Increased Levels of N-Lactoylphenylalanine After Exercise are Related to Adipose Tissue Loss During Endurance Training in Humans With Overweight and Obesity

Lac-Phe and Exercise-Induced Fat Loss in Humans

Miriam Hoene¹, Xinjie Zhao², Jürgen Machann³,⁴,⁵, Andreas L. Birkenfeld³,⁴,⁶, Martin Heni¹,³,⁴,⁷, Andreas Peter¹,³,⁴, Andreas Niess⁸,⁹, Anja Molle³,⁴,⁶, Rainer Lehmann¹,³,⁴, Guowang Xu²*, Cora Weigert¹,³,⁴*

¹Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
²CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
³Institute for Diabetes Research and Metabolic Diseases of Helmholtz Zentrum München at the University of Tübingen, Tübingen, Germany
⁴German Center for Diabetes Research (DZD), Neuherberg, Germany
⁵Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
⁶Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
⁷Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
⁸Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
⁹Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, Tübingen, Germany

*Corresponding authors:
Cora Weigert, cora.weigert@med.uni-tuebingen.de
Guowang Xu, xugw@dicp.ac.cn

1463 Words
2 Tables
1 Figure

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Article Highlights

- The exercise-inducible metabolite Lac-Phe reduces adipose tissue mass in mice but its relevance in humans is still unclear.

- We studied the relationship between Lac-Phe and the efficacy of an 8-week endurance training intervention in sedentary subjects with overweight and obesity.

- Higher Lac-Phe levels after acute exercise were related to a greater reduction of abdominal adipose tissue.

- Our data are in agreement with a potential weight-lowering effect of Lac-Phe and support further studies to elucidate its mode of action and possible role in the prevention of type 2 diabetes in humans.
Abstract

OBJECTIVE

The exercise-induced metabolite N-Lactoylphenylalanine (Lac-Phe) has been shown to reduce food intake and adipose tissue mass in mice. We addressed whether Lac-Phe could have a similar function in humans.

RESEARCH DESIGN AND METHODS

Sedentary subjects with overweight and obesity participated in an 8-week supervised endurance intervention (n=22). Blood levels of Lac-Phe were determined by LC-MS in the resting state and immediately after 30 min of bicycle exercise at 80% VO₂peak. Adipose tissue volume was quantified by MRI.

RESULTS

Higher levels of Lac-Phe after acute exercise were associated with a greater reduction in abdominal adipose tissue during the intervention.

CONCLUSIONS

Increased circulating levels of Lac-Phe after acute exercise could support weight loss in humans. Future studies may not only clarify its mode of action, but also reveal whether the endogenous Lac-Phe response can be boosted to enhance weight reduction in subjects with obesity.
Introduction

Exercise-responsive metabolites are gaining attention as signal transducers of physical activity and thus as mediators of the prevention of type 2 diabetes and related cardio-metabolic diseases (1,2). N-Lactoylphenylalanine (Lac-Phe) is a lactate-derived metabolite that exhibits a particularly pronounced increase after physical exercise (3,4). Very recently, Lac-Phe was shown to decrease food intake, weight gain and adipose tissue mass in mice fed a high-fat diet (4). A potential role in humans has not been reported yet.

Research Design and Methods

Study design and participants

All participants gave written informed consent. The study was approved by the ethics committee of the University of Tübingen and registered at Clinicaltrials.gov (NCT03151590). Details of the study protocol including recruitment and exclusion criteria have been published recently (5).

In brief, healthy subjects with <120 min of physical activity per week and a BMI >27 kg/m² completed an 8-week supervised exercise intervention flanked by two acute exercise visits performed as follows: Blood was collected in the morning in the fasted state, 45 min before the commencement of exercise. In the meantime, the participants received a standardized breakfast (1 bun, 20 g butter, 1 slice of cheese, 150 g apple puree, water). Subsequently, they performed 30 min of bicycle ergometer exercise at the heart rate corresponding to 80% of their individual VO2peak. A second blood sample was collected 5 min after this bout of exercise. EDTA blood samples were immediately placed on ice, processed within 30 min and plasma stored at -80 °C.
The training intervention consisted of three times per week 1 hour supervised endurance exercise, 30 minutes each cycling and walking at 80% VO$_2$peak. The target heart rate was maintained throughout the intervention. Determination of VO$_2$peak and magnetic resonance imaging (MRI)-based quantification of adipose and lean tissue in arms and legs have been described (5,6). Abdominal adipose tissue was segmented into visceral and non-visceral, which mainly consists of subcutaneous adipose tissue, using an automated procedure (6). After excluding one subject with newly diagnosed autoimmune thyreoiditis, complete blood sample sets from 22 out of 26 subjects were available for metabolomics analysis.

