Title:

Development and Validation of the Cannabis Exposure in Pregnancy Tool (CEPT)

Kathleen H. Chaput PhD1,2, Carly A. McMorris PhD3, Amy Metcalfe PhD1,2 Catherine Ringham PhD, Stephen Wood MD1, Deborah McNeil PhD2,5, Sheila W. McDonald PhD2,6

1. Department of Obstetrics and Gynecology, Cumming School of Medicine, University of Calgary
2. Department of Community Health Sciences, Cumming School of Medicine University of Calgary
3. Werklund School of Education, School and Child Psychology, University of Calgary
4. Maternal Newborn Child and youth Strategic Clinical Network, Alberta Health Services
5. Research and Innovation Population, Public, and Indigenous Health, Alberta Health Services

Correspondence:

Kathleen H. Chaput
1403 29 Street NW
Calgary, Alberta, T2N 2T9
Phone: 1-403-944-4009; email: khchaput@ucalgary.ca

Funding statement: This project was funded by a competitive research grant from the Alberta Children’s Hospital Research Institute, University of Calgary.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Competing interests: No Authors have competing interests to declare.

Word count: 2868
Abstract: (250 words)

Background: Evidence of the associations between prenatal cannabis exposure and maternal, infant, and child health outcomes remains conflicting amid broad legalization of cannabis across Canada and 40 American states. A primary critical limitation of existing evidence lies in the non-standardized and crude measurement of prenatal cannabis exposure, resulting in high risk of misclassification bias. We developed a standardized tool to comprehensively measure prenatal cannabis use in pregnant populations for research purposes.

Methods: We conducted a patient-oriented tool development and validation study using a six-step, bias-minimizing process. Following an environmental scan and critical appraisal of existing prenatal substance use tools, we recruited pregnant past- present- and non-cannabis users via targeted social media advertising and obstetric clinics in Alberta, Canada. We conducted individual in-depth interviews and cognitive interviewing in separate sub-samples, to develop and refine our tool. We assessed content, convergent and discriminant validity, internal consistency and 3-month test-retest reliability, and validated externally against urine THC bioassay at multiple timepoints in pregnancy.

Results: 194 pregnant women participated. The 9-item Cannabis Exposure in Pregnancy Tool (CEPT) had excellent discriminant (Cohen’s kappa=-0.27 to 0.15) and convergent (Cohen’s kappa=0.72 to 1.0) validity; as well as high internal consistency (Chronbach’s alpha = 0.92), and very good test-retest reliability (weighted Kappa=0.92, 95% C.I. [0.86 – 0.97]). The CEPT is valid against gold-standard urine THC bioassay (sensitivity 77%, specificity 100%) in preliminary analyses.
Interpretation: Developed for research purposes, the CEPT is a novel, valid and reliable measure of frequency, timing, dose, and mode of prenatal cannabis exposure, in a contemporary sample of pregnant women. Use of the CEPT can improve measurement accuracy, and thus the quality of research examining associations between antenatal cannabis use and maternal and child health outcomes.
Background:

Following cannabis legalization in Canada, prenatal cannabis use is rising (1,2). Despite recent studies of prenatal cannabis use and adverse maternal, infant, and child outcomes (3–6), the evidence remains conflicting (7–12). A critical limitation of published studies is a high risk of misclassification bias, resulting from a lack of standardized measurement of cannabis exposure across adequate domains, including frequency, dose, modes, timing of use in pregnancy, and second-hand smoke and vapour. Canadian and United States (US) governments highlight an urgent need for high-quality cannabis-related health research and endorse pregnant individuals and infants as priority populations (9,10,13). Improved options for measuring prenatal cannabis use are a key component to improving the quality of the evidence.

