Spatial analysis of COVID-19 booster vaccine uptake in Scotland, and projection of future distributions

A.J. Wood¹, A.M. MacKintosh³, M. Stead³, and R.R. Kao¹,²

¹Roslin Institute, University of Edinburgh
²Royal (Dick) School of Veterinary Studies, University of Edinburgh
³Institute for Social Marketing and Health, University of Stirling

August 30, 2022

Abstract

Vaccine hesitancy is one of the critical challenges for the implementation of a successful vaccination strategy. Rates of vaccine hesitancy and refusal vary substantially across different socioeconomic groups, and can result in those considered most vulnerable to disease having the lowest levels of uptake. Widespread coverage of COVID-19 vaccination is of particular importance as prevalence remains high, in effort to reduce overall burden from serious disease. Scotland’s COVID-19 vaccination programme has progressed to booster vaccinations, however uptake is falling across successive doses, and there is concern that some vulnerable individuals will not have sustained protection.

To this end we analyse uptake in Scotland’s first (starting September 2021) booster dose round, as a benchmark for future rounds. We fit a machine learning model to explain variation in uptake across Scotland at fine population scales. The model is able to estimate a neighbourhood’s booster uptake with high precision using its population structure and relative deprivation alone, without any knowledge of geographic location. This is indicative of a strong relationship between increasing local deprivation and falling uptake, and specifically in those failing to return for a booster, despite getting a first dose. Geographically, this manifests as clusters of lower uptake, coinciding with communities with higher deprivation.

With an upcoming booster rollout in Autumn 2022, we use first booster uptake as a baseline, to generate a set of plausible distributions for future uptake, if nationwide uptake were to fall. We make the core assumption that as uptake falls, trends with respect to deprivation will persist. Projected uptake declines more rapidly in clusters of more deprived neighbourhoods. If these projected distributions were to manifest, gaps in immunity would emerge in more deprived communities, which have historically had the highest rates of COVID-19 hospitalisation and mortality.

1 Introduction

Vaccine hesitancy is a critical problem that severely impacts our ability to control important infectious diseases such as measles and seasonal influenza, and has been the subject of

*Corresponding author: rowland.kao@ed.ac.uk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
much scrutiny during the COVID-19 pandemic. In a voluntary campaign, uptake will
depend on individual decision-making and this is known to be influenced by sociological
and demographic factors. Quantifying these factors can be challenging but is invaluable
for understanding the context of individual decisions and developing strategies to improve
uptake rates.

Scotland’s COVID-19 vaccination programme began in December 2020 and as of August
2022 has delivered over 12.8 million doses to a population of 5.5 million, with 95% of the
population aged over 20 receiving at least one dose. Two subsequent rounds of booster
vaccinations have since followed, in Autumn/Winter 2021 (first aimed primarily at those
aged over 50 [1], but rapidly expanded to all adults in response to a wave of the Omicron
VoC in November 2021 [2]), and Spring 2022 (mainly to those aged 75+). While the initial
acute threat presented by COVID-19 on healthcare systems in Scotland has subsided,
waning immunity [3] and the continued circulation of infection amongst the population
opens a question of how possible future rounds of vaccination should be targeted.

Given uncertainty in the future trajectory of the epidemic as well as vaccine accessibility,
it is very difficult to estimate how uptake may evolve in future rollouts. Furthermore,
an individual’s attitudes towards receiving follow-up booster doses may differ from their
attitude towards the initial course of vaccination or first booster, with a changing perceived
threat of COVID-19. Surveys on hesitancy highlight, among reasons for accepting a first
dose, reasons specific to the context of the pandemic at the time of the initial rollout.
These include, for example, a desire for life to get “back to normal”, a feeling of moral
duty, and a worry of a potential requirement of vaccination for travel [4, 5, 6, 7, 8]. Few
or no legally binding government restrictions have been in place in Scotland since August
2021, and with this different context it is uncertain how uptake will settle in the longer
term. Hesitancy has varied over the course of the epidemic [9, 10, 11] and in Scotland
uptake has fallen with each successive dose. One may then reasonably expect uptake to
fall further in the future, barring a radical change in virus virulence or transmissibility.