The plasma levels of Lac-Phe, Lactate and Phe were determined using ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS). 50 µL of plasma were mixed with 250 µL of MeOH, vortexed 30 s and centrifuged for 20 min at 16,000 g, 4 °C. The supernatant was vacuum-dried in aliquots of 200 µl. Dry samples were resuspended in 50 µL 25% ACN/water. The analysis was performed on a Vanquish UHPLC coupled to a Q Exactive (both Thermo Fisher Scientific, Waltham, USA) operated in negative ion mode as previously described with slight modifications (7). The separation was performed on a 2.1x100 mm ACQUITYTM UPLC HSS 1.8 µm T3 column (Waters, Milford, MA, USA). The mobile phases were (A) 6.5 mM ammonium bicarbonate in water and (B) 6.5 mM ammonium bicarbonate in 95% MeOH/water (B). The elution started with 2% B for 1 min, linearly changed to 100% B within 20 min, reverted back to 2% B, and equilibrated for 2.9 min (flow rate 0.35 mL/min, column temperature 50 °C). The Q Exactive was set to 140,000 resolution and full scan mode, mass scan range was 70-1050 m/z. Nitrogen sheath gas and nitrogen auxiliary gas were set at flow rates of 45 and 10 AU. Capillary and aux gas heater temperatures were 300 °C and 350 °C, respectively. The spray voltage was
3.00 kV. Parallel reaction monitoring was used to obtain high-resolution MS/MS spectra of Lac-Phe ($m/z = 236.0928$) with a resolution of 17500 and a collision energy of 30 eV. The internal standard d5-Phe (0.8 µg/mL in extraction solvent) was used to normalize signal intensities.

Statistical analyses were performed using JMP 16 (SAS Institute Inc, Cary, North Carolina, USA). Longitudinal comparisons were performed using paired t-tests. Multiple linear regression analyses were performed on log-transformed data and adjusted for sex, age, baseline values of the respective tissue compartment or BMI, or change in muscle volume, as indicated. Normal distribution of the residuals was confirmed with the Shapiro-Wilk test in all analyses. A p-value < 0.05 was considered statistically significant.

Results

Lac-Phe was identified by LC-MS/MS (Fig. 1A) and detectable in all samples (Fig. 1B). Acute exercise caused a significant increase in plasma Lac-Phe levels, both before and after the 8-week training intervention (Fig. 1B). Training had no effect on Lac-Phe concentrations in the resting state or after the acute bout of exercise (Fig. 1B), which was performed at the same relative intensity before and after the intervention. Plasma levels of Lac-Phe exhibited a correlation with phenylalanine ($p<0.0001$, $R^2 = 0.35$, standardized Beta coefficient = 0.59) and strong correlations with lactate ($p<0.0001$, $R^2 = 0.82$, Beta = 0.91) and the product [Phe*Lactate] ($p<0.0001$, $R^2 = 0.89$, Beta = 0.94).
The training intervention resulted in an improvement in VO₂peak and an increase in lean tissue, i.e. muscle mass, in the legs (Tab. 1). At the same time, BMI and abdominal subcutaneous and visceral adipose tissue were decreased (Tab. 1). The decrease in subcutaneous adipose tissue was inversely correlated to the plasma concentration of Lac-Phe after acute exercise (Fig. 1C), both before and after the intervention and also after adjustment for sex, age, and adipose tissue baseline values (results of multiple regression analyses shown in Tab. 2). The decrease in visceral adipose tissue was inversely correlated to the Lac-Phe concentration after the final acute exercise bout and tended to be correlated after the first acute exercise bout (Tab. 2).
Table 1. Anthropometric, fitness and metabolic data

