A Novel Heart-Brain Axis Mediates the Association Between Cardiovascular Risk and Cognitive Function

Akshay Jaggi,1 Eleanor L.S. Conole,2 Zahra Raisi-Estabragh,3,4 Polyxeni Gkontra,1 Celeste McCracken,5 Stefan Neubauer,5 Steffen E. Petersen,3,4,6,7 Simon Cox,*2 Karim Lekadir*1

1 Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona

2 Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.

4 William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK

5 Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK

5 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK

6 Health Data Research UK, London, UK

7 Alan Turing Institute, London, UK

* Co-senior author

Corresponding Author:

Prof. Karim Lekadir. Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona. Gran Via de les Corts Catalanes, 585, 08007 Barcelona, España.

Email: karim.lekadir@ub.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background and Aims

The mechanisms by which elevated vascular risk associates with poorer cognitive function are poorly understood. This study quantifies the associations between advanced heart and brain imaging phenotypes and measures the extent to which variation in heart and brain structure explains the vascular risk - cognitive function association.

Methods

Vascular risk factors, cardiac magnetic resonance radiomics, brain structural and diffusion MRI markers, and cognitive assessment were gathered from the UK Biobank (N=11,962). Latent summary measures of each dataset were separately extracted. Novel metrics defining the heart-brain axis were discovered by measuring correlated variation in heart and brain imaging. Mediation analysis was then used to quantify the extent that heart and brain structure associate with both elevated vascular risk and poorer cognitive function. The mediation of individual pairs of vascular risk factors and cognitive exams by heart and brain structure was also computed.

Results

Brain structure, alone, modestly mediated the association (lower brain volumes [12.9,38.1%]; poorer white matter structure [4.9,6.8%]). Similarly, many cardiac structural measures (lower left and right ventricular stroke volume [17.9,26.9%] and lower myocardial textural complexity [31.6-60.7%]) also partially mediated the association. In contrast, a joint heart-brain axis (capturing correlation between lower myocardial intensity, lower grey matter volume, and poorer thalamic white matter integrity) completely mediated the association [>100%]. For individual risk factors, brain structural latents more strongly mediated the association between smoking and verbal numerical reasoning [12.1–47.6%], while heart structural latents more strongly mediated the association between waist hip ratio and verbal numerical reasoning [27.3–42.8%].
Conclusion

Myocardial intensity and a correlated set of brain volumes and white matter microstructure more strongly mediate the vascular risk - cognitive function association than many brain or cardiac structural measures alone. Therefore, leveraging associations between heart and brain structure is useful for identifying biomarkers explaining the vascular risk - cognitive function association. Furthermore, heart and brain structure show differential mediation of individual risk factor - cognitive measure pairs, highlighting the importance of analysing individual risk factors.

Keywords

Vascular risk, cognitive function, cardiac radiomics, mediation, MRI, heart, brain
Introduction

With ageing populations throughout the world, cognitive decline now affects an increasingly large portion of society and contributes to significant financial burden and death.1,2 Of the drivers of age-related cognitive decline, neurovascular health has gained attention due to its widespread impact and relative ease of intervention.3–6

Substantial work has shown diverse associations between vascular disease risk factors (VRFs, such as diabetes, high body mass index (BMI), and hypertension) and cognitive function (CF). Greater vascular risk in middle and old age associates with both poorer cognitive function and accelerated cognitive decline,7–11 and controlling vascular risk factors, like blood pressure, can lead to a decrease in onset of mild cognitive impairment.12

There is a need to establish biomarkers to improve our mechanistic understanding of the heart-brain axis and accelerate treatment discovery, yet the specific biological underpinnings remain unclear. VRFs might drive pathologic cardiac and cerebrovascular remodelling, which in turn results in chronic cerebral hypoperfusion, brain structural damage, and poorer CF.6,13–16 We will refer to this theory as the structural-functional model. Evidence for the structural-functional model could be found by simultaneously measuring vascular risk factors, cognitive function, and heart and brain structure.

Cardiac and brain imaging derived phenotypes (IDPs) have become popular methods for measuring heart and brain structure due to their minimally invasive nature and widespread use. Both are strong candidate biomarkers of the modest but well-replicated association between elevated vascular risk and lower cognitive functioning in middle and older age.7,17 However, to-date, most of our knowledge about associations between 1) VRFs and 2) cardiac, 3) brain and 4) cognitive measures come from separate reports, which only simultaneously consider two phenotypes of interest. Several recent works have indicated the value in extending analyses across three of the four phenotype categories above; for example, lower grey matter volume can explain part of the association between hypertension, greater BMI, and lower performance on some UK Biobank cognitive exams.17–20 However, these studies have only studied a restricted set of risk factors or neuroimaging measures, and have yet to incorporate heart structure and model the heart-brain axis in this context.
We hypothesise that, for the structural-functional model to adequately explain the VRF-CF association, variation in brain and heart structures (pertinent to both greater vascular risk and lower cognitive function) must be considered. The extent to which these associations all align in a cohort of subjects modelled together is understudied. Furthermore, the relative strength of the association between cardiac and brain structural features and the disease endpoints (vascular risk and cognitive decline) is unknown. This comparative approach could identify novel biomarkers associated specifically with the VRF-CF association (rather than each dataset alone) and guide future decision-making comparing and prioritising organ-specific interventions in vascular and cognitive health.