Current prenatal cannabis-use measurement options available for research include administrative data collected during routine prenatal care, substance use disorder (SUD) screening tools, non-validated questionnaires, and biological tests. Administrative data is problematic because pregnant people are known to conceal or under-report prenatal substance use to physicians (14,15). Further, cannabis use screening is not standardized practice, occurs variably, and is seen as low-priority for the majority of obstetricians (16). While Canadian studies using administrative data have reported prenatal cannabis-use prevalence between 2% and 3% (2–4), emerging evidence from an anonymous population-based survey indicates 11% prevalence of prenatal cannabis use (17), and in a US study only 36% of women with cannabis-positive urine tests had reported their use to a care provider (18), indicating that the majority of prenatal cannabis users may be misclassified in administrative data studies.
While self-administered research questionnaires have proven to garner more accurate reporting of substance (e.g. alcohol) use in pregnancy than screening in clinical settings (19,20), non-standardized survey questions have limited utility for measurement of prenatal cannabis use, as they can unintentionally convey perceived bias against prenatal cannabis use. They often identify cannabis as an illicit drug and do not differentiate between medicinal and recreational use, which contradicts social perception and may increase response bias (18,21). Survey questions are problematic for studying nuanced associations with maternal and infant health outcomes due to inconsistent assessment of frequency and timing of use, including changing patterns through pregnancy, and often lack dose measurement, or use subjective dose-terminology (9,10,22–28). Further, most lack measurement of potentially important consumption modes aside from smoking (vapourized, edible, topical, second-hand)(22–24).

Standardized SUD screening tools aim to detect a diagnosable SUD, and do not measure patterns of consumption of specific substances like cannabis throughout pregnancy (29). Many screen for alcohol misuse alone (30–33), or combine all drugs into a single category (29) preventing the separate evaluation of cannabis-related health outcomes. While biological (urine/blood/saliva) cannabis-screeners exist they are limited to detection within 1-5 weeks of use, depending on individual metabolism and test cut-off levels (34–38). Biological samples are also resource-intensive and stigmatizing to collect, limiting their utility for prospective research.

Our study developed and validated a novel prenatal cannabis use measurement tool, that addresses the limitations of current measurement methods, and uses a patient-oriented approach in order to identify patient-perceived stigma, and methods of reducing perceptions of stigma and other sources of response bias, using a six-step, peer-reviewed process (39).
Methods:

We recruited pregnant, past- and current-cannabis users and non-users, <36 weeks’ gestation, between 08/2019 and 04/2020 for this mixed-methods tool development and validation study. We used social media advertising targeted to women aged 18-45, residing in Alberta, with listed interests or group memberships related to pregnancy, parenting, and/or cannabis, and posted gender-neutral recruitment ads in an online trans-gender parent support group. Study recruitment letters were also mailed to patients who visited Alberta Health Services (AHS) clinics for pregnancy-related care in the preceding six months, identified using pregnancy-related codes in the National Ambulatory Care Reporting System (NACRS)(Appendix A). Our target sample size of 150 participants was sufficient to detect a Cronbach’s alpha of >0.9, with 95% confidence for test-retest reliability on a tool that contains up to 15 items (39). This study was approved by the Conjoint Health Research Ethics Board at the University of Calgary (REB19-0670), and Written informed consent was obtained from all participants.

Step 1 Qualitative Interviews: A crucial step often overlooked in tool development is the use of qualitative methods to provide patient perspective, and ensure appropriate wording and response options (49). We conducted individual in-depth interviews (IDIs) with 10 participants purposively selected from the full sample, to represent regular and occasional cannabis users, and non-users (Figure 1). Two female research assistants with training in qualitative interviewing conducted telephone interviews at a time chosen by the participant about participant views and experiences with cannabis use in general, and during pregnancy. Prior to IDIs, participants had two points of contact with research staff to discuss study details,
questions, concerns, and confidentiality. Research assistants then established a trusting relationship, by disclosing their own connections to the study topic, emphasizing a non-judgmental approach, acknowledging that all experiences shared were important, and guaranteeing privacy of information. We recorded and transcribed interviews verbatim, and used deductive thematic analysis to extract pre-determined themes of: language around cannabis and its use; perceptions of stigma and judgement, and their relations to truthful disclosure of use; patterns of use in pregnancy (timing, frequency of use, typical dose); motivations for use; and forms of cannabis used in the qualitative transcripts. Two team members experienced in qualitative methods coded salient content that corresponded to the pre-determined themes, and then collapsing codes into broader themes using constant comparison technique, discussion and consensus. Themes were then reported back to the qualitative participants via email for member-checking of the relevance and appropriateness of the qualitative findings to ensure truth value.

Step 2 Devising Items: We devised items, including wording, to form the initial tool based on strengths and shortcomings identified in existing SUD tools and published survey questions (Table 1), and on themes identified from IDIs to form a draft tool. We eliminated double-barreled questions, ambiguous wording and ensured a 6th grade reading level.