This work makes two main contributions towards better understanding trends in uptake,
and how these trends may propagate moving forward. First, using high-resolution spatial
data on vaccine administration in Scotland, we uncover substantial variation in uptake at
the local level, with sharp changes over distances of less than a kilometre. We show this
manifests from an underlying trend in uptake with respect to deprivation, where clusters of
lower uptake coincide with clusters of neighbourhoods with higher relative deprivation. To
confirm this, we fit the distribution of first booster dose uptake, using a machine learning
regression model informed with population structure and measures associated with local
deprivation.

Communities with higher levels of deprivation have consistently suffered higher rates of
severe COVID-19 outcomes, both before and after the provision of vaccines [12, 13, 14, 15].
The second aim of this work, then, is to investigate counterfactual scenarios where uptake
falls, and how spatial variations may propagate in these scenarios. Using our regression
model, we generate plausible distributions at lower nationwide uptake, under the core
assumption that the observed trends in uptake with respect to deprivation persist.
While we can not predict what national-level uptake in a future rollout would be, we hope
to highlight subpopulations that may be at risk of greater falls in uptake, and in turn have
lower protection against severe disease. We compare one projection to data on a limited
rollout of second boosters in Spring 2022, showing the overall trends to be consistent with
these projections.

The timing of this work coincides with a further round of booster doses in Scotland
beginning in Autumn 2022, with all aged 50 and above eligible, as well as those otherwise considered vulnerable to severe disease \[^{[16, 17]}\]. These eligibility criteria are broadly consistent with those for the annual influenza vaccination in the UK \[^{[18]}\]. We then design our lower uptake projections for scenarios where only those aged over 50 are considered eligible.

2 Data

Vaccination data are provided by Public Health Scotland’s electronic Data Research and Innovation Service (eDRIS). For each dose administered, the data specify a date of administration, a pseudonymised patient ID, dose number, patient sex, age range (in a five-year window, from 0–4 up to 75+), and residing datazone (DZ). DZs are non-overlapping census areas of order 500–1,000 individuals, each with an area as low as 0.15–0.4km\(^2\) for densely populated areas. There are 6,976 DZs in total, covering the full area and population of Scotland.

Population denominators used to evaluate overall uptake are taken from the 2020 Small-Area Population Estimates (SAPE) \[^{[19]}\]. This is a DZ-level estimate of current population, incorporating 2011 census data, subsequent births and deaths, and net immigration. As Scotland’s most recently completed census was in 2011, there is likely to be considerable uncertainty in the population at a local level.

Data on population breakdown by ethnicity are also obtained from census data. Measures of deprivation are taken from the Scottish Index of Multiple Deprivation (SIMD) dataset \[^{[20]}\]. This contains measures of different indicators of deprivation at DZ level (e.g., the percentage of individuals in a particular DZ living in overcrowded housing). The SIMD also ranks DZs by deprivation in each of access, income, employment, education, health, crime and housing. These ranks are derived from a weighted average of individual deprivation measures. A DZ with rank 1 would be considered to have the highest level of deprivation, and a DZ with rank 6,976 (out of 6,976) the lowest. An overall deprivation rank is also given, from a weighted average of all measures.

In our analysis, we distinguish between two different characterisations of booster uptake:

- **Overall** uptake is the proportion of individuals to have received a booster vaccination. The denominator here is the population estimate. As this is often prone to substantial error, it is possible for the number of doses to exceed the population estimate.

- **Returning** uptake is the proportion of individuals that have received at least one dose, to have returned for a booster dose. The denominator is the number of individuals to have received at least one dose, derived from the eDRIS dataset.

The product of returning booster uptake and overall first dose uptake is then the overall booster uptake. Our model is fit to returning uptake (removing population uncertainty from the outcome variable), but we report in terms of overall uptake where appropriate.

In this work we study uptake amongst those aged 20 or over. While present eligibility is broadly the same for all aged between 16 and 50 (a two-dose course and a single booster), the 15–19 bracket (per eDRIS data) includes those aged 15 who are not generally eligible for a booster, thus the range is excluded. Finally, a small fraction of individuals with severely weakened immune systems are eligible for a third (and since, fourth) primary dose of COVID-19 vaccine, on top of a booster \[^{[21]}\]. To simplify matters, we define booster uptake for all individuals as uptake of the third available dose, of any type.
3 Distribution of booster uptake, model fit

Booster uptake is summarised in Figure 1 with respect to age, sex, and deprivation decile. In ages 20+, nationwide overall booster uptake was 78.5% (returning uptake 82.7%). Uptake falls in younger subpopulations in more deprived DZs, as well as greater decline in men compared to women. The oldest groups sustain high uptake at all deprivation indices, with a smaller decline with increasing deprivation.

Figure 1 also highlights the underlying uncertainty in the population estimate, where the trends in overall uptake (that rely on an estimated population denominator) are less consistent compared to returning uptake (where the denominator of first doses administered is known). There is an anomalous fall in overall uptake across the 70–74 range, compared to 65–69 and 75+. This is not seen in returning uptake, thus this drop in overall uptake is likely an anomaly stemming from an inaccurate population denominator.

The 6,976 DZs, 12 age ranges, and 2 sexes divides the population into 167,424 subpopulations. We term these cohorts, with each containing of order 0–50 individuals. A random forest regression is then fit to cohort-level returning booster uptake, informed by:

- age range (5 year window, up to 75+);
- sex;
- ethnicity (% population belonging to a minority ethnicity), and;
- DZ-level deprivation ranks, by access, income, employment, education, health, crime and housing.

To keep the model simple, as well as suitably defined for generating scenarios with lower uptake (later in Section 4), we use DZ-level ranks rather than individual measures.
of deprivation. This may result in slightly lower fit accuracy, however these ranks serve as a reasonable proxy for relative levels of deprivation that we look to capture. Details of model hyperparameters and performance are given in Appendix A. Summarising, the fit explains 72.7% of cohort-level variation in returning uptake (fit: 74.7%, test: 64.7%), and 90.4% of DZ-level variation (fit: 92.2%, test: 83.1%) (Figure 6B–C). There is evidence of clustering in residuals that falls on distance scales of order 5km (Figure 5), suggesting variation in uptake from local factors, beyond the variables used to inform the model. The fit accurately captures observed trends with respect to age and deprivation (Figure 6D).

Per the census data, less than 5% of Scotland’s DZs have a black and minority ethnic population over 25%. The eDRIS vaccination data do not specify individual-level ethnicity so we cannot infer a direct relation here, however other studies show uptake to be notably lower in black and minority ethnic communities [22, 23, 24, 25]. Nonetheless, the inclusion of ethnicity (measured here as the percentage of a cohort belonging to a black or minority ethnicity) improves the model performance (Figure 6A), with a high node purity indicative of a stronger influence on cohorts where the 20+ BAME population significantly deviates from the DZ mean of 7.3%.

4 Projections of plausible uptake distributions in a future rollout

Our regression model takes input data on population structure and deprivation, and is able to accurately produce the spatial distribution of booster dose uptake. With this, we are free to modify variables in the input data set (from which the model generates an uptake distribution), to generate counterfactual scenarios. Taking these modified inputs, the model may output a different distribution of uptake, a different overall nationwide uptake, or both.

Anticipating that uptake may fall with future doses, our interest is in designing input scenarios that result in lower booster uptake overall, and probing the resultant uptake distributions. Under the hypothesis that the relationship between deprivation and uptake will persist, and be exacerbated further in any future rollout as uptake falls, we design counterfactual scenarios where the population structure is unchanged, but all DZs have a higher degree of deprivation than in reality. We propose a very simple method of modifying the input data in order to do this: by changing each deprivation rank by some “shift” \(\Delta \), where larger negative values of \(\Delta \) correspond to a higher degree of deprivation. We emphasise that \(\Delta \) is an abstract parameter without a physical analogue, rather it allows for a univariate deprivation adjustment to the input data, to counterfactual scenarios where all DZs have higher deprivation than they do in reality, whilst remaining in the same rank order.

Our methodology is detailed in Appendix B. Briefly, for each cohort, we obtain modelled uptake values for a range of values of \(\Delta \). This is similar in nature to a sensitivity analysis; assessing how a cohort’s uptake may change, if the overall level of deprivation (using ranks as a proxy) in its DZ were to change. We then fit a sigmoid-like curve to these modelled values, as a function of \(\Delta \). By taking different values of \(\Delta \), we then make projections of uptake (Figure 7), in counterfactual scenarios where deprivation ranks fall below the “floor” rank of 1.

Before making projections across the full age 50+ population, we compare a projection in the 75+ age group only, against observed trends in a separate, limited round of second
boosters in Spring 2022.

4.1 Comparison of projection in 75+ to Spring 2022 rollout

Since the first booster vaccine rollout in late 2021, in Spring 2022 a further vaccination round invited all those aged over 75 only (as well as others considered especially vulnerable to severe disease) for a second booster dose [26]. While these second boosters are limited to a single age group in our data, they provide an initial opportunity to compare outputs from our model projections against observed data.

Per data up to 18 August 2022, 75+ second booster uptake has plateaued, with returning uptake at 81.6%. This is down from 92.0% returning in the first booster round. Figure 2 shows returning uptake in the least deprived decile fell from 93.7% to 86.4% (-7.3%), and in the most deprived decile from 89.1% to 74.2% (-14.9%). In other words, uptake started at a lower baseline value in more deprived deciles, but also fell more sharply in the second round, exacerbating the inequality in uptake with respect to deprivation. Importantly, this trend is echoed in the model projection (Figure 2, blue points), and is consistent with the model assumption that future uptake will be increasingly skewed by factors relating to deprivation.

4.2 Projected uptake distributions amongst ages 50+

Moving on to projected uptake amongst the full 50+ population, Figure 3 shows projected distributions by age range, sex and deprivation, for overall nationwide uptake amongst ages 50+ falling from the baseline of 93.1% from the first booster rollout, to as low as 50%. In these lower uptake projections, the deprivation pattern persists, but becomes more exacerbated. As nationwide uptake falls, uptake declines fastest in younger, more deprived groups, whereas it is sustained at higher levels in the oldest, least deprived groups. Figure 4 shows that spatial clustering of communities with respect to deprivation (A) results in clusters of low overall booster uptake (B), which continues in the projected distributions (C–F) as nationwide uptake decreases.
Figure 3: Projections of distribution of uptake in ages 50+ with declining nationwide uptake, across (A) DZs ordered by overall deprivation rank, tracking associated quantiles, and (B) with respect to age, sex, and deprivation decile. These are in comparison to the “baseline” of the first booster rollout starting in Autumn 2021, where overall uptake in all aged 50+ is 93.1%.
Figure 4: Map view of deprivation, overall 50+ first booster uptake, and projected 50+ uptake across the central belt of Scotland, containing the cities of Glasgow (left cluster) and Edinburgh (right cluster). These are presented at intermediate zone level; broader census areas typically containing of 4-6 DZs. Clusters of higher deprivation (A) coincide with clusters of low overall first booster uptake (B). In the projected scenarios (C–F) from 80% down to 50% nationwide uptake, the clustering of areas with low and high uptake persists.
5 Discussion

We have used high-resolution data to show and explain patterns in COVID-19 vaccination uptake across communities in Scotland. To understand fine-scale differences in booster uptake (of those returning after a first dose), we have fit a random forest regression model, informed by local population structure and deprivation. This explains substantial DZ-to-DZ variation in returning booster uptake (Figure 6C). For a given DZ, booster uptake can then be estimated with good accuracy from its population structure and relative level of deprivation alone, without any information on location or neighbouring communities.

Booster uptake falls as a cohort becomes younger, and the cohort DZ’s level of deprivation increases. This trend is accurately captured by our model (Figure 6D), and we have used this to suggest how the distribution may propagate in the future, if uptake were to continue to decline and the trends with deprivation were to persist. We have fed into our model counterfactual data where each DZ has a higher level of deprivation than in reality, to show how projected uptake changes with changing deprivation. We then fit a sigmoidal curve to uptake for each cohort as a function of changing deprivation, which provides a mechanism for extrapolating into scenarios where where a DZ’s level of deprivation would be higher than the most deprived DZs in reality (and uptake, in turn, generally lower). While these projections (Figures 3, 4C–F) are not predictions, they are initialised at the baseline of actual first booster uptake, and may serve as plausible distributions for future uptake, if nationwide uptake were to fall further. Recent data on second booster uptake amongst those aged 75 and over in the Spring 2022 rollout (Figure 2) are consistent with our assumption on deprivation, with dose-to-dose uptake falling at the highest rates in the most deprived communities. It is worth noting however that, as individual-level attitudes may have changed between the first booster rollout and the upcoming round, this is also the case for Spring 2022, thus trends observed here may not necessarily hold in the future.

In Scotland, overall first dose uptake amongst those aged 20+ has plateaued at 95%, with second dose uptake at 91%, and first booster dose uptake at 79%. Regular future rounds of vaccination are likely for those most vulnerable to severe disease, with early studies suggesting that protection wanes on timescales of order six months [27, 28]. With these falls in uptake, there is concern about future immunity. These analyses confirm an observed inequality of increased vaccine refusal in younger groups living in more deprived communities [29, 30, 22]. Data from the second round of booster doses then suggest that this deprivation trend may become exacerbated in future rounds if uptake were to decline further, and our projections illustrate how this may manifest spatially, revealing large clusters of low uptake consistent with clustering of communities with a higher degree of deprivation.

Throughout the pandemic (including before vaccine availability), age and deprivation have been significant risk factors for severe COVID-19 outcomes, including hospitalisation and mortality [12, 13, 14, 15]. Given these risk factors, there is then a potential twofold effect of falling uptake in future rounds of vaccination, in inflicting pressure on healthcare systems. A fall in uptake will clearly reduce the population with vaccine-induced protection against severe COVID-19 disease. Compounding this, however, our analyses suggest that a shrinking pool of vaccine-induced protection may become increasingly with those living in less deprived neighbourhoods, and at lower prior risk of developing severe disease. This would leave those considered most vulnerable disproportionately more exposed, and at higher risk of hospitalisation or mortality.
6 Funding Statement

This work has been funded by the ESRC grant ES/W001489/1: Real-time monitoring and predictive modelling of the impact of human behaviour and vaccine characteristics on COVID-19 vaccination in Scotland.

References

A Model details

The random forest model was fit using the RandomForest package (version 4.6–14) in R (version 4.1.0). Model script is available at https://git.ecdf.ed.ac.uk/awood310/covid-19-vaccination-analysis-and-projection.

The model was fit with 800 trees, each with a maximum node size of 5,000 and 3 variables tried per split. These parameters served to maximise the cohort-level variation explained, in the data that the model were not informed with. Cohorts from 80% of randomly selected DZs are used to fit the model, with the remaining 20% reserved to test the model against data not trained on.

Figure 6A shows explanatory variable importance outputs (node purity and accuracy loss), with age emerging as the dominant variable.

With regards to residuals, a map visualisation of DZ-to-DZ residuals (e.g., Figure 5B with focus on central Glasgow) shows evidence of clustering of residuals of the same sign, with broader areas where uptake was different from that expected by its population structure and relative deprivation, suggesting a local effect outwith these factors. Figures 5B–C quantifies this correlation using the Moran’s I statistic [31] (ape package, version 5.5), showing spatial autocorrelation fall substantially over distances of 5–10km, or within 1–5 nearest neighbours (with nearest neighbours being DZs that share a border).