In this work, we measure the extent that variations in heart and brain structure explain the association between vascular risk and cognitive function in the UK Biobank. We gather vascular risk factors, cognitive exam performance, CMR radiomics features, and brain MRI IDPs for 11962 UK Biobank participants. We perform dimensionality reduction on all datasets separately. We discover novel measures of the heart-brain axis by capturing correlated variance in heart and brain imaging. We compute single and multiple mediation models asking how well imaging latent variables explain the VRF - CF association. We then measure how well imaging latent variables explain associations between individual VRFs and cognitive exams. We finally explore how well individual heart and brain structural measures mediate the VRF - CF association. Along with myriad smaller mediating effects, we find that myocardial intensity, grey matter volume, and thalamic white matter tract integrity all associate with each other, and a joint factor capturing their variability most strongly associates with both elevated vascular risk and poorer cognitive function.
Methods

Acquisition and Processing

Assessment

This work utilises clinical and imaging data from the United Kingdom (UK) Biobank (UKB) via access application 2964.22 UKB is a large-scale longitudinal dataset derived from 500,000 volunteers recruited between 2006 and 2010 from across the UK. At visits, patients completed both a touchscreen questionnaire and medical history interview with a nurse. The project recorded information regarding participants’ health, lifestyle, and family history and collected physical measurements, biological samples, and genome. Moreover, since 2015, over 50,000 participants have received CMR and brain MR imaging at followup imaging visits.

Vascular Risk Factors

We analysed hypercholesterolemia, diabetes, hypertension, smoking pack years, blood pressure, and anthropomorphic measures (BMI and waist-to-hip ratio, WHR).3,13–15,23,24 All vascular risk factors were collected at the baseline UK. During the medical history interview, participants reported whether they had received a diagnosis of diabetes, hypertension, or hypercholesterolaemia. Diagnosis was confirmed through a combination of HES records and blood biochemistry data, details reported previously.25 Patients provided information on cigarette smoking in the touchscreen questionnaire, and smoking pack years were computed from this data as reported previously.24 Blood pressure was collected twice, moments apart, using an Omron 705IT monitor. Mean systolic and diastolic blood pressure were computed. Anthropometric measures were taken after participants had removed bulky clothing and shoes. Waist and hip measurements were conducted to provide WHR (waist-to-hip ratio). BMI was computed by dividing weight by squared height.
Cognitive Exams

We examined four tests that were included as part of the UK Biobank baseline cognitive assessment. The complete battery and assessment of its repeatability and reliability have been detailed previously.7,26,27 We used the four tests commonly used in analysis and dimensionality reduction of the baseline cognitive assessment: the fluid intelligence task (verbal numerical reasoning, VNR), the visual memory task (vismem), the reaction time task (RT), and the prospective memory task (prosmem).26 As previously reported,26 the reaction time scores were positively skewed, so we applied a natural log transformation (LN). Additionally, the visual memory scores were zero-inflated and positively skewed, so we applied a LN+1 transformation.

Cardiac Imaging

Cardiac imaging acquisition and preparation discussed in Supplementary Methods. Using the CMR images and their corresponding segmentations, we performed radiomics phenotyping based on the open-source python-based pyradiomics library.28 Radiomics extracts features quantifying myocardial and ventricular structure (shape radiomics), myocardial imaging intensity (first-order radiomics), and myocardial visual textures (texture radiomics).29 In total, 212 features per region were extracted at end-diastole and end-systole. Right and left ventricular cavity first-order and texture features were excluded from analysis because they do not encompass clinically relevant information. We incorporate conventional CMR indices into the matching analysis and final mediation by individual features, computed as previously reported.30–32

Brain Imaging

Brain imaging acquisition and preparation is discussed in Supplementary Methods. The global tissue volumes and white matter tract-averaged water molecular diffusion indices were processed by the UK Biobank team and made available to approved researchers as imaging-derived phenotypes (IDPs); the full details of the image processing and QC pipeline are available in an open access article.33 The IDPs in this study included total brain volume, grey matter volume, subcortical volumes, and tract-averaged white matter microstructural measures. A detailed list of volumes, white matter tracts, and white matter tract measures is provided in Supplementary Methods.
Analysis

Workflow

We began with 19,408 subjects with completed CMR radiomics analysis of their short-axis imaging from the UK Biobank Imaging Extension. We downloaded and prepared the vascular risk factor, cognitive testing, brain imaging data, heart imaging, and covariates for these subjects (see Acquisition and Preparation). For each dataset separately, we dropped all subjects without complete data, merged all datasets, and selected only subjects without cardiovascular or brain disease (defined in Supplementary Methods). We then performed dimensionality reduction on each data type separately. We performed joint factorization of the heart and brain imaging data. We regressed out imaging confounders from the latent factors (Supplementary Methods). We merged the latent factors and performed all downstream analyses. We corrected all comparisons for multiple hypothesis testing with a Benjamini-Hochberg False Discovery Rate (BH-FDR) correction. Entire pipeline with number of patients retained at each step reported in Figure 1. For every analysis, we present both raw and deconfounded results as paired Supplementary Tables, but we only discuss deconfounded results in the text. All code was managed through a central R pipeline (open-sourced, see Data and Code Availability); the list of packages and settings used is in Supplementary Methods.

