Combining Sodium MRI, Proton MR Spectroscopic Imaging and Intracerebral EEG in Epilepsy

Mikhael Azilinon¹,²,³, Julia Scholly³,⁴, Wafaa Zaaraoui¹,³, Samuel Medina Villalon²,⁴, Patrick Viout¹,³, Tangi Roussel¹,³, Mohamed Mounir El Mendili¹,³, Ben Ridley⁵, Jean-Philippe Ranjeva¹,³, Fabrice Bartolomei²,⁴, Viktor Jirsa² and Maxime Guye¹,³

Abstract

Whole brain ionic and metabolic imaging has potential as a powerful tool for the characterization of brain diseases. In this study we combined sodium MRI (²³Na MRI) and ¹H-MR Spectroscopic Imaging (¹H-MRSI) and compared ionic/metabolic changes probed by this multimodal approach to intracerebral stereotactic-EEG (SEEG) recordings.

We applied a multi-echo density adapted 3D projection reconstruction pulse sequence at 7T (²³Na MRI) and a 3D echo planar spectroscopic imaging sequence at 3T (¹H-MRSI) in 19 patients suffering from drug-resistant focal epilepsy who underwent presurgical SEEG. We investigated ²³Na MRI parameters including total sodium concentration (TSC) and the sodium signal fraction associated with the short component of T₂* decay (f), alongside the level of metabolites N-acetyl aspartate (NAA), choline compounds (Cho) and total creatine (tCr). All measures were extracted from spherical regions of interest (ROIs) centered between two adjacent SEEG electrode contacts and z-scored against the same ROI in controls.

Group comparison showed a significant increase in f only in the epileptogenic zone (EZ) compared to controls and compared to patients propagation zone (PZ) and non-involved zone (NIZ). TSC was significantly increased in all patients’ regions compared to controls. Conversely, NAA levels were significantly lower in patients compared to controls, and lower in the EZ compared to PZ and NIZ. Multiple regression analyzing the relationship between sodium and metabolites levels revealed significant relations in PZ and in NIZ but not in EZ.

Our results are in agreement with the energetic failure hypothesis in epileptic regions associated with widespread tissue reorganization.

Author affiliations:
¹ Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
² Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
³ APHM, Timone Hospital, CEMEREM, Marseille, France.
⁴ APHM, Timone Hospital, Epileptology Department, Marseille, France.
⁵ IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy

The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Correspondence to: Prof Maxime Guye, MD, PhD,
Centre de Résonance Magnétique Biologique et Médicale
Faculté des Sciences Médicales et paramédicales
27, Bd Jean Moulin, 13385 Marseille Cedex 5, France
Email: maxime.guye@univ-amu.fr

Running title: Sodium MRI and spectroscopy in focal epilepsy

Keywords: Sodium MRI; 1H-Spectroscopic Imaging; Epilepsy; Intracranial EEG; Multimodal Imaging; 7T MRI

Abbreviations:
AC-PC = Anterior Commissure - Posterior Commissure; ASL = Achieved Significance Level; Cho = Choline Compounds; CRLB = Cramer-Rao Lower Bound; DNET = Dysembryoplastic Neuroepithelial Tumor; EAAT = Glutamate Transporter; ECV = Extracellular Volume; EI = Epileptogenicity Index; EZ = Epileptogenic Zones; f = fraction of sodium signal with short T2* decays; FCD = Focal Cortical Dysplasia; FDR = False Discovery Rate; 18F-FDG-PET = Fluorodeoxyglucose PET; FOV = Field of View; GRAPPA = GeneRalized Autocalibrating Partial Parallel Acquisition; 1H = Hydrogen; HC = Healthy Controls; MIDAS = Metabolite Imaging and Data Analyses System; MNI = Montreal Neurological Institute; MP2RAGE = Magnetization Prepared 2 Rapid Acquisition Gradient Echoes; MPRAGE = Magnetization Prepared Rapid Acquisition Gradient Echoes; EPSI = Echo Planar Spectroscopic Imaging; 23Na = Sodium; NAA = N-Acetyl Aspartate; NaLF = apparent concentrations of sodium with long T2* decays; NaSF = apparent concentrations of sodium with short apparent T2* decay; NBC = Bicarbonate Sodium Cotransporter; NCX = Sodium Calcium Exchanger; NHE = Sodium Hydrogen Antiport; NIZ = Non Involved Zones; Na+/K+ pump = Sodium Potassium pump; NKCC1 = Sodium Potassium Chloride cotransporter; pH = Potential of Hydrogen; PZ = Propagation Zones; QED = Quality Electrodynamics; ROI = Region of Interest; SEEG = Stereotactic EEG; T2*long = Sodium long T2* relaxation time; T2*short = Sodium short T2* relaxation time; tCr = Total Creatine; TE = Echo Time; TI = Inversion Time; TR = Repetition Time; TSC = Total Sodium Concentration; UTE = Ultrashort Echo Time; VGNC = Voltage Gated Sodium Channels
1. Introduction