<table>
<thead>
<tr>
<th></th>
<th>Untrained</th>
<th>Trained</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>14 female / 8 male</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age [years]</td>
<td>30 ± 8.9 (19 – 59)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VO\textsubscript{2} peak_gO/BM [mL/(kg*min)]</td>
<td>25.0 ± 4.2 (18.3 – 32.3)</td>
<td>26.5 ± 4.7 (16.0 – 34.9)</td>
<td>0.042*</td>
</tr>
<tr>
<td>BMI [kg/m2]</td>
<td>31.7 ± 4.5 (27.5 – 45.5)</td>
<td>31.3 ± 4.7 (26.3 – 45.2)</td>
<td>0.006*</td>
</tr>
<tr>
<td>Subcutaneous abdominal adipose tissue [L]</td>
<td>15.3 ± 5.9 (8.4 – 32.2)</td>
<td>14.7 ± 6.1 (7.2 – 33.1)</td>
<td>0.006*</td>
</tr>
<tr>
<td>Visceral adipose tissue [L]</td>
<td>3.53 ± 1.65 (0.81 – 7.26)</td>
<td>3.38 ± 1.57 (0.94 – 6.68)</td>
<td>0.012*</td>
</tr>
<tr>
<td>Lean tissue legs [L]</td>
<td>17.9 ± 4.1 (12.3 – 27.5)</td>
<td>18.2 ± 3.9 (13.2 – 27.7)</td>
<td>0.034*</td>
</tr>
<tr>
<td>Lean tissue arms [L]</td>
<td>9.73 ± 1.96 (7.31 – 14.27)</td>
<td>9.85 ± 2.26 (7.19 – 14.42)</td>
<td>0.551</td>
</tr>
<tr>
<td>Glucose fasting [mmol/L]</td>
<td>5.09 ± 0.40 (4.61 – 6.00)</td>
<td>5.02 ± 0.40 (4.33 – 5.61)</td>
<td>0.336</td>
</tr>
</tbody>
</table>

N = 22, VO\textsubscript{2} peak N=21; mean ± SD (range of values); * p < 0.05.

Plasma lactate levels after acute exercise exhibited a similar, but slightly weaker correlation to the change in abdominal adipose tissue (Tab. 2). This association only reached statistical significance for the subcutaneous depot after the pre-training acute exercise bout but not for visceral adipose tissue (Tab. 2). Furthermore, lactate levels after acute exercise were positively correlated to the increase in muscle mass of the lower extremities during the intervention. Importantly, Lac-Phe levels after acute exercise still exhibited an inverse correlation to the change in subcutaneous adipose tissue when additionally adjusting for the change in leg muscle volume in the multiple linear regression models (p=0.020, standardized Beta coefficient=-0.56 for the pre-training and a trend of p=0.088, Beta=-0.42 for the post-training exercise bout).
Table 2. Association of the increased Lac-Phe and lactate levels after acute exercise with the training response

<table>
<thead>
<tr>
<th>Training fold change</th>
<th>Lac-Phe untrained acute</th>
<th>Lac-Phe trained acute</th>
<th>Lactate untrained acute</th>
<th>Lactate trained acute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta = -0.62</td>
<td>Beta = -0.52</td>
<td>Beta = -0.60</td>
<td>Beta = -0.39</td>
</tr>
<tr>
<td></td>
<td>p = 0.004*</td>
<td>p = 0.028*</td>
<td>p = 0.008*</td>
<td>p = 0.102</td>
</tr>
<tr>
<td>Subcutaneous abdominal adipose tissue [L]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beta = -0.42</td>
<td>Beta = -0.48</td>
<td>Beta = -0.23</td>
<td>Beta = -0.37</td>
</tr>
<tr>
<td></td>
<td>p = 0.075</td>
<td>p = 0.037*</td>
<td>p = 0.372</td>
<td>p = 0.123</td>
</tr>
<tr>
<td>Visceral adipose tissue [L]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI [kg/m²]</td>
<td>Beta = -0.25</td>
<td>Beta = -0.15</td>
<td>Beta = -0.13</td>
<td>Beta = 0.07</td>
</tr>
<tr>
<td></td>
<td>p = 0.279</td>
<td>p = 0.538</td>
<td>p = 0.600</td>
<td>p = 0.784</td>
</tr>
<tr>
<td>Lean tissue legs [L]</td>
<td>Beta = 0.37</td>
<td>Beta = 0.22</td>
<td>Beta = 0.42</td>
<td>Beta = 0.47</td>
</tr>
<tr>
<td></td>
<td>p = 0.079</td>
<td>p = 0.357</td>
<td>p = 0.047*</td>
<td>p = 0.036*</td>
</tr>
<tr>
<td>Lean tissue arms [L]</td>
<td>Beta = 0.14</td>
<td>Beta = 0.08</td>
<td>Beta = 0.27</td>
<td>Beta = 0.08</td>
</tr>
<tr>
<td></td>
<td>p = 0.584</td>
<td>p = 0.758</td>
<td>p = 0.279</td>
<td>p = 0.759</td>
</tr>
</tbody>
</table>