Dimensionality Reduction

Latent Variables for Vascular Risk (gVRF)

First, we derived an aggregate measure of vascular risk for each individual, counting instances of a self-reported diagnosis of hypertension, diabetes, or hypercholesterolaemia, having ever smoked, having a BMI >25, and having a high WHR (>0.85 for females and >0.90 for males).24,34

We derived an additional latent factor of general vascular risk (gVRF) following prior work in this and other cohorts, using confirmatory factor analysis in structural equation modeling.24,35 This latent measure captures the tendency for VRFs to co-occur. gVRF was derived from smoking pack years, diastolic and systolic blood pressure, BMI, WHR, self-reported
hypertension, diabetes and hypercholesterolaemia. The model fit the data well, though loadings were inconsistent (range 0.189–0.745), with the factor more strongly loaded towards BMI and WHR (Supplementary Figure 1, Supplementary Table 1).

Latent Variables for Cognitive Function (general intelligence, g)

As previously reported,7 we performed a CFA of the four cognitive tests. We hypothesised that the four tests would correlate moderately-highly (with intercorrelations of r > 0.40) and would form a single latent general factor across the four tests with good fit to the data. We found this to be the case (Supplementary Figure 2, Supplementary Table 2).

Latent Variables for Heart Structure

Since principal component analysis (PCA) is commonly used in radiomics to extract lower dimensional representations of the data,29,36–38 we performed PCA on the z-scored radiomics. We chose the number of principal components using cross validation, detailed in the Supplementary Methods. We kept the first 3 unrotated PCs (Supplementary Figure 3, Supplementary Table 3). We extracted the scores of these components for each subject and used them for downstream analyses.

Latent Variables for Brain Structure

We isolated brain volume (‘atrophy’ after controlling for head size) and grey matter volume.24 Latent measures of general white matter fractional anisotropy (gFA) and mean diffusivity (gMD) were derived using confirmatory factor analysis to index the high degree of covariance among white matter microstructural properties across the brain, as previously reported in this cohort.24,39 The factor analysis models fit well with the lowest loadings for the corticospinal tracts and cingulate gyri and the highest loadings for the thalamic radiata and fasciculi (Supplementary Figure 4, Supplementary Table 4).

Since principal component analysis has been used to capture variation in brain imaging in previous work and since we are using it to summarise the heart imaging in this work,40–43 we also computed PCA over all z-scored brain IDPs and selected the number of principal components to retain as before (Supplementary Methods). We kept three PCs (Supplementary Figure 5,
Supplementary Table 5). We extracted their scores for each subject and utilised them in downstream analyses.

Joint Heart-Brain Factor Analysis

Along with the factor analysis of the individual datasets described above, we also sought to derive latent factors that captured the main modes of correlated variation between heart and brain structural imaging. That is, we aimed to identify components of brain structure and components of heart structure that were maximally correlated. Through canonical correlation analysis (CCA) on the z-scored heart radiomics and brain IDPs, we derived ten modes. Each mode consists of two components: (1) a linear combination of heart radiomics features and (2) a separate linear combination of brain IDPs that have highly similar variation in the population. The modes are ranked by the amount of correlation between the heart and brain components. We chose the number of modes to keep via cross validation (Supplementary Methods), kept three modes (Supplementary Figure 6, Supplementary Table 6), extracted the component scores for each subject in each dataset, and used them in downstream analyses.

Descriptive Statistics and Associations

First, we conducted descriptive analyses, testing the association of age and sex with all of our latent variables using linear regression. We then examined the pairwise linear association between all latent variables by linearly modeling each latent variable as a function of sex, age, and each other latent variable. See Supplementary Methods for modelling details and how additional R^2 is computed. Results reported for both raw and deconfounding imaging latents.

Propensity Score Matching

Since all other analyses are performed on corrected, standardised, and latent measures of the data, we performed propensity score matching to yield real-units measurements of the differences between subjects with and without VRFs. We matched subjects with four or more VRFs with their nearest neighbour with no VRFs, requiring an exact match for sex (Supplementary Methods). We then performed repeated t-tests to compare the cognitive exam performance, CMR measures, and brain IDPs of the matched groups of subjects.
Mediation Modelling

To measure how well heart and brain structural features explain the VRF-CF association, we perform a series of mediation analyses. This method allows us to directly quantify the degree to which any identified associations between vascular risk and cognitive ability are accounted for by brain or heart-based measures. The primary outcome is therefore the % of the gVRF-g association that is mediated when brain/heart measures are included in the model (the mediation occurs by virtue of the mutual covariance among predictor, outcome and mediator). In more complex models with more than one mediator, one can also identify which mediator is contributing the largest unique mediating effect. Thus, these analyses offer an elegant quantitative solution for identification of important heart and brain biomarkers underpinning VRF-cognitive associations. We report a more complete description of the mediation model in the Supplementary Methods.

We first performed mediation models on solely the latent representations of each data set. We found the association between gVRF and g and then modelled how well each imaging latent variable mediated this association (Supplementary Methods). At first, we only modelled one imaging latent at a time, calling this the ‘Latent Single Mediation Model.’ Then we simultaneously measured the mediation of all imaging latents in a single model, calling this the ‘Latent Multiple Mediation Model.’ Next, we replaced the gVRF-g association with pairs of individual VRFs and cognitive exams, testing imaging latents one at a time again, calling this ‘Latent Single Mediation Modelling of VRF-Cognitive Pairs.’ Given the high association between the VRFs (Supplementary Figure 1, Supplementary Table 1), we control each VRF-exam association for all other VRFs to identify unique associations between each VRF and cognitive exam. To explore the role of individual imaging features in explaining the association between VRFs and CF, we returned to the gVRF-g association and performed mediation modelling for each imaging feature individually, calling this the ‘Individual Feature Single Mediation Model.’ We perform modelling as described in Supplementary Methods.