Step 3 Cognitive interviewing and bias reduction: Schwartz and Oyserman(40) propose five stages of cognition required to accurately self-report behaviour, each of which are susceptible to bias: 1. question understanding, 2. recalling relevant behaviour, 3. inference & estimation, 4. mapping answer onto response options, and 5. answer editing. In order to identify points of bias at all five stages of cognition, we then contacted an additional sub-sample of participants
from the full sample, and conducted individual cognitive interviews, in which respondents were asked to think aloud, and share impressions, understanding and reasoning related to each of the five stages of cognition, as we administered the newly developed tool. We iteratively revised items according to each participant’s feedback prior to each subsequent interview. This process was repeated until no new suggestions for revision were made in two consecutive interviews. This occurred after the 17th cognitive interview.

Step 4 Face and Content Validation: We then formatted the refined items into the CEPT online tool and sent it to a panel of experts in epidemiology, addictions, obstetrics, neonatology, pediatrics and neurodevelopment with research and clinical interests in prenatal substance exposure and child health, identified using and environmental scan and from our team’s professional networks. They were asked to assess whether the tool adequately captured all domains of measurement that are critical to prospective research on the associations between prenatal cannabis use and maternal and infant health.

Step 5 Convergent and Discriminant Validation: We then administered the finalized CEPT, along with the SURP-P(42) and 4Ps+ (30) SUD screening tools via electronic questionnaire, to our remaining sample of 150 women. Because biological tests are only able to accurately indicate cannabis exposure for short time periods, and their reliability is dependent on dose of exposure, there is no true gold-standard measure of the patterns of cannabis consumption throughout pregnancy. We therefore measured concurrent validity of CEPT responses against detailed cannabis use information revealed during the IDIs, using Cohen’s kappa statistic. There is strong evidence that through rigorous qualitative interview techniques, a trust-relationship can be established between researcher and participant, and a high degree of truth value can be
achieved (43). We assessed discriminant validity of CEPT responses against SURP-P and 5Ps tools using Cohen’s kappa. We calculated internal consistency on all CEPT cannabis consumption items using Chronbach’s alpha, while acknowledging that it is designed to measure multiple constructs of cannabis exposure (i.e. any use, frequency, timing, dose, mode and reasons for consumption), rather than a single construct such as a disease state. However, we anticipated internal consistency among the CEPT items, as a person indicating no consumption on one item should have similar answers on all other items, and those indicating some use should have non-zero responses for dose, mode frequency and reasons for use. We then re-administered the tool to all participants (n=150) 3 months later to assess test-retest reliability (agreement) using a weighted Cohen’s kappa.

In an additional external sample of 24 pregnant participants, we validated CEPT responses against urine bioassay measurements of 11-nor-9-carboxy-Δ⁹-THC, the most abundant THC metabolite. Participants provided urine samples in sterile collection containers that were shipped frozen to our laboratory by pre-paid courier for analysis, within 24 hours of completing an online questionnaire containing the CEPT. We stored urine samples in a dedicated -80°C freezer until analysis. 2ml aliquots were taken from thawed samples, diluted (2x) with ultrapure water and assayed in triplicate using a 96-strip-well, THC Metabolite ELISA Kit (catalogue # 701570, Cayman Chemicals™, United States of America) according to manufacturer’s protocol. No freeze-thaw cycles were allowed.

Results:
Our sample included 175 pregnant past, current, and non-consumers of cannabis. Specific sub-samples participated in various steps (Figure 1). Table 2 summarizes participant characteristics at enrollment. Other sociodemographic characteristics of our sample were similar to the overall maternal population in Canada (44–46). (Fig. 2)

Qualitative interviews:

We chose to cease qualitative data collection after completion of 10 interviews as no new ideas were apparent under our deductive themes after analysis of the 8th transcript, indicating that thematic saturation had been reached. Summaries of a-priori deductive themes and illustrative quotes are presented in Table 2. Numerous important insights around bias-minimizing language and wording, tool structure, response options, and patterns of use were gained from qualitative results, and drove the terminology and language used in the tool preamble and questions, guided tool structuring including inclusion of specific items (e.g. reasons for use) and response options, and determined the method of dose measurement. While legalization was perceived to have reduced stigma around cannabis use in general, perceptions of stigma against use in pregnancy were prevalent and thus important for consideration to encourage accurate disclosure. Several participants noted that including a response option to disclose cannabis consumption that occurred only prior to pregnancy recognition was crucial, and noted that for many, if this option was not present, they would not report any use, even if they had consumed some cannabis prior to pregnancy recognition. One of the most challenging aspects of cannabis consumption measurement is identifying dose. IDI results provided insight into a reliable method of quantifying approximate dose per use (i.e. comparing amounts to common objects,
like food items or coins). Approximate THC/CBD content can be inferred based on mean THC content of dried cannabis available on the contemporary market (24%)(47), or the labeled concentration of products as reported by participants. (Supplementary file 2)

