Portable nucleic acid tests for rapid detection of monkeypox virus

Sanchita Bhadra¹, ² and Andrew D. Ellington¹, ²

¹ Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
² Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA

Emails: SB: sanchitabhadra@utexas.edu; ADE: ellingtonlab@gmail.com

ABSTRACT: We report two isothermal nucleic acid amplification assays for detection of monkeypox virus (MPXV) clades 2 and 3 that include the strains responsible for the current global outbreak of monkeypox. The assays use loop-mediated isothermal amplification (LAMP) to amplify two distinct sequences in the MPXV genome. Readout specificity is ensured by oligonucleotide strand displacement (OSD) probes integrated in one-pot LAMP-OSD reactions. OSD probes undergo toehold-mediated strand displacement hybridization to LAMP amplicon loop sequences derived from MPXV clades 2 and 3 resulting in fluorescence readable both in real-time and visually at endpoint. We also perform both assays on two different portable devices, the GeneTiger and the miniPCR, to exemplify compatibility with minimum infrastructure point-of-care (POC) testing in clinical and at-home settings. Both assays could readily detect single digit copies of MPXV synthetic double stranded DNA templates within 30 min.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
and BIP sequences at the 3'- and 5'- ends of LAMP amplicons to fold back into stem loop structures that bind new inner primers and enable self-priming of strand displacement amplification. Additional loop-specific primers (LP), stem primers, and swarm primers can be used to accelerate amplification [14-16]. This continuous and exponential amplification process allows LAMP to often rival the detection limit of PCR, however non-specific primer interactions can also be rapidly amplified yielding spurious amplicons that cause non-specific readout methods, such as Mg^{2+} precipitation [17], fluorescent dye intercalation [18], and pH changes [19], to produce false positive outcomes. To improve LAMP readout accuracy, we previously used concepts from the field of DNA computation [20] to develop oligonucleotide strand displacement (OSD) probes that, similar to TaqMan probes in PCR [21], produce a signal only in the presence of correct LAMP amplicons [22]. OSDs are complementary to one of the loop sequences of the correct LAMP amplicon and do not overlap primer binding sites. They are comprised of a long strand and a complementary short strand that both lack 3'-OH groups and cannot serve as primers. In the absence of the correct LAMP amplicons, the two OSD strands form a hairpin duplex in which a single stranded region, termed toehold, remains exposed at either the 5'- or the 3'-end of the long strand (Figure 1). When a correct LAMP amplicon is available, this toehold hybridizes to its complementary LAMP loop and initiates branch migration that causes the long strand to progressively separate from the short strand and instead hybridize to the LAMP loop (Figure 1). This strand displacement event, indicative of the correct LAMP amplicon, can be measured using a variety of readout modes, such as fluorimetry and colorimetric lateral flow assays [23, 24].

![Figure 1](https://example.com/figure1.png)

Figure 1. Schematic depicting toehold-mediated strand displacement hybridization of an OSD probe and a LAMP amplicon loop. The bar at the 3'-end of the OSD short strand represents the blocked 3'-OH group that prevents polymerase-mediated extension. 'F': covalently attached fluorophore; 'Q': covalently attached quencher moiety.

With over 20 published assays, compatibility with one-pot direct analysis of crude samples, such as environmental water, crushed insects, and human saliva, capacity for template semi-quantitation, and ability to logically process amplicon signal, such as distinguishing single nucleotide polymorphisms and calculating co-presence of multiplex amplicons, LAMP-OSD has proven to be a robust and versatile assay platform [22-29]. We now report two clades 2 and 3 MPXV LAMP-OSD assays for rapid diagnosis of the ongoing monkeypox outbreak [3]. Furthermore, we demonstrate both assays on two different portable diagnostic devices to exemplify suitability of LAMP-OSD to various POC use scenarios, such as healthcare clinics and self-testing. Both assays performed accurately on the GeneTiger, a machine that automates both incubation and fluorogenic readout of LAMP-OSD assays, as well as the mini-iPCR machine with visual readout using an inexpensive handheld transilluminator. We could detect as few as eight synthetic MPXV DNA copies/reaction in only 30 min with simple visual readout of the tests by observing for presence (positive) or absence (negative) of bright green OSD fluorescence.