Given that all latent measures across domains (vascular risk, heart, brain and cognitive) were standardised, reported coefficients are standardised regression coefficients (i.e. β range [-1, 1]) throughout, allowing direct comparison of effect magnitudes across modalities.
Results

Quantifying Heart Brain Axes

After our data preparation pipeline yielded 11,962 patients (Figure 1, Table 1), we quantified key axes of variation in our imaging datasets. Along with providing common latent brain indices (see Methods), we also performed PCA of heart and brain imaging and a novel CCA of both datasets to capture correlated variability in heart and brain structure. For cardiac radiomics, we found that the first three PCs explained 25, 20, and 12% of the variance and represented myocardial size, intensity, and textural complexity respectively (Figure 2, Supplementary Figure 3, Supplementary Table 3). For brain MRI indices, we found that the first three PCs explained 30, 12, and 8% of the variance and represented WM integrity of the fasciculi and thalamic radiata, WM integrity of the corticospinal tract, and brain volume respectively (Figure 2, Supplementary Figure 5, Supplementary Table 5). For the joint heart brain axes, we found that the first three modes had a Pearson correlation of 0.71, 0.48, and 0.32 respectively (Supplementary Figure 6, Supplementary Table 6). Based on the loadings, we interpreted that the heart brain axes corresponded to (1) myocardial and brain volume, (2) end-systolic myocardial intensity, grey matter volume, thalamic volume, and thalamic radiation WM integrity, and (3) end-diastolic myocardial intensity and broader WM pathology (Figure 2).

Descriptive Statistics

Nearly all latent variables have a significant association with age and sex (Supplementary Figure 7, Supplementary Tables 7, 8). Older subjects show slightly lower aggregate performance on cognitive exams (β=-0.183) and greater vascular risk (β=0.171). Among the heart structural latents (relative to body surface area), old age associates with greater myocardial volume (CMR Radiomics PC1, β=0.035), lower myocardial intensity (PC2, β=-0.173), and lower myocardial textural complexity (PC3, β=-0.109). Among the brain structural latents, old age associates with lower total and grey matter volume and lower white matter integrity (β range -0.363 to -0.249). Age also strongly negatively associates with the components of the second
CCA mode, representing lower myocardial intensity, grey matter and thalamic volume, and thalamic white matter integrity (β range -0.591 to -0.441).

Associations Between Vascular Risk, Heart, Brain, and Cognition

Associations among each pair of latent variables across all four categories were modeled separately, controlling for age and sex (Figure 3, Supplementary Tables 9, 10). As we hypothesised, there is a small but significant negative association between gVRF and g (β=-0.036), consistent with prior reports.7,17 Many imaging latents across heart and brain associate with both greater gVRF and lower g: lower myocardial intensity, lower total and grey matter volume, and lower white matter tract integrity (Figure 3, Supplementary Table 10).

All of the heart PCs explained at least an order of magnitude more variance in gVRF (additional R²: 0.002–0.166) than in g (aR²: 0–0.004) (Figure 3). Similarly, the brain volume latents (atrophy, grey matter volume, PC3) explained at least an order of magnitude greater variance in g (aR²: 0.012–0.027) than in gVRF (aR²: 0.0006–0.003). Interestingly, the second joint factor (CC2) explains relatively equal amounts of variance in both g (aR²: 0.009–0.013) and gVRF (aR²: 0.089–0.164), and it explains at least an order of magnitude more variance in both g and gVRF than the white matter latents. This suggests that leveraging information from both heart and brain structure is useful in deriving factors that explain a relatively large and equal amount of variance in both vascular risk and cognitive function.

Matched Analysis

Aware that the latent measures are all in arbitrary units, we use propensity score matching to provide more practically interpretable information on how those with high and low vascular risk differ across heart, brain and cognitive measures, in native units. We used two groups of 425 subjects matched by sex, age, head size, and BSA (Supplementary Table 11). On average, when compared to matched individuals with no VRFs, subjects with 4 or more VRFs have 13.09 mL (8.29%) lower LVEDV, 7.56 mL (11.50%) lower LVESV, and 5.52 mL (5.99%) lower LVSV. Consistent with mild hypertrophy, the subjects with 4 or more VRFs have 1.51% (2.58%) greater ejection fraction. We find lower average intensities of the myocardium in end-systole (23.53%) and diastole (19.65%). We also find greater uniformity of the myocardial tissue...
appearance (5.25–8.37%). These subjects also have 14,357 mm3 (2.31%) less grey matter volume and lower subcortical volumes. They also have lower FA in many tracts (range 0.96% and 1.92%). Compared to matched healthy controls, subjects with 4 or more VRFs also score on average 0.48 (6.67%) fewer points on verbal-numerical reasoning. These subjects also have notable differences in their latent features, like greater myocardial size, poorer white matter tracts, and lower second heart-brain axis (myocardial intensity, grey matter volume, thalamic WM tract integrity). Simply summing risk factors correlates with gVRF (Figure 3, Supplementary Table 10), and this matched analysis shows that the sum manifests with clinically observable phenotypes in heart imaging, brain imaging, and cognitive exam performance.