Cognitive interviews:
We completed cognitive interviews with a separate sub-sample of 17 participants to assess and minimize points of bias through participant-led refinement. This resulted in 9 sequential iterations of our initial draft tool. Perceived sources of bias at all five stages of cognition were identified, and we made refinements to minimize the potential for biased responses based on participant feedback, until no further changes were suggested. (Figure 2)

Question understanding: Most of the draft tool questions were well understood; however, some changes were made to improve clarity.

Recalling relevant behaviour: All participants indicated that they were accurately able to recall details of first-hand cannabis consumption, including frequency, trimester of consumption, reasons, modes, and amounts per use. Nearly all participants (93%) indicated they were able to accurately recall the details of second-hand cannabis smoke or vapour exposure, aside from brief outdoor exposures. We amended the second-hand exposure questions to align with exposure confirmed by previous literature to elevate THC blood-levels of the passive user to equivalent levels in the first-hand user (48).
Inference & estimation: Participants did not express concerns about inference or estimation on items measuring any consumption/exposure, or frequency, timing or reasons for use. Dose questions were adjusted to address perceived ambiguity and aid with estimation (figure 2).

Mapping answers onto response options: Several participants noted problems with initial dose-per-use response-options, increments for some product types were deemed too large for use in pregnancy, and we refined categories to align with participant-identified appropriate ranges and increments.

Answer editing: No participants expressed the need to edit responses once the above clarifications and response-option edits had been made. Further, participants agreed that the overall tool was non-judgemental, appropriate, and acceptable to them as pregnant research participants, and that it would elicit truthful responses, confirming face and content validity from the participant perspective.

The final refined CEPT has 9 items measuring weeks of gestation, second-hand exposure, partner use, trimester(s) of consumption, frequency, reasons, modes of consumption, and dose per use for each mode indicated. Frequency, reasons, modes, and dose items repeat for each trimester of use indicated. (Appendix A)

Validity and reliability:
Content validity was deemed high by our expert reviewers, who noted the CEPT’s ability to distinguish high, single doses from sustained low dose exposure, and to capture changes in use patterns across all trimesters.
Concurrent validity was excellent, with agreement between IDI participant CEPT responses and use reported in IDIs, ranging from 80% to 100%, and kappa values ranging from substantial (0.72) to perfect (1.0) (Table 4). The timing of use construct showed the lowest level of agreement, which was expected. Use will be reported in more trimesters as a pregnancy progresses. A greater proportion of participants (40%) reported third-trimester use on the online CEPT, compared with IDIs (30%), which occurred 5-6 weeks prior. Discriminant validation indicated poor agreement between two pregnancy SUD screening tools (5ps and the SURP-p)(refs), with weighted Kappa values ranging from -0.31 to 0.36 indicating that the CEPT measures different constructs from those on the existing tools. (Table 5)

Reliability testing showed excellent internal consistency (Chronbach’s alpha=0.92) and substantial to near-perfect Kappa values (0.71-0.99) for test-retest reliability (Table 6). Although some patterns of use may be expected to change throughout pregnancy, the strong agreement between early and late pregnancy responses on the CEPT support that recall of cannabis consumption using this tool is reliable up to delivery.

CEPT-reported cannabis use and/or exposure to second-hand cannabis was valid against urine-THC bioassay in our preliminary analyses (table 5), and show much higher sensitivity (77%) than self-report during prenatal care observed in previous studies (36%), and had 100% specificity, indicating that it has promise as an improved measure of prenatal cannabis use for research purposes.
Interpretation:

The CEPT addresses the measurement limitations faced by previously published studies of prenatal cannabis consumption and associated maternal and infant health outcomes, which are highly susceptible to misclassification bias, have inconsistent findings and are rated moderate at best by the US National Academies of Science Engineering and Medicine\(^{10,50}\). It offers researchers a measurement option with strong validity and reliability, that accounts for frequency of cannabis consumption, reasons for consumption, modes of consumption, estimated dose-per-use, measures CBD and THC, and allows repeated measures per trimester to capture changing patterns of exposure. It also captures frequency and timing of second-hand exposure, in addition to partner’s cannabis use. The CEPT thus enables more complete picture of exposure over pregnancy than currently published studies have been able to capture. The patient-oriented methods we used are a strength; qualitative in-depth interviews can reveal aspects of health behaviour that contrast with the underlying assumptions held by researchers that can unintentionally interfere with the five stages of cognition and create opportunities for biased response \(^{39,40}\). Evidence from studies on the measurement of prenatal alcohol use indicate that non-disclosure bias for prenatal substance use varies according to participant perceptions, and that question wording and structure informed by patient-oriented designs can improve validity.\(^{20,51}\) Further, the language used, the tone of the questions, and the perceived intent of the tool are all critical components contributing to non-biased response. The qualitative interviews in our study explored in-depth what was perceived as judgemental or stigmatizing, and revealed patient-identified methods for reducing the perception of judgement and stigma in our tool. The cognitive interviews acted to further reduce sources for perceived
stigma, thereby reducing the potential for biased responses. While we may never be able to completely eliminate the bias arising from hesitancy to report prenatal cannabis use due to stigma, our patient-oriented development process was chosen specifically because it is crucial for minimising perceived stigma, and ensuring a much lower probability of bias than the methods of measurement used in existing studies, including biological samples, which do not allow the participant to explain their reasons for use, nor to judge the motivations of the researchers for measuring their use of cannabis.

Although there remains no feasible gold-standard measure of prenatal cannabis consumption, the CEPT represents a useful tool for researchers to augment the quality and expand the scope of longitudinal research into the health outcomes associated with prenatal cannabis exposure. Our results indicate that it has the potential to minimize self-report bias, and its nuanced measurement of multiple dimensions of cannabis consumption may also reduce misclassification of very low exposures, allow for assessment of potential dose-response relationships, and enable the identification of critical windows of fetal exposure in future studies, that were not possible with previous crude measures.

Limitations: The CEPT is designed to measure behaviours over pregnancy, rather than to detect a condition or health state. Where medical screening tools can be validated against diagnostic tests or interviews, validating a measure of behaviour is more complex. A limitation of our study is the lack of a true gold-standard measure of cannabis consumption patterns throughout pregnancy for validation, which would require at least weekly serial urine collection throughout
gestation, which was financially infeasible for this study. However, we have preliminarily validated CEPT responses against a biological reference-standard, showing very good sensitivity and excellent specificity. While we could not attain a true biological gold-standard in our study, the validation we conducted against single bioassays, and in-depth qualitative interviews remains a rigorous method. Biological levels of THC metabolite cannot be falsified, and the qualitative methods we employed result in high credibility and truth-value for qualitative results (57). Further, IDIs allowed for comparison of binary cannabis use as well as multiple aspects of cannabis consumption patterns (modes, frequency, timing) that are more difficult with a biological test comparator. Although our study sample was adequate to detect a Cronbach’s alpha of >0.9 on a tool with up to 15 items, we acknowledge that our overall sample and the preliminary bioassay validation sample (n=24) was small. Future validation studies should include larger samples to confirm findings. It is also important to note that our tool and the validation conducted are limited to English-speaking populations, and translations will require further validation. Additionally, cultural differences may impact the interpretations of participants and use in non-Canadian settings should also be validated separately.

Conclusion:

Prenatal cannabis use and its associated health outcomes have been identified as priorities for research in Canada following cannabis legalization. (9) We recommend the CEPT as a rigorous, feasible, patient-oriented health research tool for measuring prenatal cannabis consumption. The use of the CEPT as a standardized measure of prenatal cannabis consumption in future
studies can contribute substantial new knowledge about the implications of timing, dose, frequency, and modes of exposure for maternal, fetal, infant and child health, accounting for varying patterns of consumption and the strength and diversity of cannabis products available on the contemporary Canadian market. The CEPT has the potential to significantly improve measurement accuracy and thus the quality of research in this area, which can in turn inform evidence-based education, prevention and health policy to mitigate potential health risks.