METHODS

Chemicals and reagents

Analytical grade chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise indicated. Bst 2.0 DNA polymerase and isothermal amplification buffer were acquired from New England Biolabs (NEB, Ipswich, MA, USA). Gene blocks, LAMP primers, and OSD probe strands (Table 1) were purchased from Integrated DNA Technologies (IDT, Coralville, IA, USA).

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPXV J2L LAMP-OSD</td>
<td></td>
</tr>
<tr>
<td>MPXV J2L F3</td>
<td>CCGGAACTATTCCTCTCACC</td>
</tr>
<tr>
<td>MPXV J2L B3</td>
<td>CGAAGACTGATCACATCC</td>
</tr>
<tr>
<td>MPXV J2L FIP</td>
<td>GGATCACTGTTTTACACCCATGCCATGGTTCCTCCAAGAGAATGCT</td>
</tr>
<tr>
<td>MPXV J2L BIP</td>
<td>ACTCTAAGCCGCTCCTTATGATGCTTATGCTGAGAAAAGAG</td>
</tr>
<tr>
<td>MPXV J2L LP</td>
<td>CCACATCCTCGTTATGCAATGC</td>
</tr>
<tr>
<td>MPXV J2L OSD.Q</td>
<td>5′-SAF-FAM-CCGTTATATGTGATGCTTATGCTGATGCTTATGCTGATGCTGATGCTGATGCTG</td>
</tr>
<tr>
<td>MPXV A26L LAMP-OSD</td>
<td></td>
</tr>
<tr>
<td>MPXV A26L F3</td>
<td>TACAGTGACGACGGTGG</td>
</tr>
<tr>
<td>MPXV A26L B3</td>
<td>AGTTCACTTTATATGCCCATAC</td>
</tr>
<tr>
<td>MPXV A26L FIP</td>
<td>CGGGTACGTGGTTTACACCCATGCCATGGTTCCTCCAAGAGAATGCT</td>
</tr>
<tr>
<td>MPXV A26L BIP</td>
<td>ATAGGTCATAGACTAAGATGGGATGTTATGCTTATGCTGATGCTGATGCTGATGCTGATGCTG</td>
</tr>
<tr>
<td>MPXV A26L OSD.LP</td>
<td>5′-IGTATAGTTATATGCCCATAC</td>
</tr>
<tr>
<td>MPXV A26L OSD.FAM</td>
<td>5′-SAF-FAM-CCGTTATATGTGATGCTTATGCTGATGCTTATGCTGATGCTGATGCTGATGCTG</td>
</tr>
<tr>
<td>MPXV A26L OSD.Q</td>
<td>5′-SAF-FAM-CCGTTATATGTGATGCTTATGCTGATGCTTATGCTGATGCTGATGCTGATGCTG</td>
</tr>
</tbody>
</table>

Primer and probe design

We designed two LAMP-OSD assays for clades 2 and 3 MPXV as follows. We built the MPXV J2L LAMP-OSD assay by designing a new LAMP primer set using the Primer Explorer v5 software (Eiken, Japan) (Table 1). These primers amplify a polymorphic portion of the MPXV J2L gene that includes a distinctive trinucleotide insertion/deletion (indel) found in clades 2 and 3 genomes and absent in clade 1 genomes (Figure 2). We designed the J2L LAMP primers such that this polymorphic locus is positioned towards one end of the loop sequence between the F1 and F2 regions of the amplicons (Figure 2). We engineered the J2L assay OSD probe, directed at this loop, to recognize this polymorphism via interaction with its toehold [22]. We derived the MPXV A26L LAMP-OSD assay primers using previously reported LAMP primers [6] that amplify a clade 2 and 3 specific region between MPXV A26L and A27L genes. We replaced the LF loop primer specific to the sequence between F1 and F2 primer specific sites with the OSD reporter.

We designed both J2L and A26L LAMP assay OSD probes using our previously reported design rules and the NUPACK nucleic acid analysis software [22, 30, 31]. Briefly, we used a sequence between the F1 and F2 primer specific regions of the MPXV genome as the OSD long strand, which was labeled at its 3'-end with fluorescein (36-FAM). We designated a 10 J2L
OSD) or 9 (A26L OSD) nucleotide long section at the 5'-end of the long strand as the toehold. We designated the sequence reverse complementary to the remaining portion of long strand as the OSD short strand. We added three to four random basepairs at the 3'-end of the long strand and the 5'-end of the short strand to increase hemiduplex stability at LAMP amplification temperatures. The 5'-end of the short strand was labeled with an Iowa Black FQ (5IABkFQ) quencher moiety while the 3'-end was blocked against polymerase-mediated extension by appending an inverted dT nucleotide (3InvdT). We prepared hemiduplex OSD probes by mixing 1 µM of the long strand with 3 µM of the corresponding short strand in 1x isothermal buffer (20 mM Tris-HCl, 10 mM (NH₄)₂SO₄, 50 mM KCl, 2 mM MgSO₄, 0.1% Tween® 20, pH 8.8@25°C). Annealing was performed by incubating this mixture at 95 °C for 1 min followed by slow cooling to 25 °C at the rate of 0.1 °C/sec.