Latent Single Mediation Modelling

Initially, we asked the degree to which each brain or heart measure, in isolation, mediated the association between vascular risk and CF. Results are presented in Figure 4, Supplementary Tables 12, 13. Consistent with prior reports, measures of brain structure - irrespective of how they were measured - only modestly mediated the association (4.97–38.12%), with white matter measures being the smallest, but still significant, mediators. However, myocardial intensity and correlated brain features (heart PC2, heart CC2, brain CC2) all completely mediate the gVRF-g association (117%–150%; attenuated to be indistinguishable from $\beta =0$ in each case). For example, one standard deviation (SD) lower gVRF associates with 0.55 standard deviation lower latent myocardial intensity. This 0.55 SD lower intensity associates with 0.043 SD lower cognitive function.

As a control, we address two possible counterarguments: (1) that the BMI - cognitive function association is the only VRF well explained by myocardial intensity and (2) that myocardial intensity is just a proxy for myocardial size. First, since gVRF most strongly weights BMI and WHR (Supplementary Table 1), it’s possible that the gVRF-g association is driven primarily by BMI and that myocardial intensity only mediates the BMI - g association. However, covarying for BMI partly attenuated, but did not remove, myocardial intensity’s mediation of the gVRF-g association (40.18%) (Supplementary Table 14). Second, since myocardial intensity and myocardial volume are associated (Supplementary Table 10), it is possible that myocardial
intensity is just a measure of myocardial size not well adjusted by regressing out BSA. However, we show that myocardial intensity associates with BMI independent of body and myocardial size (Supplementary Table 14). Therefore, myocardial intensity’s mediation of the gVRF-g association is not just explained by the BMI - g association and, furthermore, the BMI - myocardial intensity association is not just due to the myocardium being larger.

Latent Multiple Mediation Modelling

Since there are associations between many of the latent variables (Figure 3, Supplementary Tables 10), multiple mediation modelling considers all mediators together, identifying factors of heart and brain that explain unique variance between exposure and outcome. For example, since the second heart-brain CCA mode weights some WM tract measures, it’s possible that the latent measures of WM tract integrity have no unique mediating effect. Results for the model in which all heart and brain latent measures were entered as simultaneous mediators are reported in Figure 5, Supplementary Table 15, 16. Modelling all mediators simultaneously, there is no remaining association between gVRF and g (\(\beta = 0.011 [-0.016, 0.039] \)). Relative to the single mediation, we find a decrease in the mediating effect of the second heart PC (115%), second CCA mode (17.29–58.58%), and grey matter volume (12.25%), likely due to their intercorrelation. Similarly, brain PC1 shows a greater mediating effect (38.34%), but the percent mediation by both gMD and gFA decreases. The mediation effect for the two size associated joint factors (heart and brain CC1) becomes negative. This suggests that some amount of physical size is associated with both greater vascular risk and greater cognitive function.46

Latent Single Mediation Modelling of Individual VRF-Cognitive Pairs

Heart and brain structure latent measures differ in their extent of mediation of different VRF-cognitive exam associations (Figure 6, Supplementary Tables 17, 18). We found that pack years and VNR (\(\beta =-0.028 \)), WHR and VNR (\(\beta =-0.061 \)), and WHR and RT (\(\beta =0.032 \)) all had independent associations in the expected directions. Brain volumetric latents most strongly mediated the pack year - VNR association (12.11–47.64%) while myocardial intensity associated latents most strongly mediated the WHR-VNR association (27.33–42.76%). The myocardial intensity features are also the only significant mediators of the WHR-RT association
49.52%). Likely because they capture some relevant variation in brain volumes, white matter tracts, and myocardial intensity, the components of the second joint factor strongly mediate both the pack-year and WHR cognitive exam associations (21.63–49.52%).

Individual Feature Mediation Modelling

Although the latent imaging features capture large amounts of the variance in the imaging datasets (Supplementary Figure 3, Supplementary Figure 5), each dataset contains many features and much variance beyond the latents used in the previous analyses. To offer a comprehensive picture of how heart and brain structure mediate the gVRF-g association, we perform mediation analysis for every individual imaging feature (Figure 7, Supplementary Tables 19, 20, 21, 22). For visualisation, we grouped the brain IDPs by their IDP categories and the CMR radiomics by previously reported clusters extracted from imaging of healthy individuals.25 We also include conventional CMR indices as a separate cluster.

As expected, many individual features associated with myocardial intensity show complete mediation (Figure 7, Supplementary Tables 19, 20). However, a number of CMR measures showed mediating effects that were previously difficult to appreciate via latent modelling. While the latent measure of myocardial volume did not mediate the association (Figure 5), both the right and left ventricular volumes partially mediated the association (32.5–61.1%). Although the latent measure of myocardial tissue complexity was just below significance (Supplementary Table 13), some measures of local nonuniformity and local homogeneity partially mediated the association (32.5–48.5%). Greater local nonuniformity associated with lower vascular risk (\(\beta = -0.347–-0.284\)) and greater cognitive function (\(\beta = 0.051–0.054\)), and measures of local homogeneity show the opposite associations (Supplementary Table 20).