Multiple linear regression analyses with adjustments for sex, age and baseline values of the respective tissue compartment or BMI. N=22, Beta, standardized beta coefficient, * p < 0.05.

No significant correlation of the two metabolites could be observed with the change in BMI or in the lean tissue of the arms (Tab. 2). As expected, the latter was not increased by the training scheme, i.e. by cycling and treadmill exercise (Tab. 1).

Conclusions

The metabolite Lac-Phe is produced during physical exercise and has recently gained attention as a mediator of weight loss in mice (4) but its relevance and function in humans remain to be demonstrated. We provide a first clue by showing that higher levels of Lac-Phe after exercise are related to a greater reduction in abdominal subcutaneous and, possibly, visceral adipose tissue in subjects with obesity during a training intervention. In mice, Lac-Phe administration has been suggested to decrease food intake (4). While food intake has not been systematically assessed in our study, it seems plausible that higher levels of Lac-Phe could have led to a greater reduction in food intake, at least for a certain period of time after each exercise session.
Obesity and the metabolic disorders associated with it are caused by, among other factors, an unfavourable combination of elevated energy intake and insufficient physical activity. While the intuitive notion that increasing physical activity will cause a medium- to long-term increase in food consumption generally holds true, a sedentary lifestyle may uncouple energy consumption from energy expenditure and exercise has been shown to improve the regulation of calorie intake in sedentary individuals (8). In addition, physical exercise causes a short-term repression of hunger that may serve the purpose of preserving blood flow to skeletal muscle and correlates with the circulating concentrations of lactate (9), which in turn drives the formation of Lac-Phe. Studies of lactate administration support an appetite-suppressing effect (10,11). Assuming decreased food intake as one factor underlying the reduction in adipose tissue, our data would be in agreement with such a function of lactate and further suggest that its metabolite Lac-Phe is a mediator of the appetite-suppressing effects of exercise. This is particularly plausible given that Lac-Phe peaks after lactate (4) and could therefore constitute a prolonged appetite-suppressing signal. One mode of action for Lac-Phe could be via G protein-coupled receptors in the brain, the central regulator of food intake (12,13).

Taken together, our data strengthen the hypothesis that Lac-Phe produced during exercise contributes to weight loss in humans with obesity during exercise interventions. The results support future studies to clarify the site and mechanism of action of Lac-Phe. One approach worth exploring would be to boost the exercise-induced Lac-Phe response in order to enhance weight loss and thereby prevent type 2 diabetes and related metabolic diseases in subjects with overweight and obesity.
Acknowledgments

Funding and Assistance

This study was supported in part by grants from the Mobility Programme of the Sino-German Center for Research Promotion (M-0257), the key foundation from the National Natural Science Foundation of China (21934006), the German Federal Ministry of Education and Research (BMBF) to the German Centre for Diabetes Research (DZD e.V., 01GI0925) and by a grant from the German Diabetes Association to AM. AM is currently funded by a clinician scientist program from the medical faculty of the University of Tübingen.

Conflict of Interest.

The authors declare no competing interests.

Author Contributions and Guarantor Statement.

MHo analyzed and interpreted the data and wrote and edited the manuscript. XZ performed LC-MS analyses. JM performed whole-body MRI. ALB, MHe, AP and, AN provided scientific guidance and contributed to the discussion. AM designed the study and analyzed anthropometric data. RL provided scientific guidance and experimental design and contributed to the discussion. GX provided scientific guidance and experimental design, contributed to the discussion and reviewed the manuscript. CW designed the study, supervised the whole project, contributed to the discussion, reviewed the manuscript and is the guarantor of the study. All authors approved the final version of the manuscript.
References

