SARS-CoV-2 BA.4/5 Spike recognition and neutralization elicited after the third dose of mRNA vaccine

Alexandra Tauzin1,2, Debashree Chatterjee1, Katrina Dionne1,2, Gabrielle Gendron-Lepage1, Halima Medjahed1, Yuxia Bo3 Josée Perreault4 Guillaume Goyette1, Laurie Gokool1, Pascale Arlott1, Chantal Morrisseau1, Cécile Tremblay1,2, Valérie Martel-Laferrière1,2, Daniel E. Kaufmann1,5, Gaston De Serres6, Inès Levade7, Marceline Côté3, Renée Bazin4 and Andrés Finzi1,2,8,*

1Centre de Recherche du CHUM, Montreal, QC, H2X 0A9 Canada
2Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, H2X 0A9, Canada
3Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
4Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
5Département de Médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
6Institut National de Santé Publique du Québec, Quebec, QC, H2P 1E2, Canada
7Laboratoire de Santé Publique du Québec, Institut Nationale de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada.

8Lead contact
*Correspondence: andres.finzi@umontreal.ca (A.F.)
THE SARS-CoV-2 Omicron BA.4 and BA.5 subvariants have recently emerged, with BA.5 becoming the dominant circulating strain in many countries. Both variants share the same Spike glycoprotein sequence which contains a large number of mutations, raising concerns about vaccine efficacy. In this study, we evaluated the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize the BA.4/5 Spike. We observed that BA.4/5 Spike is markedly less recognized and neutralized compared to the D614G and Omicron BA.2 Spike variants. Individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2 naïve vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against this subvariant.

Keywords: Coronavirus, COVID-19, SARS-CoV-2, Third mRNA vaccine dose, Spike glycoproteins, Humoral responses, Neutralization, BA.4/5
INTRODUCTION

The SARS-CoV-2 Omicron variant BA.1 emerged at the end of 2021 and rapidly became the dominant circulating strain in the world (Viana et al., 2022; WHO). Since its emergence, several sublineages of Omicron rapidly replaced the BA.1 variant due to higher transmission rates. BA.2 became the dominant circulating strain in spring 2022 (CDC, 2022; Elliott et al., 2022), and currently the BA.4 and BA.5 variants [sharing the same mutations in their Spike (S) glycoproteins, named BA.4/5 S in the manuscript], are becoming the dominant circulating strains in several countries (Mohapatra et al., 2022; PHO, 2022; Tegally et al., 2022; Yamasoba et al., 2022).

It was previously shown that poor humoral responses against BA.1 and BA.2 variants were observed after two doses of mRNA vaccine (Muik et al., 2022; Nemet et al., 2022; Yu et al., 2022). We and others reported that an extended interval between the first two doses of mRNA vaccine led to strong humoral responses to several variants of concern (VOCs) including BA.1 and BA.2 after the second dose of mRNA vaccine (Chatterjee et al., 2022; Payne et al., 2021; Tauzin et al., 2022a). However, a third dose of mRNA vaccine led to an increase of humoral responses against these Omicron variants, regardless of the interval between doses (Kurhade et al., 2022; Muik et al., 2022; Tauzin et al., 2022a; Yu et al., 2022). Previous studies also reported that breakthrough infection (BTI) in vaccinated people induced strong neutralizing Abs against VOCs, including BA.1 (Kitchin et al., 2022; Miyamoto et al., 2022). However, recent studies have shown that BA.4/5 appears to be more resistant than BA.1 and BA.2 to vaccination and monoclonal antibodies (Abs) (Qu et al., 2022; Tuekprakhon et al., 2022; Wang et al., 2022).

In this study, we analyzed the ability of plasma from vaccinated individuals to recognize and neutralize pseudoviral particles bearing the BA.4/5 Spike four weeks (median [range]: 30 days [20–44 days]) and four months (median [range]: 121 days [92–135 days]) after the third dose of mRNA vaccine. This study was conducted in a cohort of individuals who received their first two doses with a 16-weeks extended interval (median [range]: 110 days [54–146 days]) and their third
dose seven months after the second dose (median [range]: 211 days [151-235 days]). The cohort included 15 naïve individuals who were never infected with SARS-CoV-2, 15 previously infected (PI) individuals who were infected during the first wave of COVID-19 in early 2020 (before the advent of the alpha variant and other VOCs) and before vaccination, and 15 BTI individuals who were infected after vaccination. All BTI individuals were infected between mid-December 2021 and May 2022, when almost only Omicron variants (BA.1 and BA.2) were circulating in Quebec. Basic demographic characteristics of the cohorts and detailed vaccination time points are summarized in Table 1 and Figure 1A.