Compared to the heart, the brain IDPs show an order of magnitude lower indirect effects and proportionally lower percent mediation (Figure 7, Supplementary Tables 21, 22). Of the brain IDPs, volumes have the largest mediating effect, particularly grey matter (38.1%) and thalamic volume (35.9–36.4%). The largest white matter microstructural mediating effects are from the thalamic radiation tracts (Supplementary Figure 8). For example, MD of all the thalamic radiation tracts significantly mediates the association (5.17–8.26%), and the FA of the left
posterior thalamic radiation tract has the greatest mediation of all the white matter microstructural mediating effects (18.3%).

Discussion

Interpretation

We discover novel modes of association between heart and brain structure (Figure 2). Particularly, a correlated mode of low myocardial intensity, low grey matter volume, low thalamic volume, and poor thalamic white matter microstructure completely accounted for the association between higher vascular risk and lower cognitive function (Figure 4, 5). Consistent with prior reports, considering brain structural measures alone only accounted for a minority of this relationship. The cardiac features of this heart-brain axis can be identified both from PCA of CMR radiomics and from a CCA of the CMR radiomics with brain measures. While myocardial intensity is known to be associated with some vascular risk factors individually, we show here that it associates both with an aggregate measure of vascular risk and with measures of cognitive function. We further show that this effect cannot be explained by just an association between BMI and myocardial intensity (Supplementary Table 14).

This work unifies separate findings that have shown that lower grey matter and thalamic volume associates with greater vascular risk and lower cognitive function. Furthermore, this work supports the association of deteriorating thalamic tract white matter microstructure with elevated vascular risk and poorer cognitive function. Previous work has argued that the thalamus is both central to integrative signalling in the brain and potentially susceptible to changes in cerebrovascular perfusion. Crucially, we identify that variation in these brain structural features correlates with variation in myocardial intensity features (Figure 2, Supplementary Figure 6), and this linked axis of heart and brain structural change completely mediates the vascular risk and cognitive function association (Figure 4, 5).

Beyond this main mediating heart-brain mode, we provide a detailed examination of the many heart and brain measures that at least partially mediate the VRF-CF association (Figure 4, 5). Gross measures of grey matter volume, mean diffusivity, and fractional anisotropy all show
smaller but significant negative indirect effects, consistent with the hypothesis that changes in these features are associated with both vascular risk and cognitive function. Although important features from these latents all have relatively large coefficients in the second heart-brain CCA mode (Supplementary Table 6), these latents alone show much smaller indirect effects than the second heart-brain CCA mode (Supplementary Table 13), which suggests that using the association between some brain volumes, white matter integrity, and myocardial intensity is informative to deriving a brain imaging latent factor that associates with both vascular risk and cognitive decline.

Our analyses of individual VRFs and cognitive exams revealed subtle trends not apparent in our more global/latent results, where brain and heart had differential importance. For example, whereas brain volumes more strongly mediate the pack year - VNR association than the WHR-VNR association, myocardial intensity exhibited the reverse pattern (Figure 6, Supplementary Table 18). This result highlights the utility of a comparative approach between heart and brain structural variation. However, the individual VRF cognitive exam analysis also revealed the complexity in some of these phenotypes, replicating a previous finding of a positive association between BMI and visual memory (Figure 6).17

Beyond supporting findings from the latent analysis, the individual gVRF-g mediation analysis of imaging features revealed that lower right and left ventricular volume for body size associates with greater vascular risk and lower cognitive function (Figure 7, Supplementary Table 20). This result could point to a simple mechanistic step in the structural-functional hypothesis in which lower stroke volume for body size decreases cerebral perfusion.45 Analysis of the individual brain features highlights grey matter, some subcortical volumes, and thalamic white matter tract measures as most mediating the gVRF-g association (Figure 7, Supplementary Table 22). This provides independent support from the joint analysis that these specific brain structures are key to the heart-brain axis.

Lower myocardial intensity has previously been associated with specific vascular risk factors and greater red meat consumption, and we also quantify its association with both greater aggregate vascular risk and lower cognitive function.25,32,50 Lower myocardial intensity strongly associates with higher BMI in a manner not explained by body or heart size (Supplementary Table 14), possibly representing fatty transformation of myocardial tissue. Alternatively, previous imaging
studies have detected myocardial fibrosis in cohorts of patients with vascular risk factors, suggesting that the low intensity features common to vascular risk and cognitive decline could be signs of a common myocardial fibrotic pathology driven by vascular risk factors.51–53 We also found some mediation via greater myocardial textural uniformity (Supplementary Table 20), which could also associate with the speculated fibrosis. These results motivate further work to confirm these hypotheses through tissue pathology.

Limitations

Though the data use an exceptionally large dataset of adults across a wide range of middle- and older-ages, this work does not analyse longitudinal data. Therefore, we cannot disambiguate whether cardiovascular risk is causing decreased cognitive function, lower cognitive function is causing increased cardiovascular risk, or some mix of both effects. However, numerous longitudinal studies in other cohorts support that cardiovascular risk associates with accelerated cognitive decline.9–12,54,55 Furthermore, without longitudinal imaging, we cannot assess the temporal relationship between cardiac and brain imaging phenotypes, vascular risk, and cognitive function. However, we argue that our results still offer novel cross-sectional support for the structural-functional model linking elevated vascular risk and poorer cognitive function in ageing.