Recent advances in neuroimaging have challenged the concept of focal epilepsy as a brain disorder strictly limited to the regions responsible for seizure generation and propagation (Larivièrè et al., 2021). Various MRI modalities (i.e. structural, functional, metabolic) have consistently demonstrated structural and functional alterations that extend beyond the epileptogenic regions and affect areas non-involved in ictal discharges or interictal epileptiform activity. These complex changes affect both structure and function at different spatial and temporal scales and can reflect seizure-induced alterations, neuronal plasticity as well as the underlying etiology. These factors, and the precise anatomical location of generators of epileptiform activity, are subject to variation even between individuals with the same epileptic syndrome. Thus, a systematic comparison of imaging data with the gold standard of electrophysiological data derived from intracerebral stereoelectroencephalography (SEEG) recording is essential to test the potential contribution of any imaging modality towards better definition of the epileptogenic zone (EZ) in patients suffering from drug-resistant focal epilepsy who are candidates for surgery. Moreover, the need to characterize the variable manifestations of pathology suggest a clear need to exploit multimodal imaging, combining metrics from different modalities. Insight into alterations of ionic homeostasis and metabolic function can be probed by sodium (23Na) MRI and 1H-MR spectroscopic imaging (MRSI), respectively.

23Na-MRI provides a unique opportunity to non-invasively image sodium signal in the brain (Madelin et al., 2014). To date, the only 23Na-MRI study performed in a group of human focal epilepsy, has demonstrated an increase of the total sodium concentration (TSC) in patients’ brain compared to controls, which was greater in the epileptogenic zone (EZ) compared to the propagation zone (PZ) and the non-involved regions (NIZ) (Ridley et al., 2017). The
usefulness of TSC as a potential epileptogenicity marker may remain limited due to its limited specificity, as it likely reflects different underlying phenomena at the cellular level, such as changes in intracellular sodium concentration, changes in extracellular volume and cells density and/or organization among others.

For 23Na-MRI the increase in signal to noise available at 7T allows novel approach based on a 3D-multi-echoes density-adapted radial sequence which exploits the biexponential T_2^* decay of the 23Na MR signal (Ridley et al., 2018). This approach permits a multiparametric investigation of variation in T_2^* decay behavior related to the quadrupolar interactions of the 3/2 spin of 23Na with the electric field gradient of surrounding molecules (Rooney & Springer, 1991), as an indicator of tissue organization and molecular environment. The biexponential fit model can be used as a probe to determine the motional regimes of sodium nuclei within the surrounding environment. Thus, by quantifying the sodium signal fraction with the short T_2^* decay component (f) this approach may offer a more relevant metric for studying tissue alterations and potentially provide a better link between sodium homeostasis and neuronal excitability in human epilepsy. In the present study, we implemented this multiparametric approach of sodium MRI for the first time in the assessment of profiles within and outside the epileptogenic and propagation networks in focal drug-resistant epilepsy.