RESULTS

Recognition of SARS-CoV-2 Spike variants by plasma from vaccinated individuals

We first measured the ability of plasma to recognize the SARS-CoV-2 D614G, BA.2 and BA.4/5 S in vaccinated naïve, PI and BTI individuals four weeks and four months after the third dose of mRNA vaccine. Spike expression levels of VOCs were normalized to the signal obtained with the conformationally independent anti-S2 neutralizing CV3-25 antibody (Li et al., 2022; Prévost et al., 2021; Ullah et al., 2021) that efficiently recognized all these VOCs Spikes (Figure S1). Four weeks after the third dose of mRNA vaccine, we observed that plasma from PI individuals recognized more efficiently the D614G S than naïve individuals (Figure 1B). We also observed that BTI individuals recognized the D614G S as efficiently as the PI individuals. Four months after the third dose, the level of recognition of the D614G S decreased for the three groups but with a more significant reduction in the naïve group. The same pattern of recognition was observed with the BA.2 S (Figure 1C). In contrast, for the BA.4/5 S, naïve and BTI had the same level of recognition four weeks after the third dose, and this level was significantly lower than for PI individuals (Figure 1D). Four months after the third dose, we observed a significant decrease of the recognition for naïve and PI individuals. In contrast, for the BTI group, the level of
recognition remained stable and reached the same level than for the PI group. With the exception of PI individuals four months after the third dose, we observed that the BA.4/5 S was always significantly less recognized than the D614G and BA.2 S at both time points (Figure 1E-F).

Neutralizing activity of the vaccine-elicited antibodies.

We also evaluated the neutralizing activity against pseudoviral particles bearing these Spikes in the three groups. In agreement with the pattern of S recognition, PI individuals neutralized more efficiently the three variants than naïve individuals four weeks after the third dose (Figure 2A-C). For the BTI group, the level of neutralizing Abs was intermediate between the two other groups, but a significant difference was only observed with PI individuals and the BA.4/5 S. Four months after the third dose, we did not observe significant differences between PI and BTI individuals. In contrast, the naïve group neutralized less efficiently the D614G, BA.2 and BA.4/5 S (Figure 2A-C). Four weeks after the third dose, no significant difference in the level of neutralization was measured between the D614G and BA.2 S for the three groups (Figure 2D). In contrast, the BA.4/5 S was significantly more resistant to neutralization than the D614G S in all groups. Four months after the third dose, weak or no neutralizing activity against BA.2 and BA.4/5 S was detected in most naïve individuals (Figure 2B-C, E). For BTI and PI individuals, although neutralizing activity was higher than in naïve individuals, the BA.4/5 S was also significantly less neutralized than the D614G and the BA.2 S (Figure 2B-C, E).
DISCUSSION

More than two years after its emergence, and although an important proportion of the world population has received several doses of vaccine, the SARS-CoV-2 variants continue to circulate globally. In recent months, new sub-variants of Omicron emerged, carrying increasing numbers of mutations making them more transmissible and resistant to vaccination and monoclonal antibodies treatment (Kurhade et al., 2022; Tuekprakhon et al., 2022; Yamasoba et al., 2022). In agreement with this, we observed that the BA.4/5 S was less efficiently recognized and neutralized than the D614G and the BA.2 S by plasma from individuals who received three doses of mRNA vaccine.

Several studies reported that poor neutralizing activity against VOCs was observed after two doses of mRNA vaccine, but a third dose strongly improved this response (Gruell et al., 2022; Muik et al., 2022; Tauzin et al., 2022a). However, when the second dose of vaccine was administered with an extended 16-weeks interval, higher humoral responses against VOCs (including BA.1 and BA.2) were observed after the second dose of vaccine (Chatterjee et al., 2022), that were not increased by a booster dose (Tauzin et al., 2022a). Therefore, there is no evidence that additional doses of the original SARS-CoV-2 vaccines after the third dose will result in increased responses against VOCs.

The Omicron variants spread more easily in vaccinated individuals than pre-Omicron variants (Garrett et al., 2022; Sun et al., 2022). Interestingly, it was recently shown that previous infection with an Omicron variant prevents reinfection more efficiently than previous infection with a pre-Omicron variant (Altarawneh et al., 2022; Carazo et al., 2022), thus suggesting that new vaccines based on Omicron variants may generate humoral responses more likely to control Omicron sub-variants.