In this work, we focus on the structural functional model of linking vascular risk and cognitive function. Importantly, the VRF - CF association could be equally well explained by unmeasured mechanisms (e.g. metabolic hormonal dysregulation could directly impact neuronal function)56 or by reverse causation (e.g. poor cognitive function could decrease healthy lifestyle maintenance).57,58 Testing these hypotheses adequately would require longitudinal data not yet available via the UK Biobank. Additionally, we do not adjust for ethnicity in this study due to the low numbers of non-White British participants and the heterogeneity of those minority participants (Table 1).

Whereas some have questioned the reliability of the UK Biobank cognitive exams,26 recent work has supported their validity and psychometric properties.27 Additionally, as reported in previous work, the effect sizes for the association between individual VRFs and cognitive exams is small, and we find no unique association for many VRFs and at least two associations pointing in the
‘opposite direction’ as hypothesised (Figure 6, Supplementary Tables 18). Results from the full UK Biobank study suggest that large studies are needed to consistently detect these small effects and future increases to the imaging subset will help refine our results. We argue that the approach implemented here, via obtaining a latent measure g, minimises the impact of individual exam variability by obtaining an estimate of a robust, replicable, and test-invariant cognitive construct.

Conclusion

The structural-functional model explaining the VRF-CF association rests on the argument that vascular risk drives changes in cardiovascular structure that lead to alterations in brain structure that lead to cognitive decline. Definitive support for the causal sequence of this model would require experimental or longitudinal work. However, our models (using cross-sectional data) are consistent with the hypothesis that vascular risk-associated cognitive ageing associates with distinctive variation in cardiac and brain structure. This is the first large-scale work to show that there is correlated variance in both heart and brain structure that mediates the association between vascular risk and cognitive function, providing a more extensive multi-modal framework to important prior work. One of the many hypotheses generated from analysing these data together is the identification of a key link to explain: how myocardial hypointensity could associate with cerebrovascular hypoperfusion impacting particular subcortical structures, like the thalamus.
Acknowledgments

We thank the UK Biobank participants and the UK Biobank team for their work in collecting, processing and disseminating these data for analysis. AJ received funding from a Fulbright Pre-doctoral Research Award (2019–2020). This research was funded in whole, or in part, by the Wellcome Trust [221890/Z/20/Z and 108890/Z/15/Z]. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. ELSC is supported by funding from the Wellcome Trust 4-year PhD in Translational Neuroscience (108890/Z/15/Z). ZR-E recognises the National Institute for Health Research (NIHR) Integrated Academic Training programme which supports her Academic Clinical Lectureship post and was also supported by British Heart Foundation Clinical Research Training Fellowship No. FS/17/81/33318. Barts Charity (G-002346) contributed to fees required to access UK Biobank data [access application #2964]. SEP acknowledges the British Heart Foundation for funding the manual analysis to create a cardiovascular magnetic resonance imaging reference standard for the UK Biobank imaging resource in 5000 CMR scans (www.bhf.org.uk; PG/14/89/31194). SEP acknowledges support from the National Institute for Health Research (NIHR) Biomedical Research Centre at Barts. PG, KL and SEP have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825903 (euCanSHare project). SEP acknowledges support from and from the “SmartHeart” EPSRC programme grant (www.nihr.ac.uk; EP/P001009/1). SEP also acknowledges support from the CAP-AI programme, London’s first AI enabling programme focused on stimulating growth in the capital’s AI Sector. CAP-AI is led by Capital Enterprise in partnership with Barts Health NHS Trust and Digital Catapult and is funded by the European Regional Development Fund and Barts Charity. This article is supported by the London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare (AI4VBH), which is funded from the Data to Early Diagnosis and Precision Medicine strand of the government’s Industrial Strategy Challenge Fund, managed and delivered by Innovate UK on behalf of UK Research and Innovation (UKRI). Views expressed are those of the authors and not necessarily those of the AI4VBH Consortium members, the NHS, Innovate UK, or UKRI. This work was supported by Health Data Research UK, an initiative funded by UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations, and leading...
medical research charities. This project was enabled through access to the MRC eMedLab Medical Bioinformatics infrastructure, supported by the Medical Research Council (www.mrc.ac.uk; MR/L016311/1). SRC is supported by a Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (221890/Z/20/Z), and acknowledges funding from Biotechnology and Biological Sciences Research Council, and the Economic and Social Research Council (BB/W008793/1), Age UK (The Disconnected Mind project), the US National Institutes of Health (R01AG054628; 1RF1AG073593), the Medical Research Council (MR/R024065/1), and The University of Edinburgh. KL received funding from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-099898-B-I00.

Disclosures

SEP provides Consultancy to Circle Cardiovascular Imaging, Inc., Calgary, Alberta, Canada.