Figure 2. LAMP primer and OSD probe binding sequences in the MPXV genome (Monkeypox/PT0001/2022 [3]). Binding regions for A26L and J2L primers and OSD probes are depicted in panels A and B, respectively. Forward and reverse directions of the annotations correspond to the sense or antisense sequence. The fluorophore-labeled OSD strand is indicated as 'OSD.FAM' and the quencher-labeled OSD strand is indicated as 'OSD.Q'. The trinucleotide indel present in clades 2 and 3 MPXV genomes is annotated with a red bar.

LAMP-OSD assay

We performed LAMP-OSD assays in 25 µL volume of 1x isothermal buffer containing 1 mM deoxyribonucleotides, 1.6 µM each of FIP and BIP, 0.8 µM each of F3 and B3, 1 M betaine, 3 mM additional MgSO₄, 100 nM of fluorescein-labeled OSD long strand annealed with a three-fold excess of the quencher-labeled short strand, and 16 units of Bst 2.0 DNA polymerase. We used different amounts of synthetic double stranded DNA fragments (gBlocks™, IDT) as templates for amplification. Some negative control assays received 23 ng of human genomic DNA (Promega, Madison, WI) instead of synthetic MPXV templates. For real-time analysis of amplification kinetics, we assembled the LAMP-OSD reactions in a 96-well plate and incubated in a LightCycler 96 real-time PCR machine (Roche, Switzerland) programmed to hold the samples at 60 °C and measure OSD fluorescence at intervals of 3 mins. We generated amplification curves using the LightCycler 96 software. For assays operated on the GeneTiger instrument (GeneTiger, USA), we placed the LAMP-OSD assays in clear thin-walled 0.2 mL PCR tubes and placed them on a GeneTiger rotary cartridge with positions marked 0 to 5 for accommodating 6 reaction tubes. Since we ran 5 LAMP-OSD reactions in an assay, we placed a tube containing 25 µL of water in position 5 to balance the cartridge. We placed the loaded cartridge in a GeneTiger programmed to hold the reactions at 60 °C for 60 min and capture images of OSD fluorescence in each tube at regular intervals. We noted the automated results at assay endpoint, computed by the onboard GeneTiger neural net algorithms, from the instrument on-screen display and from the database available at https://genetiger.com/. We also imaged endpoint LAMP-OSD assay fluorescence using a cellphone camera by placing the GeneTiger cartridge with the assay tubes in a blue light transilluminator.

RESULTS

Real-time amplification kinetics of MPXV LAMP-OSD assays

Assaying for two or more target-specific sequences often improves diagnostic accuracy [32, 33]. Therefore, we developed two LAMP-OSD assays, termed A26L and J2L assays, for rapid detection of clades 2 and 3 MPXV that include strains responsible for the current global monkeypox outbreak. The A26L LAMP-OSD assay uses five primers (FIP, BIP, F3, B3, and one LP) derived from a previously reported 6-primer LAMP assay specific to a region between A26L and A27L genes of clades 2 and 3 MPXV [6]. We replaced the second loop primer that was blocked against polymerase-mediated extension by appending an inverted dT nucleotide (3InvdT). We prepared hemiduplex OSD probes by mixing 1 µM of the long strand with 3 µM of the corresponding short strand in 1x isothermal buffer (20 mM Tris-HCl, 10 mM (NH₄)₂SO₄, 50 mM KCl, 2 mM MgSO₄, 0.1% Tween® 20, pH 8.8@25°C). Annealing was performed by incubating this mixture at 95 °C for 1 min followed by slow cooling to 25 °C at the rate of 0.1 °C/sec.
bound the longer loop sequence of the amplicon with the A26L OSD probe. We have previously used this strategy to reduce false positive signal in several LAMP primer sets reported for the SARS-CoV-2 virus [23]. We designed the five primers for the J2L LAMP-OSD assay de novo to amplify a region of the J2L gene that includes a clade-specific indel. In particular, the sequence CGT found at nucleotide position 510-512 of the J2L coding sequence in clades 2 and 3 genomes is absent in clade 1 genomes (Figure 2). A TaqMan quantitative PCR assay for clades 2 and 3 MPXV also targeted this genomic region [34]. To detect this trinucleotide indel in J2L LAMP amplicons, and hence identify clades 2 and 3 MPXV, we constrained LAMP primer design to position the trinucleotide within the OSD toehold binding region of the amplicon loop sequence. It has been shown that toehold binding strength has significant impact on strand displacement kinetics [35]. OSD toeholds can be designed such that even single mismatches within the toehold abolish strand displacement and prevent signal [22].