As a further objective, we assessed metabolic alterations accompanying sodium concentration changes. To do so, we explored metabolic status by using whole-brain 1H-Echo Planar spectroscopic imaging (1H-EPSI) in the same subjects at 3T. Three main metabolites were quantified: (i) N-acetyl Aspartate (NAA) reflecting neuronal viability, mitochondrial dysfunction or neuronal loss (Moffett et al., 2013; Stefano et al., 1995), (ii) Choline
compounds (Cho) reflecting membrane turnover and inflammatory processes (Achten, 1998; Urenjak et al., 1993), and (iii) total-creatine compounds (tCr) reflecting intracellular energy states, and energy-dependent systems in the brain (Kreis et al., 1992; Kreis & Ross, 1992), and considered as a cellularity index (Kreis et al., 1993). Importantly, NAA has been consistently shown to be decreased in the epileptic brain, particularly in the EZ and PZ, compared to non-involved regions, and is thus considered a potential epileptogenicity marker in focal epilepsy (Guye et al., 2002, 2005; Hugg et al., 1993; Kuzniecky et al., 1998; Lundbom et al., 2001; Simister et al., 2002). Furthermore, it has been hypothesized that the observed increase in total sodium concentration would mainly reflect energetic failures due to mitochondrial dysfunction affecting the Na\(^+\)/K\(^+\) pump activity (Ridley et al., 2017; Stys et al., 1992). Thus, measuring both sodium and NAA in the same regions provides clues with regard to the mitochondrial defect hypothesis (Donadieu et al., 2019; Paling et al., 2011). However, the use of this metabolite has been limited by poor resolution and spatial coverage of routinely performed \(^1\)H-MRSI, as well as by its insufficient specificity. In this study, we benefited from the whole brain coverage with a relatively high spatial resolution allowing comparison between multimodal MRI and electrophysiological metrics.

Therefore, through this trimodal approach, we aimed to characterize ionic and metabolic changes within epileptogenic networks in comparison with electrophysiologically normal appearing brain networks. For this purpose, we analyzed differences in \(^{23}\)Na-MRI (TSC and f) and \(^1\)H-MRSI (Cho, NAA and tCr) metrics between patients and controls as well as between regions of interest (ROI) defined by quantitative SEEG signal analysis (Figure 1). We then investigated the association between \(^{23}\)Na-MRI and \(^1\)H-MRSI metrics in EZ, PZ and NIZ in order to link the homeostatic and metabolic mechanisms to the SEEG recorded electrical alterations.
2. Materials and Methods

2.1. Subjects

Among all patients who underwent stereotactic intracerebral EEG (SEEG) recording in the context of presurgical evaluation for drug-resistant focal epilepsy at our center between January 2017 and February 2020, 19 consecutive patients with available 3D 1H-MRSI and 23Na-MRI were retrospectively included (Table 1). All patients had detailed non-invasive presurgical evaluation including medical history, neurological examination, neuropsychological assessment, 18F-FDG-PET, high-resolution structural 7T and 3T MRI, and a long-term scalp-video-EEG. All these steps were necessary for patient enrollment. The SEEG was indicated in all patients to localize the EZ and to precisely determine its relation with eloquent areas. SEEG was performed as a part of the routine clinical management in line with the French national guidelines on stereoelectroencephalography (SEEG) (Isnard et al., 2018). SEEG implantation was planned individually for each patient, according to anatomo-electro-clinical hypotheses about the localization of the EZ based on non-invasive investigations. All SEEG explorations were bilateral and systematically sampled temporal, insular, frontal, and parietal regions of at least one hemisphere. Follow-up information was collected from a review of the medical records.

MRI data were always acquired before SEEG implantation. After quality checks (see below), seventeen spectroscopic 1H-MRSI datasets, and fifteen 23Na-MRI datasets were used for further analysis. Thirteen out of the nineteen patients fulfilled data quality in sufficient ROIs for both modalities. For 1H-MRSI, we used a control database of 25 healthy controls (HC; mean age 30.5 \pm 9.7 years, range 20-60 years, 14 women). For 23Na-MRI, we used a control database of 18 HC for (mean age 30.5 \pm 8.36 years, range 21-54 years, 10 women).
Participants provided informed consent in compliance with the ethical requirements of the Declaration of Helsinki and the protocol was approved by the local Ethics Committee (Comité de Protection des Personnes sud Méditerranée 1).

