaneously varying all confidence transmission probabilities (C_n; vertical axis) and maximum selection coefficient (σ_{max}; horizontal axis). We show an accessible vaccine and no mandate ($c_0 = 0.01, c_1 = c_2 = 0.5, c_3 = 0.99$) (A, B), an accessible vaccine and a lenient mandate ($c_0 = 0.3, c_1 = c_2 = 0.7, c_3 = 0.99$) (C, D) and a strict mandate ($c_0 = 0.5, c_1 = c_2 = 0.9, c_3 = 0.99$) (E, F). C_n values are set within the range indicated on the vertical axis with C_0 taking the lowest value and C_3 taking the highest value (Table S3).
Figure 5: Vaccine inaccessibility reduces vaccination coverage despite high levels of vaccine confidence.

Heatmaps showing final vaccination coverage (A, C, E) and corresponding vaccine confidence (B, D, F) after 100 time-steps while simultaneously varying all confidence transmission probabilities (C_n; vertical axis) and maximum selection coefficient (σ_{max}; horizontal axis). C_n values are set within the range indicated on the vertical axis with C_0 taking the lowest value and C_3 taking the highest value (Table S3). We simulate an accessible vaccine and no mandate ($c_0 = 0.01$, $c_1 = c_2 = 0.5$, $c_3 = 0.99$) (A, B), a somewhat inaccessible vaccine ($c_0 = 0.01$; $c_1 = c_2 = 0.3$, and $c_3 = 0.7$) (C, D) and an inaccessible vaccine ($c_0 = 0.01$, $c_1 = c_2 = 0.1$, $c_3 = 0.5$) (E, F).

Discussion:

Here, we build on the cultural niche construction framework proposed by [26] to model the cultural spread of vaccine attitudes and vaccination behavior in the presence of external forces imposed by two scenarios: vaccine mandates and vaccine inaccessibility. Multiple factors influence an individual’s vaccine-related beliefs and a couple’s decision to vaccinate their offspring, including their own vaccination status and their perception of the relative risks of the disease and the vaccine. As such, it is important that we understand how public health policies, such as vaccine mandates and barriers to vaccination, such as geography or affordability, can...
shape vaccine cultures and thus affect public health. Using a cultural niche construction approach allows us to explore the effects of the interplay between external forces and cultural factors providing further insight into how vaccine cultures are formed, maintained, and evolve.

With our initial model [26], we showed that when population traits are at or near an equilibrium, we can infer that a population with high vaccination coverage will have low rates of vaccine hesitancy and vice versa. However, when there are external pressures as modeled here, such as increased pressure to vaccinate or difficulty in acquiring vaccination exemptions, an undercurrent of vaccine hesitancy can persist in a relatively well-vaccinated population, potentially limiting the adoption of newly introduced vaccines. This possibly contributes to the unexpected lag in uptake of newer vaccines, such as the COVID or HPV vaccines, in communities with otherwise high vaccination rates [29–31]. The perceived increase in hesitancy surrounding new vaccines may actually be existing vaccine hesitancy becoming apparent. In addition, “fence sitters”, those who have not made a firm stance regarding vaccines and thus could be more influenced by targeted campaigns [28], may develop higher levels of uncertainty about new vaccines than their parents had about existing ones.

In contrast to the effect of vaccine mandates, by modeling vaccine inaccessibility we illustrate another important pattern: reduced vaccination coverage in a vaccine confident culture. In a vaccine-scarce environment, an individual’s attitude regarding vaccines has less influence on vaccination behavior due to the barrier imposed by resource availability. As a result, a population may be undervaccinated despite holding vaccine-affirming beliefs. In addition, a health culture previously shaped by vaccine inaccessibility could potentially ingrain specific behavioral practices (for example, visiting the doctor only when a child is sick and not for a regular vaccine schedule) that are not easily modified even if vaccines become more readily available. These vaccine scarcity scenarios are most likely to exist in low- and middle-income countries in which vaccine acquisition, storage and/or distribution resources are insufficient [32–34] whereas the opposite scenario (low vaccine confidence–high vaccination coverage) after vaccine mandates is most common in developed nations [35]. In summary, we find that vaccine mandates can result in high vaccination coverage even in a culture of hesitancy, and that lack of access to vaccines can produce the inverse: low vaccination coverage in a culture of confidence.

It is difficult, as with any system, to fully capture the complex reality of vaccine hesitancy and vaccination behavior with a mathematical model. Caveats of this model include the lack of empirical data to inform how we model the influence of vaccine confidence on vaccination.
behaviors in the face of mandates or vaccine inaccessibility. In addition, our model simplifies the process of human population turnover with discrete generations; in reality, of course, population turnover is asynchronous and multiple generations can have cultural interactions with one another [26]. However, this simple model is able to demonstrate interesting scenarios that confirm the importance of understanding the culture of the communities in which public health policies act, and how the cultural landscape might affect specific outcomes. A community is most protected from VPD outbreaks if two conditions are met: vaccination coverage achieves or exceeds herd immunity levels, and future vaccinations are not threatened by underlying vaccine hesitancy. Since increasing vaccination coverage might require different strategies than increasing confidence, we encourage public health policymakers to consider both beliefs and behaviors patterns in their outreach efforts and information campaigns.

In sum, our model shows, in both mandate and inaccessibility scenarios, that the probability of transmitting vaccine-positive attitudes is a strong predictor of whether future vaccination coverage is high or low (Figures 2, 4-5). We also demonstrate that vaccine efficacy and perceived value are important to maintaining sufficient levels of vaccination coverage, especially if vaccine confidence is not being robustly transmitted (or maintained in adulthood), regardless of vaccination scenario (Figures 2, 4-5). Thus, our model demonstrates the importance of clear and accurate communication about vaccines even when vaccination is compulsory and resulting coverage is high, to reduce the spread of inaccurate information that can foster vaccine hesitancy and hinder the uptake of future vaccines.
References:

