The time-varying association between previous antibiotic use and antibiotic resistance

Avi Baraz¹,², Michal Chowers³,⁴, Daniel Nevo⁵, Uri Obolski¹,²,*

¹School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
²Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
³Meir Medical Center, Kfar Saba, Israel
⁴Sackler Faculty of Medicine, Tel Aviv University, Israel
⁵Department of Statistics and Operations Research, Faculty of Exact Sciences, Tel Aviv University

*Corresponding author
E-mail: uriobols@tauex.tau.ac.il

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives
The objective of the study was to estimate how the time elapsed from previous antibiotic use is associated with antibiotic resistance.

Methods
Data comprised electronic medical records of all patients in an Israeli hospital who had a positive bacterial culture between 2016-19. These included susceptibility testing results, and clinical and demographic data. Mixed-effects time-varying logistic models were fitted to estimate the association between time elapsed since last use of aminoglycosides and gentamicin resistance (n=13,094), cephalosporins and ceftazidime resistance (n=13,050), and fluoroquinolones and ciprofloxacin resistance (n=15,362), while adjusting for multiple covariates.

Results
For all examined antibiotics, past antibiotic use had a statistically significant association with resistance (p<0.001). These associations exhibited a clear decreasing pattern over time, which we present as a flexible function of time. Nonetheless, previous antibiotic use remained a significant risk factor for resistance for at least 180 days, with adjusted odds ratios of 1.94 (95%CI 1.40-2.69), 1.33 (95%CI 1.10-1.61), and 2.25 (95%CI 1.49-3.41), for gentamicin, ceftazidime and ciprofloxacin, respectively.

Conclusions
The association between prior antibiotic use and resistance decreases over time. Commonly used cut-offs for prior antibiotic use can either misclassify patients still at higher risk, when too recent; or provide a diluted estimate of the effects of antibiotic use on future resistance, when too distant. Hence, prior antibiotic use should be considered as a time-dependent risk factor for resistance, both in epidemiological research and clinical practice.
Introduction

Empiric antibiotic therapy is a common and crucial component of treating hospitalized patients. However, increased antibiotic resistance frequencies often lead to inappropriate empiric therapy [1]. Risk factors for antibiotic resistant infections are hence constantly investigated, for both research and practical, clinical purposes [2]. A biologically plausible and empirically evident cause for resistance is previous use of antibiotics [3]. Despite its importance, little is known about the effect of the time elapsed since antibiotic use on the risk for resistance. Research ubiquitously reports previous antibiotic use as a binary variable, indicating prior antibiotic use in a certain, often arbitrary time-periods, with common cut-offs of 30, 90, or 365 days [2,4–6]. Such discretization of the data can disregard patients with existing risk if the cut-off is too short, or dilute the effects of the risk if the cut-off is too long. Here, we employed patients’ electronic medical records (EMRs) to estimate the risk of antibiotic resistance as a function of the time elapsed since their last antibiotic use. We applied mixed-effects time-varying logistic regression and obtained the adjusted risk estimates as flexible functions of time elapsed since last use of antibiotics for gentamicin, ceftazidime and ciprofloxacin.

Materials and methods

Data

The dataset included the EMRs of all patients who had a positive bacterial culture between 2016-19, in Meir medical center, Israel. The data contained, patients’ antibiotic susceptibility test results, as well as demographic and clinical data, including antibiotic use within the hospital in the year preceding the susceptibility tests (Supplementary information Tables S1-S3).
The main variable of interest was the time elapsed (in days) since a patients' last antibiotic use in the hospital until the drawing of their bacterial cultures. Antibiotic use was considered only when it commenced ≥5 days and ≤365 days before a culture was drawn. The first constraint was set as to avoid date misclassifications that might lead to antibiotics prescribed after culture results were obtained, and since it is a short period for de novo resistance emergence. The second constraint was set due to data availability. To attain a sufficient sample size, antibiotic use was grouped into cephalosporins, fluoroquinolones and aminoglycosides. Resistance to three antibiotics, selected as markers for resistance to the classes of antibiotics considered above, was modeled: gentamicin, ceftazidime, and ciprofloxacin.

Statistical analysis

Relationships between patients' clinical and demographic covariates, and antibiotic resistance were modeled by mixed-effects time-varying logistic models [7]. These models extend standard logistic regression by allowing the effect of previous antibiotic use to vary as flexible functions of time, using splines. The models addressed multiple cultures from the same patients by assigning a random intercept per patient, although this addition did not substantially change the results. The models adjusted for multiple prominent clinical and demographic covariates (Supplementary information Tables S1-S3), which were chosen based on prior knowledge [2]. Additionally, we examined adjustments for prior use of the other classes of antibiotics modeled, as well as to non-cephalosporin beta-lactam antibiotics, to account for potential cross-resistance [8]. Each of these covariates was modeled as a dummy variable (used/not), with a linear time trend (in the log-odds scale). These variables had little influence on the results, and hence only prior use of non-cephalosporin beta-lactams was incorporated into the ceftazidime resistance model (Supplementary material Figures S1-S3).
Results

We examined the association between past aminoglycoside use and resistance to gentamicin (n=13,094, resistance frequency 15.58%); past cephalosporin use and resistance to ceftazidime (n=13,050, resistance frequency 24.27%); and past fluoroquinolone use and resistance to ciprofloxacin (n=15,362, resistance frequency 26.66%). For all examined antibiotics, past antibiotic use had a statistically significant association with resistance (p<0.001). As expected, the spline-based adjusted odds ratios (aORs) decayed as time passed from last antibiotic use (Figure 1).

Fig. 1. Estimates of risk for antibiotic resistance from generalized additive mixed-effects models: Spline-based estimates (curves) and their 95% CI (shaded) of the aORs for resistance, against days elapsed since last use of relevant antibiotics. (a) gentamicin resistance against last use of aminoglycosides; (b) ceftazidime resistance against last use of cephalosporins; and (c) ciprofloxacin resistance against last use of fluoroquinolones.
Importantly, the estimates across the three antibiotics examined maintained significant and positive associations between past use and resistance for over 180 days. Summary of the aORs and their CIs at 30, 90, 180 and 365 days are provided in Table 1. For gentamicin and ceftazidime, the decrease of the aOR can be very well approximated by exponential decay of the forms $e^{-0.08t}$, $e^{-0.05t}$, respectively, where t is months since last antibiotic use (see Supplementary material for details). The decrease in the aOR of ciprofloxacin resistance did not follow such a form, and the estimate varied substantially as time elapsed from the last use increased, possibly due to limited sample size for distant periods (Figure 1C, shaded region).

<table>
<thead>
<tr>
<th></th>
<th>aOR at 30 days (95% CI)</th>
<th>aOR at 90 days (95% CI)</th>
<th>aOR at 180 days (95% CI)</th>
<th>aOR at 365 days (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to gentamicin (aminoglycosides use)</td>
<td>2.92 (2.24, 3.81)</td>
<td>2.48 (1.94, 3.16)</td>
<td>1.94 (1.40, 2.69)</td>
<td>1.17 (0.59, 2.31)</td>
</tr>
<tr>
<td>Resistance to ceftazidime (cephalosporins use)</td>
<td>1.71 (1.45, 2.00)</td>
<td>1.54 (1.32, 1.80)</td>
<td>1.33 (1.10, 1.61)</td>
<td>0.98 (0.70, 1.37)</td>
</tr>
<tr>
<td>Resistance to ciprofloxacin, (fluoroquinolones use)</td>
<td>4.54 (3.49, 5.90)</td>
<td>3.36 (2.45, 4.59)</td>
<td>2.25 (1.49, 3.41)</td>
<td>2.11 (0.86, 5.14)</td>
</tr>
</tbody>
</table>

Table 1. Adjusted odds-ratios (aOR) for resistance to different antibiotics by time since last antibiotic use.
Discussion

In this study, we provided time-varying estimates of the association of previous antibiotic use with antibiotic resistance. We have characterized these estimates for gentamicin, ceftazidime and ciprofloxacin, serving as proxies for resistance to macrolides, cephalosporins and fluoroquinolones, respectively. Whereas the estimates differed between the antibiotics examined, they all exhibited a marked decrease over time. Nonetheless, for all examined antibiotics, previous antibiotic use remained a statistically significant risk factor for resistance for at least 180 days.

Our results have important implications for both research and clinical practice. Studies analyzing risk factors for antibiotic resistance model previous antibiotic use as binary indicators, choosing cut-offs ranging from several days to a year prior to the examined bacterial sample. Our results demonstrated that this might lead to inaccuracies. Applying antibiotic use cut-offs close to the outcome (e.g. 30 or 90 days), might lead to substantial underestimation of the risk of patients using antibiotics before the cut-offs. Conversely, applying distant cut-offs (e.g. one year) might lead to underestimation of the association between previous use and resistance for patients who used antibiotics recently. One solution considers the time elapsed since antibiotic use, either with splines as demonstrated here, or approximated by linear interactions with time in a standard logistic regression model. Furthermore, clinicians should bear in mind that patients who previously used antibiotics are more prone to have resistant infections, and that this risk decays over time but persists for at least 180 days.

Our study has several limitations. Despite known biological mechanisms linking antibiotic use to resistance, the results presented here do not claim to be causal estimates. Residual confounding could still affect our estimates. For example, we did not possess patient data of
antibiotic use outside the hospital. However, we do not believe this should have a substantial effect on our results, as our models control for many other variables that could account for these unobserved differences between patients. More importantly, the implications of our estimates are relevant for risk factors, or predictors, for resistance, regardless of causal interpretation. This is true both for epidemiological studies using these variables, or when clinicians utilize previous antibiotic use to estimate the risk of antibiotic resistant infections for hospitalized patients. Finally, the estimates presented here could vary in settings with different antibiotic resistance frequencies, patient populations, or other conditions affecting bacterial infections. Hence, although the general patterns observed here may persist, they are best estimated locally, for more accurate risk stratification of patients.

In conclusion, this study provides time-varying estimates of the association of antibiotic use with future antibiotic resistance. These estimates are relevant both for epidemiological literature and clinical practice. Commonly used cut-offs for previous use can either misclassify patients still at higher risk, or provide diluted estimates of the association of antibiotic use with future resistance. We therefore implore to consider prior antibiotic use as a time-dependent risk factor for resistance, and to continue researching this phenomenon for various antibiotics and settings.

Transparency declaration

There are no potential conflicts of interest for any authors.

Funding

This work was supported by a grant from the Tel Aviv University Center for AI and Data Science (TAD).
Author contributions

UO and DN conceived the study and supervised all analysis; AB performed the analyses; MC provided clinical insights; All authors interpreted the results; AB, DN, and UO wrote the initial draft; all authors critically revised and approved the paper.

References