B Details of projection of lower-uptake uptake distributions

We use uptake in the first booster vaccination rollout, in conjunction with our random forest model informed with SIMD deprivation ranks, to create plausible projected distributions, with lower nationwide uptake.

Per Section 4, we create counterfactual input data by making a univariate shift of all deprivation ranks in dataset by some amount Δ. For larger negative values of Δ (thus the ranks being lower, and representative of higher levels of deprivation than in reality), projected uptake is anticipated to fall. A limitation to this, however, is when a counterfactual rank runs outside the range 1–6,976 (e.g., a rank 55 at shift $\Delta = -500$ will be “rank -445”). Random forest models, being a form of stepwise regression, generally perform poorly with data outside the range they are fit against. To address this and project beyond the “floor” rank of each DZ, then, we fit a sigmoid function to each cohort i, for the fit returning uptake U_i as a function of Δ

$$U_i(\Delta) = \frac{1}{1 - e^{-a_i(\Delta - b_i)}}.$$

a_i and b_i are parameters to be fit for each cohort, based on the model fit values for the range of counterfactual Δ values that do not exceed the range 1–6,976. Finally, we shift
Figure 5: (A) overall booster uptake across an 18km × 18km area of central Glasgow, and (B) corresponding residuals (the difference between actual uptake, and the fit value). Green DZs are those where actual uptake is higher than the fit value, and pink DZs indicate where the actual uptake was lower. (C) Residual autocorrelation as measured by the Moran’s I statistic, comparing average correlation between residuals (y-axis) within a certain locus (x-axis).

Each fit curve along the y-axis by an amount ϵ_i, such that $U_i(0)$ is the exact actual first booster uptake for cohort i. To avoid scenarios where this shift introduces a modelled uptake greater than 100% or below 0%, we bound $U_i(\Delta) = 0$ if $\left[1 - e^{-a_i(\Delta-b_i)}\right]^{-1} - \epsilon_i \leq 0$, and 1 if $\left[1 - e^{-a_i(\Delta-b_i)}\right]^{-1} - \epsilon_i \geq 1$. The $\Delta = 0$ projection then exactly reproduces the observed distribution of first booster uptake at nationwide uptake amongst those 50+ of 93.1%. We then reduce Δ to generate projected distributions at lower uptakes (cohort-level examples of this are given in Figure 7).

For a small number of DZs, the range of valid values for Δ is too narrow to reasonably fit a curve (i.e., instances where a DZ has one very high deprivation rank, and another that is very low). For cohorts where the range is lower than 500 ranks, then, we instead use the average value of parameters a_i and b_i from similar cohorts; having the same age range, sex, DZ deprivation decile, and similar first booster uptake.
Figure 6: Model output. (A) Explanatory variable importance output from RF model (MSE loss and node purity). (B) Residual distributions of the fit and test data sets. (C) Performance comparing data and fit values for returning uptake at the DZ level, over individual DZs, with deprivation indicated. (D) Performance aggregating cohorts over deprivation decile, and age range.
Figure 7: Graphical representation of projection of uptake with respect to level of deprivation. For each cohort, the green box bounds the “floor” and “ceiling” values of deprivation rank shift Δ. Within this range, the projected uptake (blue points) falls for decreasing Δ (increasing level of deprivation). A sigmoid function (black, dotted) is fit to these fit values, which is then shifted to match the actual returning first booster uptake (red circle) at $\Delta = 0$ (vertical dashed line).

The underlying random forest model is fit to returning uptake rather than overall uptake. We then calculate the corresponding overall uptake by multiplying relative uptake by overall first dose uptake. By making lower-uptake projections by decreasing returning uptake, then, we make an implicit assumption that all future doses will be given to individuals that have received at least one vaccination before.