2.2. MRI Acquisitions

The protocol was conducted for all subjects on the two same MR scanners. The Spectroscopic imaging protocol on a 3-Tesla Magnetom Verio MR system (Siemens, Erlangen, Germany) and the 23Na MRI protocol on a whole-body 7-Tesla Magnetom Step 2 MR system (Siemens, Erlangen, Germany).

At 3T, 1H-MRI and 1H-EPSI were performed with a thirty-two channel phased-array head coil and included a sagittal high resolution 3D-MPRAGE protocol (TE/TR/TI = 3/2300/900 ms, 160 sections, 256×256 mm², FOV 256×256 matrix, resolution = 1 mm³). Whole brain 3D 1H-EPSI was acquired as described in (Lecocq et al., 2015) using two axial acquisitions with two different orientations that are the AC-PC plane and the AC-PC + 15° plane (TE/TR/TI = 20/1710/198 ms, nominal voxel size = 5.6 × 5.6 × 10 mm³, FOV = 280 × 280 × 180 mm³, flip angle = 73°, 50 × 50 × 18 k-space points, GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) factor = 2, acquisition time ≈ 17 minutes). The two angles of EPSI orientations were chosen in order to obtain good quality spectra on as large brain area as possible on at least one acquisition with a reasonable angulation to permit accurate automatic normalization procedure.

At 7T, a high-resolution proton MRI 3D-MP2RAGE (TR = 5000 ms/TE = 3 ms/TI1 = 900 ms/TI2 = 2750 ms, 256 slices, 0.6 mm isotropic resolution, acquisition time = 10 min) was
obtained using a 32-element (32Rx/1Tx) 1H head coil (Nova Medical). 23Na-MRI was acquired using a dual-tuned 23Na/1H QED birdcage coil and a multi-echo density adapted 3D projection reconstruction pulse sequence (TR = 120 ms, 5000 spokes, 384 radial samples per spoke, 3 mm nominal isotropic resolution, 24 echoes (8 per run with 3 runs, acquisition time 10 min per run (30 min in total)). Three dimension 23Na MRI volumes were obtained at 24 different TEs ranging from 0.2 ms to 70.78 ms (Run 1: 0.2 - 9.7 - 19.2 - 28.7 - 38.2 - 47.7 - 57.2 - 66.7 ms; Run 2: 1.56 - 11.06 - 20.56 - 30.06 - 39.56 - 49.06 - 58.56 - 68.06 ms; Run 3: 4.28 - 13.78 - 23.28 - 32.78 - 42.28 - 51.78 - 61.28 - 70.78 ms). This ensured a sufficient number and distribution of TEs while taking into account the 5 ms readout of the sequence, especially for measuring 23Na signal with short T_2^*. For quantitative calibration of brain sodium concentrations we used as external reference six tubes (80mm length, 15mm diameter) filled with a mixture of 2% agar gel and sodium at different concentrations: two tubes at 25mM, one at 50mM, two at 75mM and one at 100mM. Tubes were positioned in the field of view in front of the subject’s head and maintained using a cap.