Data and Code Availability

UK Biobank Data is available via application. All code open-sourced here:
https://github.com/akshay-jaggi/heart_brain_mediation

Contributions

<table>
<thead>
<tr>
<th></th>
<th>AJ</th>
<th>EC</th>
<th>ZRE</th>
<th>PG</th>
<th>CM</th>
<th>SN</th>
<th>SP</th>
<th>SC</th>
<th>KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Acquisition</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conceptualisation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Preprocessing</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Analysis and Coding</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure Development</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Editing</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
References

12. SPRINT MIND Investigators for the SPRINT Research Group, Williamson JD, Pajewski NM,

43. Liang Y, Melia O, Caroll TJ, Brettin T, Brown A, Im HK. BrainXcan identifies brain features associated with behavioral and psychiatric traits using large scale genetic and imaging data [Internet]. bioRxiv. medRxiv; 2021. Available from: https://www.medrxiv.org/content/10.1101/2021.06.01.21258159v2.abstract

Table Captions

Table 1: Demographic summary data of the final cohort
Figures and Legends

Figure 1

```
VRFs (19408,8)  Cognitive Tests (19408,4)  CMR IDPs (19408,271)  Brain MRI IDPs (19408,211)  Covariates (19408,10)
```

Drop Incomplete

```
VRFs (18627,8)  Cognitive Tests (17275,4)  CMR IDPs (19405,271)  Brain MRI IDPs (16010,211)  Covariates (17713,10)
```

First Merge (13728,495)

Drop Severe (11962,495)

```
VRFs (11962,8)  Cognitive Tests (11962,4)  CMR IDPs (11962,271)  Brain MRI IDPs (11962,211)  Covariates (11962,10)
```

Dimensionality Reduction

```
VRFs (11962,2)  Cognitive Tests (11962,1)  CMR IDPs (11962,6)  Brain MRI IDPs (11962,10)  Covariates (11962,10)
```

Final Merge (11962,29)
Figure 1: Workflow

A schematic diagram of the flow of subjects and variables through the study. Each box represents the number of subjects and the number of variables for each data category after the most recent action was taken. We began with 19408 subjects with complete CMR imaging and pulled their data for the other categories. We then dropped incomplete subjects for each category, merged, and removed all patients with a severe cardiovascular or brain disease diagnosis. We then separately conducted factor analysis (and some additional joint factor analysis not illustrated here for clarity) and finally merged all latent variables and covariates for downstream modelling.
Figure 2

A schematic illustrating all of the extracted latent factors and a simple interpretation of their meaning. The loadings for all the factors can be found in the Supplementary Tables and more detailed interpretations of the meaning of each factor can be found in the Supplementary Methods.
Figure 3: Pairwise Latent Associations

We performed linear modeling of every pair of latent variables controlling for age and sex. (A) A schematic diagram of the modelling process. Every latent variable (e.g. VRF agg) is linearly modeled as a function of another latent variable (e.g. gVRF), sex, and age. The derived coefficients for the example first model are illustrated. We repeat this for every variable (not showing the sex and age confounds and coefficients for clarity), and the coefficient from these analyses compose the first row of the adjacent heatmap. (B) Heatmap of all coefficients from all 342 separate pairwise linear models. All latents had been standardised before analysis, so coefficients are comparable between variables. Each row lists the dependent variable and each column lists the independent variable in the linear models. (C) With gVRF set as the dependent variable, we compare the R-squared of the linear model for each latent grouped by whether it
was derived from the heart or brain imaging. (D) With g set as the dependent variable, we compare the R-squared of the linear model for each latent grouped by whether it was derived from the heart or brain imaging.
Figure 4: Latent Single Mediation Modelling

We performed serial mediation modelling of the gVRF-g association, testing each imaging latent as a potential mediator. (A) Schematic for the CMR radiomics modelling procedure. gVRF and g were maintained as the known association, and we iterated over all CMR imaging latent factors. Equations demonstrate the derivation of the direct and indirect effect. (B) Schematic for the brain MRI modelling procedure. (C) Example computation of the measured effects. Confidence intervals reported in Supplementary Table 13. (C) The estimates for the direct and indirect effects for all potential mediators, sorted by indirect effect size, closed circles are significant (p<0.05) and open are not. Error bars derived from bootstrapping (see Supplementary Methods).
Figure 5: Latent Multiple Mediation Modelling

We performed simultaneous multiple mediation modelling of the gVRF-g association, including all imaging latent variables as potential mediators. (A) Schematic of the modelling procedure with a single direct effect and multiple tested indirect effects, one for each potential mediator. We list values from an example mediation effect. Confidence intervals reported in Supplementary Table 16. The direct effect is fixed for all mediators at 0.011. (B) A barchart of the estimates for the indirect effects for all potential mediators, closed is significant (p<0.05) and open is not, error bars derived from bootstrapping.
Figure 6: Latent Single Mediation Modelling of VRF-Cognitive Pairs

We performed serial mediation modelling for all latent imaging measures for each VRF-cognitive exam pair. (A) Schematic for a mediation model using different VRFs as the independent variable rather than gVRF. We tested all VRFs. (B) Schematic for a mediation model using cognitive exams as the dependent variable rather than g. We tested all exams. (C) Example mediation model for an individual latent factor and an example pair of VRF and cognitive exam. Confidence intervals for all coefficient estimates in Supplementary Table 18. (D) Direct and indirect effects for three significant VRF-exam pairs. Latents ordered by indirect effect size and separated by organ. RT shows lower values for better performance while VNR shows higher values for higher performance.
Figure 7: Individual Feature Single Mediation Modelling

We performed serial mediation modelling for all individual imaging features. (A) Schematic for the modelling procedure for CMR IDPs. Same as Figure 3, except all potential mediators are now individual features (IDPs) instead of latent variables. (B) Schematic for Brain IDPs. (C) Example mediation model for an individual feature with the left thalamic volume (Volume Thalamus) as a potential mediator. Confidence intervals reported in Supplementary Table 22. (D) Direct and indirect effects for all tested CMR radiomics grouped by cluster and brain MRI IDPs grouped by their feature type.