Data sharing: Quantitative data can be made available in accordance with the ethics approval for the study, on reasonable request to the corresponding author.
Table 1: Measurement domains of existing prenatal cannabis measurement options

<table>
<thead>
<tr>
<th>Includes measure of:</th>
<th>4ps</th>
<th>4ps+</th>
<th>WIDUS</th>
<th>CRAFFT</th>
<th>SURP-P</th>
<th>StatsCan</th>
<th>Generation-R</th>
<th>NSDUH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis separately</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Use in pregnancy</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>*indirect</td>
<td></td>
</tr>
<tr>
<td>Frequency of use</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Timing of use in pregnancy</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>1st trimester & pre-preg. *indirect</td>
<td></td>
</tr>
<tr>
<td>Dose</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Mode of consumption</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Medicinal vs. recreational use</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Time-span covered</td>
<td>Past</td>
<td>Past</td>
<td>Past</td>
<td>Past 12</td>
<td>Past 3</td>
<td>Pre-pregnancy, First trimester</td>
<td>Past 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ever</td>
<td>month</td>
<td>ever</td>
<td>months</td>
<td>months</td>
<td></td>
<td>mos.</td>
<td></td>
</tr>
<tr>
<td>Second-hand exposure/partner use</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Reference</td>
<td>(56)</td>
<td>(28)</td>
<td>(57)</td>
<td>(58)</td>
<td>(40)</td>
<td>(60)</td>
<td>(61)</td>
<td>(37)</td>
</tr>
</tbody>
</table>

4Ps = Parent drug problem, Partner drug problem, Past use of substance
4Ps+ = Parent drug problem, Partner drug problem, Past use of substance, Pregnancy use
WIDUS = Wayne Indirect Drug Use screener; CRAFFT = Car, Relax, Alone, Forget, Friends, Trouble;
SURPP = substance use risk in pregnancy profile; NSDUH = National Survey on Drug Use and Health; StatsCan = Statistics Canada * specific date can be cross-referenced with pregnancy information if provided
Table 3: Deductive themes and illustrative quotes (n=10)

Theme 1 - Language/wording: Participants indicated that non-judgmental wording around cannabis use as well as specific terms and context affected their choice to disclose their cannabis use while pregnant.

<table>
<thead>
<tr>
<th>Proportion</th>
<th>95% Confidence Interval</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st trimester</td>
<td>4</td>
<td>1.9 - 9.2</td>
<td>27 weeks</td>
</tr>
<tr>
<td>2nd trimester</td>
<td>41.5</td>
<td>33.6 - 49.9</td>
<td></td>
</tr>
<tr>
<td>3rd trimester</td>
<td>54.2</td>
<td>45.9 - 62.3</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nulliparous</td>
<td>37 (63)</td>
<td>29 - 45</td>
<td>1</td>
</tr>
<tr>
<td>multiparous</td>
<td>63 (107)</td>
<td>54.9 – 70.1</td>
<td></td>
</tr>
<tr>
<td>Maternal Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><35</td>
<td>83 (141)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>≥35</td>
<td>17 (29)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Female gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 (170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>84.1 (23)</td>
<td>77 - 89</td>
<td></td>
</tr>
<tr>
<td>Non-Caucasian</td>
<td>15.9 (121)</td>
<td>11 - 22</td>
<td></td>
</tr>
<tr>
<td>Residence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>75 (128)</td>
<td>67 – 81</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>25 (42)</td>
<td>19 - 33</td>
<td></td>
</tr>
<tr>
<td>Home ownership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owns home</td>
<td>52 (88)</td>
<td>42 - 58</td>
<td></td>
</tr>
<tr>
<td>Rent/other</td>
<td>48 (82)</td>
<td>41 - 57</td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married or common-law</td>
<td>78 (133)</td>
<td>77 - 79</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>22 (38)</td>
<td>18 - 26</td>
<td></td>
</tr>
<tr>
<td>Annual Household Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< $60,000</td>
<td>59</td>
<td>52 - 67</td>
<td></td>
</tr>
<tr>
<td>$60,000 or more</td>
<td>41</td>
<td>33 - 48</td>
<td></td>
</tr>
</tbody>
</table>

* Only aggregate age category available.
clear that they’re open to it, … I would be like, yeah, here’s how I take it and why.”

“I wouldn’t say ‘use’, I would say ‘consume’. [use] has a bit of a negative to it.”

“[marijuana] sometimes has a negative connotation, like it’s a drug, but cannabis is more … like it’s natural.”

Theme 2a) Tool structure - General: The need for non-judgmental wording and for cannabis to be treated separately from other substances on a questionnaire were identified as essential to avoid biased responses.