2.3. MRI Data Processing

Three dimension 1H-EPSI images were post-processed with the Metabolite Imaging and Data Analyses System (MIDAS, Trac, MRIR, Miami) (Maudsley et al., 2006). This software ensures B_0 map correction, lipid suppression, tissue volume fraction through T_1 segmentation, spectral fitting, exclusion of outlier voxels based on Cramer Rao lower bounds (CRLB) and signal normalization with the interleaved water signal acquired. MIDAS provided AC-PC and AC-PC 15° oriented maps, including metabolite maps (NAA, Cho, tCr), quality maps, CRLB maps and linewidth maps among others that were used in further processing and quality check steps. In this study we only analyzed NAA, tCr and Cho maps because m-Ino (Myo-Inositol) and Glx (for glutamate, glutamine and glutathione) maps did not fulfill CRLB
criteria in the majority of the ROIs (Figure 2). ROI selection process is detailed in the next paragraph. The maps that we used for the ROIs signal extraction are the average maps of realigned AC-PC and AC-PC 15° oriented maps (Donadieu et al., 2019; Lecocq et al., 2015) (SPM12, (Statistical Parametric Mapping: The Analysis of Functional Brain Images - 1st Edition, n.d.)).

Metabolic profiles of each ROI (for details on ROI definition see section 2.6) were determined by extracting water signal normalized values (arbitrary unit) from corrected quantitative NAA, tCr and Cho maps derived from MIDAS. We applied quality assurance criteria for spectra in each ROI based on a combination of Cramer-Rao minimum variance bound (CRLB < 15%, or CRLB lower than half of all HC), and water peak linewidth (<16 Hz) thresholds. Supplementary Fig.1. illustrates the spectra that are in the permitted range or not. If, after ROIs rejection in a patient, there was no ROI in EZ, the patient was entirely discarded from further analyzes.

The 23Na-MRI data were processed according to (Grimaldi et al., 2021) using a homemade adjusted procedure. After brain extraction on 23Na-MRI images (ANTS, (Avants et al., 2011)), a denoising filter was applied to the resulting 23Na-MRI volumes (Aja-Fernandez et al., 2008; Rajan et al., 2010). The first echo time (TE) volumes from 23Na MRI were used as reference for coregistration of the other TE volumes to correct for potential motion between acquisitions. Hand drawn ROIs were placed in the center of each agar tube to extract signal intensities from the twenty-four TE volumes of 23Na-MRI acquisitions for signal calibration procedure. Linear fitting of 23Na signal decay from tubes ROI (Matlab) provided the slope (a) and intercept (b), which is used for calibration purposes (see below).
For each ROI (for details on ROI definition see section 2.6), we fitted the mean signal intensity across each of the 24 TEs with a biexponential model using the equation:

\[
ROI_{signal} = \sqrt{A^2 \left(fe^{\frac{-TE}{T2_{short}}} + (1-f)e^{\frac{-TE}{T2_{long}}} \right)^2 + Ric^2}
\]

where \(A \) is an amplitude scaling term, \(f \) is the sodium signal fraction of the short \(T_2^* \) decay component and \(Ric \) refers to a Rician noise-related scaling parameter (Ridley et al., 2017). From the model we estimated a sodium signal fraction for short \(f \) and long \((1-f)\) \(T_2^* \) decay. Note that these short and long fractions of the sodium signal are only present when the \(Na^+ \) ions are present in an organized non-isotropic molecular environment. Indeed, in these environments, the electric quadrupolar moment of the sodium nucleus interacts strongly with the surrounding electric field gradient leading to a residual quadrupolar interaction responsible for the bi-exponential \(T_2 \) relaxation with a short \(T_2^* \) and a long \(T_2^* \) depending on the motional regime of the environment. In contrast, in an isotropic non-restricted environment such as the cerebrospinal fluid, there is no residual quadrupolar interaction and all energetic transitions are equal and lead to a monoexponential decay with only one (long) \(T_2^* \) (Burstein & Springer, 2019). We calculated magnetization (M0) corresponding to the signal fraction estimated by the model in terms of the intercepts of the signal fraction components of the model, obtaining \(M0_{SF} = A \cdot f \) and \(M0_{LF} = A \cdot (1-f) \). Then, \(Na_{SF} \) and \(Na_{LF} \) were calculated with raw M0 signal values and the linear fit estimated over the tube phantoms, i.e. slope (a) and intercept (b):

\[
Na_{SF} = \frac{(M0_{SF} - a)}{b}
\]

\[
Na_{LF} = \frac{(M0_{LF} - a)}{b}
\]