Figure 3. Real-time amplification kinetics of MPXV LAMP-OSD assays. OSD fluorescence values measured in real-time during LAMP amplification for J2L (panel A) and A26L (panel B) LAMP-OSD assays are depicted as amplification curves color-coded to indicate the number of synthetic MPXV double stranded DNA template copies per reaction. Data are representative of three biological replicates.

To evaluate the amplification kinetics of the J2L and A26L LAMP-OSD assays, we seeded several replicate reactions with different amounts of synthetic MPXV double stranded DNA templates and incubated the assays at 60 °C for 60 min. We observed that OSD fluorescence increased over time in all reactions containing MPXV DNA templates while fluorescence in reactions lacking specific templates remained at baseline (Figure 3). These results indicate that both MPXV LAMP-OSD assays could readily detect their specific synthetic DNA templates and as few as eight copies of templates yielded a strong OSD signal above noise within 30 min.

Demonstration of the MPXV LAMP-OSD assays on portable devices

Having demonstrated the fast amplification kinetics and single digit template detection ability of both MPXV LAMP-OSD assays, we sought to demonstrate POC amenable implementation of the LAMP-OSD assays. Therefore, we tested assay performance on two different relatively inexpensive portable devices – the GeneTiger (cost: $1500) and the miniPCR16 (cost: $795). GeneTiger (https://genetiger.com/) has been customized for user friendly portable automation of fluorogenic LAMP-OSD assays with cartridge-based parallel operation of 6 independent assay tubes and both on-device and cloud-based reporting of analyzed test results. It is compact (13 cm x 19 cm x 8 cm; 1.5 kg) and can be operated for a full day on a single battery. The miniPCR16 (https://www.minipcr.com/) has 16-tube capacity and is compatible with Mac, PC, android, and iOS for controlling operation. It can be easily programmed for single temperature incubation of LAMP-OSD assays and yes/no results can be read at endpoint by visual inspection of presence or absence of bright OSD fluorescence using an inexpensive transilluminator.

To test performance of the MPXV LAMP-OSD assays on a GeneTiger, we assembled several replicate A26L and J2L reactions and challenged them with different amounts of synthetic MPXV DNA templates. We loaded these LAMP-OSD reaction tubes at positions 0 to 4 of a GeneTiger cartridge, such that reactions containing decreasing template amounts were located at positions 0 to 3 while the tube in position 4 lacked specific templates. Following 60 min of amplification at 60 °C the endpoint test results called by the GeneTiger indicated tubes 0, 1, 2, and 3 to be positive and tube 4 to be negative (Figures 4A and 4D).

Figure 4. Performance of MPXV LAMP-OSD assays on a portable GeneTiger device. Images of GeneTiger screens displaying the automated results for each tube of J2L (panel A) or A26L (panel D) LAMP-OSD assay at endpoint are depicted. Number of synthetic MPXV double stranded DNA template copies/reaction tube is indicated in panels B (J2L assay) and E (A26L assay). Images of OSD fluorescence in J2L and A26L LAMP-OSD assay tubes in GeneTiger cartridges taken at reaction endpoint using a cellphone camera and a transilluminator are depicted in panels C and F. Data are representative of two biological replicates.