It was previously shown that hybrid immunity due to SARS-CoV-2 infection followed by vaccination confers stronger immune responses than vaccination alone (Carazo et al., 2022; Goel
et al., 2021; Nayrac et al., 2022; Tauzin et al., 2022a). Here we observed that individuals with BTI had the same level of S recognition and neutralization than individuals previously infected supporting the concept that hybrid protection is similar whatever the order of infection and vaccination. However, the durability of these responses remains unknown.

In conclusion, virus recognition and neutralizing activity induced by current mRNA vaccine are low against Omicron subvariants, rapidly decline over 4 months in naïve individuals, and will likely decrease further with future SARS-CoV-2 evolution. There is a need to rapidly develop new generations of vaccines that will elicit broader and less labile protection.

ACKNOWLEDGMENTS

The authors are grateful to the individuals who participated in this study. The authors thank the CRCHUM BSL3 and Flow Cytometry Platforms for technical assistance. The CV3-25 antibody was produced using the pTT vector kindly provided by the National Research Council Canada. Schematics for showing experimental design in figures were created with BioRender.com. We thank Dr. Stefan Pöhlmann (Georg-August University, Germany) for the plasmid coding for SARS-CoV-2 S D614G glycoprotein. This work was supported by le Ministère de l’Économie et de l’Innovation du Québec, Programme de soutien aux organismes de recherche et d’innovation to A.F. and by the Fondation du CHUM. This work was also supported by a CIHR foundation grant #352417, by a CIHR operating Pandemic and Health Emergencies Research grant #177958, by an Exceptional Fund COVID-19 from the Canada Foundation for Innovation (CFI) #41027 to A.F. and by a FRQS Merit Research Scholar award (# 268471) to D.E.K. Work on variants presented was also supported by the Sentinelle COVID Quebec network led by the LSPQ in collaboration with Fonds de Recherche du Québec Santé (FRQS) to A.F. This work was also partially supported by a CIHR COVID-19 rapid response grant (OV3 170632) and CIHR stream 1 SARS-CoV-2
Variant Research to M.C. A.F. is the recipient of Canada Research Chair on Retroviral Entry no. RCHS0235 950-232424. M.C is a Tier II Canada Research Chair in Molecular Virology and Antiviral Therapeutics (950-232840). C.T. is the Pfizer/Université de Montréal Chair on HIV translational research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We declare no competing interests.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no conflict of interest.
FIGURE LEGENDS

Figure 1. Recognition of SARS-CoV-2 Spike variants by plasma from naïve, BTI and PI individuals after the third dose of mRNA vaccine.

(A) SARS-CoV-2 vaccine cohort design. The yellow box represents the period under study. (B-F) 293T cells were transfected with the indicated full-length S from different SARS-CoV-2 variants and stained with the CV3-25 mAb or with plasma from naïve, BTI or PI individuals collected 4 weeks or 4 months after the third dose of mRNA vaccine and analyzed by flow cytometry. The values represent the MFI normalized by CV3-25 Ab binding. (B-D) Plasma samples were grouped in two different time points (4 weeks and 4 months). (E-F) Binding of plasma collected at 4 weeks (E) and 4 months (F) post vaccination were measured. Naïve, BTI and PI individuals are represented by red, yellow and black points respectively, undetectable measures are represented as white symbols, and limits of detection are plotted. Error bars indicate means ± SEM. (* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, non-significant). For all groups, n=15.

Figure 2. Neutralization activity of SARS-CoV-2 Spike variants by plasma from naïve, BTI and PI individuals after the third dose of mRNA vaccine.

(A-E) Neutralization activity was measured by incubating pseudoviruses bearing SARS-CoV-2 S glycoproteins, with serial dilutions of plasma for 1 h at 37°C before infecting 293T-ACE2 cells. Neutralization half maximal inhibitory serum dilution (ID$_{50}$) values were determined using a normalized non-linear regression using GraphPad Prism software. (A-C) Plasma samples were grouped in two different time points (4 weeks and 4 months). (D-E) Neutralization activity of plasma collected at 4 weeks (D) and 4 months (E) post vaccination were measured. Naïve, BTI and PI individuals are represented by red, yellow and black points respectively, undetectable measures are represented as white symbols, and limits of detection are plotted. Error bars
For all groups, n=15.