Finally, we calculated the total sodium concentration (TSC) in each ROI as follows:

\[
TSC = Na_{SF} + Na_{LF}
\]
Each ROI had to be almost totally (> 99.9%) included in the brain mask of the individual patient and in the brain masks of at least half of all HC. Finally, to limit the partial volume effect related to CSF, patient ROIs with high CSF contains - estimated with structural image segmentation - relative to HC (|Z-score_{CSF}| > 1.96) were also discarded. If after this final step a patient had no remaining EZ ROIs, the patient was entirely discarded from the analyzes, reducing the number of investigated patients from 22 to 19.

2.4. SEEG Recordings

Recordings were performed using intracerebral multiple contact electrodes (10–18 contacts with length 2 mm, diameter 0.8 mm, and 1.5 mm apart, Alcis, France). The electrodes were implanted using a stereotactic surgical robot ROSA™. Cranial CT scan was performed to verify the absence of any complication and the spatial accuracy of the implantation. CT/MRI data co-registration and 3D-reconstructions of patients' brains with electrodes was performed using an in-house open-source software (EpiTools, (Medina Villalon et al., 2018)) to automatically localize the position of each electrode contact and display the results of signal analysis in each patient's anatomy.

Signals were recorded on a 256-channel Natus system, sampled at 512 Hz and saved on a hard disk (16 bits/ sample) using no digital filter. Two hardware filters were present in the acquisition procedure: a high-pass filter (cut-off frequency equal to 0.16 Hz at -3 dB), and an anti-aliasing low-pass filter (cut-off frequency equal to 170 Hz at 512Hz).

2.5. SEEG-signal analysis

All signal analyzes were performed in a bipolar montage and computed using the open-source AnyWave software (Colombet et al., 2015) available at
The epileptogenicity of different brain structures was assessed by quantitative SEEG-signal analysis using the Epileptogenicity Index (EI) (Bartolomei et al., 2008). The EI combines analysis of both spectral and temporal features of SEEG signals, respectively, related to the propensity of a brain area to generate fast discharges (12.4 – 127 Hz), and to how early this area becomes involved in seizure. A normalized EI value is used, ranging from 0 to 1. If there is no involvement of the brain structure, the EI = 0 (no epileptogenicity) whereas if the brain structure generates a rapid discharge and the time to seizure onset is minimal, the EI = 1 (maximal epileptogenicity).

In each patient, maximal EI values from at least three representative seizures were computed. We labeled each pair of bipolar SEEG contacts as belonging to the EZ, propagation zone (PZ) or non-involved zone (NIZ), as defined by EI, based on previous studies (Aubert et al., 2009; Lagarde et al., 2019). An EI value of 0.4 and higher was set as a threshold to define a structure as belonging to the EZ. The PZ was defined as brain areas with 0.1 < EI < 0.4, with sustained discharge during the seizure course. The NIZ was defined as all other brain structures.

2.6. ROI Definition

GARDEL software (Medina Villalon et al., 2018) provided the MRI voxel coordinates of electrode contacts allowing the definition of spherical ROIs for sodium and metabolite quantification in the patient’s native space. As SEEG recordings processed layout corresponds to the signal differential of two adjacent electrode contacts, a five mm radius spherical ROIs were positioned with a center between two adjacent electrode contacts (Ridley et al., 2017). ROIs corresponding to a poor SEEG signal quality - those located in white matter for instance - were discarded by expert (J.S.) inspection. To deal with possible
contamination of the brain sodium signal by an over-representation of CSF in patients, we discarded ROIs with overly high Z-score$_{CSF}$ (see section 2.3. MRI Data Processing). Anatomical references were the MPRAGE volumes for 1H-MRSI (3T) and the MP2RAGE volumes for 23Na-MRI (7T). ANTS brain extraction function was applied to all anatomical and 23Na-MRI images. Each subject’s (patients and controls) anatomical images were coregistered onto their respective 1H-MRSI and 23Na-MRI maps. Each individual anatomical volume was also spatially normalized onto the MNI 152 template to obtain the direct and reverse spatial transforms for each subject. ROIs were projected from the patient native space to MNI space, and back-projected from MNI to each HC native space (ANTS). This procedure allowed us to extract normative values of 23Na MRI and 1H-MRSI data from the control group for each ROI defined in each patient. Details about the numbers of ROIs for each category were summarized in supplementary Table 1.