“Say something at the beginning to make it clear that you’re not judging. If it sounds judgmental, or like, if I think you’re asking me so you can lecture me … someone’s judging me for using it, I wouldn’t answer.”

“I feel like if doctors were a little non-judgmental and a little less biased, then it would create some more honesty.”

“If it’s lumped in with, you know, smoking, then drinking, then marijuana, then … heroin and cocaine, that just gives it a real negative tone … like, it’s worse than alcohol, and almost as bad as heroin… I wouldn’t be answering, really, if it’s like that.”

“it makes more sense to me to have it with … supplements, or alternative therapies.”

Theme 2b) Tool structure - Response options: Allowing participants to indicate their reasons for consuming cannabis in pregnancy (which were predominantly reported as medicinal), was perceived as a key factor for encouraging honest disclosure. A response option indicating that use only took place prior to pregnancy recognition was also seen as essential to unbiased reporting.

“I believe the stigma has died a lot. But there is still a big stigma with pregnancy for some people.”

“Especially in the first pregnancy women feel a lot more judged.”

“I don’t believe it should be used in pregnancy to get stoned, or to get high. But I believe that if it’s going to help with morning sickness, or relieve pain, or anything that you’re going through that may cause you suffering or stress, I believe it safe to use… ”

“some people stop as soon as they find out [they’re pregnant], so you need to be able to say that.”

Theme 3a) Patterns of use – Mode of consumption: Participants indicated numerous modes of consumption (vapour, oral/edible, topical, cannabidiol (CBD)) with varying doses for each, and some perceived as safer in pregnancy than others, supporting the need for standardized measurement of consumption-routes beyond smoking.

“I would think that ingesting it… would be a lot safer [than smoking] because there’s less transfer to the fetus.”

“I think edibles and lotions and liquid CBD capsules even, they’re most likely more safe to take during pregnancy considering just that you’re taking out the smoking out of the equation”

“I don’t necessarily think that smoking is the smartest.”

“I mostly smoke, but I have drops and a lotion too.”

“… for vaping it, [I] stick to three puffs maximum when it comes to THC products.”

“Smoking does work quite quickly, especially for morning sickness. But a tincture can work…”

“[consume] CBD oil daily, as well as smoking [cannabis].”

Theme 3b) Patterns of use – Frequency and Timing: Participants consistently indicated their patterns of use changed during pregnancy to a more frequent consumption of smaller amounts, compared to their general use pre-pregnancy, indicating that tool response options need to include high frequencies (i.e. multiple times per day) and small dose-per-use categories, compared to existing survey questions.

“I use it different (sic) now that I’m pregnant … I have a quick drag whenever I need it, so 3 or 4 times a day sometimes, but just a tiny bit, instead of having a lot at once.”

“I resumed micro-dosing daily…”

“I think asking about frequency makes sense - most people use it pretty regular (sic)”

Theme 3b) Patterns of use – Dose: Amounts of cannabis typically consumed at each sitting was discussed primarily in subjective terms (i.e. large, small), perceptions of which may vary considerably between consumers, and identifying the weights or exact doses used at each sitting was perceived as difficult or infeasible, particularly for dried cannabis. Comparison measures were preferred.
"I know how much I buy by weight, but I couldn’t tell you the grams I put in the pipe yesterday evening..."

"With smoking it, it’s harder... like, a big joint for me might not be big for my sister."

"It’s easy if it’s an edible, because it tells you on the label..."

"The THC oil that I have is 30 milligrams per milliliter, so that would work out to being about point three milligrams for point one or point two of a milliliter."

"Maybe start at half a milliliter, so that would be what? More like 10 milligrams, I guess, of the 40 milligram [per milliliter] stuff that I have."

"I would say the easiest way for people to say how much they smoke would be like a pea-sized amount, or a grape-size... compare it to something. Then you could figure out the grams from that. I don’t know how many grams or milligrams I use every time."

"I might use a small dab like the size of a dime, or other times it might be like twice as much..."