Table 1. Characteristics of the vaccinated SARS-CoV-2 cohorts

<table>
<thead>
<tr>
<th></th>
<th>Entire cohort</th>
<th>Naïve</th>
<th>Breakthrough infection<sup>b</sup></th>
<th>Previously infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>45</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Age</td>
<td>51 (24-67)</td>
<td>54 (24-67)</td>
<td>43 (30-64)</td>
<td>48 (29-65)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n)</td>
<td>17</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Female (n)</td>
<td>28</td>
<td>11</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Days between symptom onset and the 1<sup>st</sup> dose<sup>a</sup></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>288 (166-321)</td>
</tr>
<tr>
<td>Days between the 1<sup>st</sup> and 2<sup>nd</sup> dose<sup>a</sup></td>
<td>110 (54-146)</td>
<td>109 (65-120)</td>
<td>110 (54-113)</td>
<td>112 (90-146)</td>
</tr>
<tr>
<td>Days between the 2<sup>nd</sup> and 3<sup>rd</sup> dose<sup>a</sup></td>
<td>211 (151-235)</td>
<td>210 (184-227)</td>
<td>215 (151-224)</td>
<td>219 (187-235)</td>
</tr>
<tr>
<td>Days between the 3<sup>rd</sup> dose and 4W</td>
<td>30 (20-44)</td>
<td>32 (21-37)</td>
<td>28 (20-38)</td>
<td>33 (24-44)</td>
</tr>
<tr>
<td>Days between the 3<sup>rd</sup> dose and 4M</td>
<td>121 (92-135)</td>
<td>124 (105-135)</td>
<td>121 (92-131)</td>
<td>119 (111-127)</td>
</tr>
</tbody>
</table>

^a Values displayed are medians, with ranges in parentheses. Continuous variables were compared by using Kruskal-Wallis tests. p<0.05 was considered statistically significant for all analyses. No statistical differences were found for any of the parameter tested between the different groups.
^b All Breakthrough infection individuals were infected between mid-December 2021 and May 2022, when almost only Omicron variants (BA.1 and BA.2) were circulating in Quebec.
STAR METHODS

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andrés Finzi (andres.finzi@umontreal.ca).

Materials availability

All unique reagents generated during this study are available from the Lead contact without restriction.

Data and code availability

- All data reported in this paper will be shared by the lead contact (andres.finzi@umontreal.ca) upon request.
- This paper does not report original code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact (andres.finzi@umontreal.ca) upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics Statement

All work was conducted in accordance with the Declaration of Helsinki in terms of informed consent and approval by an appropriate institutional board. Blood samples were obtained from donors who consented to participate in this research project at CHUM (19.381). Plasmas were isolated by centrifugation and Ficoll gradient, and samples stored at -80°C until use.
Human subjects

The study was conducted in 15 SARS-CoV-2 naïve individuals (4 males and 11 females; age range: 24-67 years), 15 SARS-CoV-2 breakthrough infection individuals (5 males and 10 females; age range: 30-64 years) infected after the second or third dose of mRNA vaccine, and 15 SARS-CoV-2 previously infected individuals (8 males and 7 females; age range: 29-65 years) infected before vaccination during the first wave of COVID-19 in March-May 2020. This information is presented in Table 1. No specific criteria such as number of patients (sample size), gender, clinical or demographic were used for inclusion, beyond PCR confirmed SARS-CoV-2 infection in adults before vaccination for PI group, PCR confirmed SARS-CoV-2 infection or anti-N positive in adults after vaccination for BTI group and no detection of Abs recognizing the N protein for naïve individuals.

Plasma and antibodies

Plasmas were isolated by centrifugation with Ficoll gradient, heat-inactivated for 1 hour at 56°C and stored at -80°C until use in subsequent experiments. Healthy donor’s plasmas, collected before the pandemic, were used as negative controls in flow cytometry assays (data not shown). The conformationally independent S2-specific monoclonal antibody CV3-25 was used as a positive control and to normalize Spike expression in our flow cytometry assays, as described (Gong et al., 2021; Jennewein et al., 2021; Prévost et al., 2021; Tauzin et al., 2022b). Alexa Fluor-647-conjugated goat anti-human Abs able to detect all Ig isotypes (anti-human IgM+IgG+IgA; Jackson ImmunoResearch Laboratories) were used as secondary Abs to detect plasma binding in flow cytometry experiments.
Cell lines

293T human embryonic kidney cells (obtained from ATCC) were maintained at 37°C under 5% CO₂ in Dulbecco’s modified Eagle’s medium (DMEM) (Wisent) containing 5% fetal bovine serum (FBS) (VWR) and 100 μg/ml of penicillin-streptomycin (Wisent). 293T-ACE2 cell line was previously reported (Prévost et al., 2020).