These automated results corresponded accurately with the presence or absence of MPXV DNA templates in the assay tubes (Figures 4B and 4E). Moreover, as few as eight MPXV DNA templates yielded a positive LAMP-OSD result on the GeneTiger. We also visually verified the accuracy of GeneTiger results by removing the cartridge from the machine and capturing an image of OSD fluorescence in the tubes using a
observed bright green fluorescence in all LAMP-OSD reaction tubes that we had seeded with MPXV DNA templates (Figures 4C and 4F). Meanwhile, reaction tubes lacking specific templates were as dark as a tube containing water (position 5 on the GeneTiger cartridge). These results indicate that MPXV LAMP-OSD assays automated on the GeneTiger perform accurately.

We evaluated assay performance in a miniPCR16 device in a similar manner by testing amplification in several replicate A26L and J2L LAMP-OSD assays containing either no templates, human genomic DNA, or different amounts of synthetic MPXV DNA templates. Following 30 min of amplification in the miniPCR, when we placed the assay tubes in a blue light transilluminator, we observed bright green fluorescence in all assay tubes containing MPXV specific DNA templates (Figure 5). Meanwhile, tubes lacking any templates or containing human genomic DNA as templates remained dark (Figure 5). These results indicate that LAMP-OSD assays perform accurately in a miniPCR machine and can be easily read visually using minimal equipment. Overall, these results signify the robustness of LAMP-OSD, which enables its facile compatibility with low resource operation suitable for field-based, POC, and even home-based use for actionable diagnostics.

Figure 5. Performance of MPXV LAMP-OSD assays using a miniPCR16 machine. Images of endpoint OSD fluorescence in A26L (panels A and B) and J2L (panels C and D) LAMP-OSD assays performed in a miniPCR16 machine are depicted. Panels A and C are zoomed out images of the assay tubes in a transilluminator while panels B and D show close-up views of the same assay tubes. Number of synthetic MPXV double stranded DNA template copies/reaction tube is indicated in panels B (A26L assay) and D (J2L assay). Data are representative of two biological replicates.

DISCUSSION

We have demonstrated two LAMP-OSD assays for detection of clades 2 and 3 MPXV (also known as the West African MPXV) that include the current outbreak strains of MPXV [36]. Both assays can readily detect single digit copies of their target DNA within 30 min. Furthermore, we demonstrated POC amenable operation of both assays using two portable devices - the GeneTiger that automated both assay incubation and readout and the miniPCR that held the assays at the amplification temperature while endpoint readout was obtained visually using a transilluminator. We envision that a real-world implementation of this diagnostic platform would require only four user-mediated steps (Figure 6). In Step 1, the specimens, such as skin lesion samples, would be processed by a short incubation at 95 °C to both inactivate the virions and extract viral nucleic acids. MPXV is not heat stable and previous reports have demonstrated the feasibility of detecting Orthopoxvirus DNA by direct PCR analysis of heat-treated human and animal specimens without needing prior DNA purification [37, 38]. Furthermore, compatibility of LAMP-OSD reactions with direct analysis of crude biological specimens, such as crushed insects, human saliva, and environmental water, is well-documented [24, 26]. Step 2 would involve transfer of an aliquot of the heated sample into ready-to-use MPXV LAMP-OSD assays. Freeze-dried LAMP-OSD reactions are stable at ambient temperature for at least several months and can be used for diagnostic tests simply by rehydration with assay buffer and test specimens [28]. In Step 3, the user will load the assays onto a portable device to initiate assay incubation, and in the last step, depending on the device, presence or absence of OSD fluorescence, which is indicative of presence or absence of target nucleic acids, will be recorded automatically or manually by visual inspection. Overall, these Steps are highly amenable to assays with off-the-shelf devices, such as the low-cost and portable GeneTiger or miniPCR, and could be readily packaged into a single device devoted to the assay.

Figure 6. Proposed steps for implementing MPXV POC diagnostics using LAMP-OSD assays.

As we have previously shown for numerous other diseases and biomedical indications, rapid, sequence-specific readout mediated via strand displacement makes LAMP-OSD assays extremely suitable for point-of-need detection. This is especially true in the current MPXV outbreak, given the need to enable personal testing options that can run in parallel to the public health infrastructure. As MPXV outbreak strains continue to evolve, diagnostic surety may be enhanced by composing assays into multiplex reactions where OSDs can be used to logically compute the presence or absence of multiple viral amplicons [23, 26], thereby allowing the same platform to evolve along with the virus through simple changes in chemistry.

ACKNOWLEDGEMENTS

This work was supported by the Welch Foundation (F-1654) and the National Institutes of Health (1R01EB027202-01A1 and 3R01EB027202-01A1S1).

REFERENCES