Table 4: Concurrent validity of the CEPT vs. In-depth interview (n=10)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Agreement</th>
<th>Kappa</th>
<th>Std. Error</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any use in pregnancy</td>
<td>100%</td>
<td>1.00</td>
<td>0.31</td>
<td>>0.001</td>
</tr>
<tr>
<td>Frequency of use</td>
<td>90%</td>
<td>0.87</td>
<td>0.16</td>
<td>>0.001</td>
</tr>
<tr>
<td>Timing (trimester)</td>
<td>80%</td>
<td>0.72</td>
<td>0.19</td>
<td>>0.001</td>
</tr>
<tr>
<td>Mode of consumption</td>
<td>100%</td>
<td>1.00</td>
<td>0.21</td>
<td>>0.001</td>
</tr>
</tbody>
</table>

Table 5: Discriminant validity of CEPT versus SUD screening tools (n=153)

<table>
<thead>
<tr>
<th>Screening Tool</th>
<th>CEPT Agreement</th>
<th>Kappa</th>
<th>Std. Error</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5Ps</td>
<td>44.9%</td>
<td>-0.031</td>
<td>0.04</td>
<td>0.53</td>
</tr>
<tr>
<td>SURP-P</td>
<td>69.8%</td>
<td>0.36</td>
<td>0.08</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Legend: Compares positive SUD screening result with any prenatal cannabis use on CEPT
Table 6: Test-retest reliability of the CEPT - 3-month interval (n=153)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Agreement</th>
<th>Kappa</th>
<th>Std. Error</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>actual</td>
<td>expected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any second-hand exposure</td>
<td>92%</td>
<td>52%</td>
<td>0.83</td>
<td>0.08</td>
</tr>
<tr>
<td>Any use in pregnancy</td>
<td>97%</td>
<td>51%</td>
<td>0.95</td>
<td>0.08</td>
</tr>
<tr>
<td>Frequency of use</td>
<td>90%</td>
<td>28%</td>
<td>0.86</td>
<td>0.04</td>
</tr>
<tr>
<td>Timing (trimester)</td>
<td>80%</td>
<td>32%</td>
<td>0.71</td>
<td>0.05</td>
</tr>
<tr>
<td>Mode of consumption</td>
<td>99%</td>
<td>51%</td>
<td>0.97</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 7: Preliminary Validity of the CEPT against Biological THC

<table>
<thead>
<tr>
<th></th>
<th>Bioassay negative</th>
<th>Bioassay positive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPT negative</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>CEPT positive*</td>
<td>0</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

Measure: 95% confidence interval

<table>
<thead>
<tr>
<th>Measure</th>
<th>Actual</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>76.5%</td>
<td>59.84% - 93.10%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>100.00% - 100.00%</td>
</tr>
<tr>
<td>PPV</td>
<td>100%</td>
<td>100.00% - 100.00%</td>
</tr>
<tr>
<td>NPV</td>
<td>66.7%</td>
<td>48.19% - 85.15%</td>
</tr>
</tbody>
</table>

*positive prenatal exposure includes any cannabis use and/or second-hand exposure during pregnancy
Figure 1: Study Process Flow Diagram

Full Study Sample (N=195)

Environmental scan

Tool drafted

Tool revised

Content Validation

Cognitive Interviews (n=17)

First administration of final tool (n=153)

Concurrent Validation (n=10)

Discriminant Validation (n=153)

Internal Consistency

2nd administration of final tool (n=150)

Test-retest reliability (n=150)

Lost to follow-up (n=3)

3rd administration of final tool + urine sample
(external n=25)

Sensitivity and specificity (n=25)
Figure 2: Participant Characteristics Versus Maternal Population of Canada
Figure 3: Cognitive Interviews - Bias reduction for the five stages of cognition

References:

1. Question Understanding (face validity)
 - Stipulate "current pregnancy so far" for reference period
 - Stipulate "cannabis" smoke and vapour for second-hand exposure
 - Change timing option "only before I knew I was pregnant" to "quit when I found out I was pregnant"

2. Recalling Relevant Behaviour
 - Stipulate "in the same room as the person smoking/vaping it" for second-hand exposure questions

3. Inference and Estimation
 - Remove subjective dose terms "low", "moderate", "high" etc.
 - Add common object comparison, e.g. "a pea-sized amount", "a blueberry-sized amount" etc. for dose categories

4. Mapping Answers Onto Response Options
 - Lower dose per use categories for concentrates, and vape products
 - Use smaller increments for dose-per-use categories to reflect appropriate use in pregnancy

5. Answer Editing
 - No changes required

9. Porath-Waller AJ. Clearing the Smoke on Cannabis Series: Maternal Cannabis Use during

prenatal marijuana exposure on the cognitive development of offspring at age three.

Neurotoxicol Teratol. 1994;

47. ElSohly MA, Mehmedic Z, Foster S, Gon C, Chandra S, Church JC. Changes in cannabis...