METHOD DETAILS

Plasmids

The plasmids encoding the SARS-CoV-2 Spike variants D614G and BA.2 (T19I, LPPA24S, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K) were previously described (Beaudoin-Bussières et al., 2020; Gong et al., 2021; Tauzin et al., 2022a). The plasmids encoding the BA.4/5 Spike was generated by overlapping PCR using the BA.2 SARS-CoV-2 Spike gene as a template and cloned in pCAGGS. The BA.4/5 Spike sequence shows the following amino acid changes compared to the BA.2 Spike sequence: L452R, H69-, V70-, F486V, R493Q. All constructs were verified by Sanger sequencing.

Cell surface staining and flow cytometry analysis

293T were transfected with full-length SARS-CoV-2 Spikes and a green fluorescent protein (GFP) expressor (pIRES2-eGFP; Clontech) using the calcium-phosphate method. Two days post-transfection, Spike-expressing 293T cells were stained with the CV3-25 Ab (5 μg/mL) as control or plasma from naïve, BTI or PI individuals (1:250 dilution) for 45 min at 37°C. AlexaFluor-647-conjugated goat anti-human IgG (1/1000 dilution) were used as secondary Abs. The percentage of Spike-expressing cells (GFP + cells) was determined by gating the living cell population based on viability dye staining (Aqua Vivid, Invitrogen). Samples were acquired on a LSR II cytometer (BD Biosciences), and data analysis was performed using FlowJo v10.7.1 (Tree Star).
conformationally-independent anti-S2 antibody CV3-25 was used to normalize Spike expression, as reported (Gong et al., 2021; Li et al., 2022; Prévost et al., 2021; Ullah et al., 2021). CV3-25 was shown to be effective against all Spike variants (Figure S1). The Median Fluorescence intensities (MFI) obtained with plasma were normalized to the MFI obtained with CV3-25 and presented as percentage of CV3-25 binding.

Virus neutralization assay
To produce SARS-CoV-2 pseudoviruses, 293T cells were transfected with the lentiviral vector pNL4.3 R-E− Luc (NIH AIDS Reagent Program) and a plasmid encoding for the indicated S glycoprotein (D614G, BA.2 or BA.4/5) at a ratio of 10:1. Two days post-transfection, cell supernatants were harvested and stored at −80°C until use. For the neutralization assay, 293T-ACE2 target cells were seeded at a density of 1×10⁴ cells/well in 96-well luminometer-compatible tissue culture plates (PerkinElmer) 24h before infection. Pseudoviral particles were incubated with several plasma dilutions (1/50; 1/250; 1/1250; 1/6250; 1/31250) for 1h at 37°C and were then added to the target cells followed by incubation for 48h at 37°C. Cells were lysed by the addition of 30 μL of passive lysis buffer (Promega) followed by one freeze-thaw cycle. An LB942 TriStar luminometer (Berthold Technologies) was used to measure the luciferase activity of each well after the addition of 100 μL of luciferin buffer (15mM MgSO₄, 15mM KH₂PO₄ [pH 7.8], 1mM ATP, and 1mM dithiothreitol) and 50 μL of 1mM d-luciferin potassium salt (Prolume). The neutralization half-maximal inhibitory dilution (ID₅₀) represents the plasma dilution to inhibit 50% of the infection of 293T-ACE2 cells by pseudoviruses.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical analysis
Symbols represent biologically independent samples from SARS-CoV-2 naïve, BTI or PI individuals. Statistics were analyzed using GraphPad Prism version 8.0.1 (GraphPad, San Diego,
CA). Every dataset was tested for statistical normality and this information was used to apply the appropriate (parametric or nonparametric) statistical test. p values < 0.05 were considered significant; significance values are indicated as *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns, non-significant.
REFERENCES

Figure 1

A) Schematic representation of the study groups: Naive, Breakthrough infection, and Previously infected.

B) Plasma binding (MFI normalized to CV3-25) for D614G at 4 weeks and 4 months.

C) Plasma binding (MFI normalized to CV3-25) for BA.2 at 4 weeks and 4 months.

D) Plasma binding (MFI normalized to CV3-25) for BA.4/5 at 4 weeks and 4 months.

E) Plasma binding (MFI normalized to CV3-25) for D614G at 4 weeks.

F) Plasma binding (MFI normalized to CV3-25) for D614G at 4 months.
Figure 2
Figure S1. Recognition of different VOCs Spikes by the anti-S2 CV3-25 antibody, Related to Figure 1.

293T cells were transfected with the full-length Spikes from different VOCs (D614G, BA.2 and BA.4/5), stained with the CV3-25 mAb and analyzed by flow cytometry.