2.7. Statistical Analysis

We performed a group comparison of sodium and metabolites levels across the three ROI classes, EZ, PZ and NIZ, to decipher subtle and specific homeostatic and metabolic modifications among patients compared to healthy controls. To account for brain sodium and metabolite variability across participants, sodium and metabolite levels had to be normalized across participants. Thus, each patient’s sodium concentrations and metabolites levels in each ROI were expressed as z-scores with respect to the same mean quantities from the corresponding ROI in healthy controls. Normalization of healthy controls’ sodium concentrations and metabolites levels was done using a leave-one-out procedure, z-scoring control’s quantities relative to the same ROI in other controls’ sodium concentrations and metabolites levels.
We compared patients and healthy controls, looking for different sodium concentration and/or metabolic change profiles between them, and between different region categories (described in ‘SEEG-signal analysis’). Significant group differences of z-scores were analyzed using a bootstrap two-tailed Welch’s t-test procedure (Efron & Tibshirani, 1993). Achieved significance levels (ASL) (equivalent to exact p-values) were obtained after one million random samplings, then corrected for multiple comparisons using false-discovery rate (FDR) (Benjamini & Hochberg, 1995).

In order to investigate the relationship between sodium concentrations and metabolites levels, we evaluated how well sodium concentration can be predicted from metabolite profiles. Hence, we performed a multiple linear regression analysis (Jobson, 1991) using Statsmodels (Seabold & Perktold, 2010) on all ROIs, with NAA, Cho and tCr z-scores as predictors to compute linear model for each 23Na-MRI measures (f and TSC) z-scores.

3. Results

3.1. Clinical features

Patients’ clinical characteristics are summarized in Table 1. Mean age at epilepsy onset was 13.2 years (range 0.1-40), mean duration of epilepsy was 18 years (range 4-31). Mean seizure frequency was 26 per month (range 2-120). Anatomical MRI was normal in fifteen (71%) and showed a structural abnormality in four (29%) cases. Thirteen out of twenty-one patients underwent curative surgical procedure following SEEG exploration. From the remaining eight, six patients were rcsed from surgery because of bilaterality of the epileptogenic zone or of a high risk of post-surgical functional impairment, one became seizure-free after SEEG-guided thermocoagulations and one refused surgery. The post-surgical outcome was
favorable in eleven (Engel class I (seizure-free) and class II (almost seizure-free), n=11, 85%) and with worthwhile improvement in two cases (Engel class III, 15%). Epilepsy etiology, according to histopathological findings, was: focal cortical dysplasia (FCD) type I (non-detectable on MRI) in six patients, FCD type II in two, and slight gliosis in two. One patient underwent laser-guided interstitial thermosurgery for an MRI-diagnosed DNET, with no histology available.

From the initial sample of nineteen patients and according to the quality thresholds previously described, data analyzes were conducted in fifteen patients for \(^{23}\)Na-MRI and seventeen patients for \(^1\)H-MRSI (Table 1). Patients and healthy controls (HC) did not significantly differ in terms of age and sex, neither in the \(^{23}\)Na-MRI associated patient group (Wilcoxon rank sum, \(w = -0.36, p = 0.72\); \(\chi^2 (1, N=33) = 0.26, p = 0.88\)) nor \(^1\)H-MRSI associated patient group (Wilcoxon rank sum, \(w = 0.58, p = 0.56\); \(\chi^2 (1, N=42) = 0.038, p = 0.98\)).

3.2. Ion homeostasis and metabolic profiles in patients

TSC was increased in epileptic patients relative to corresponding ROIs in healthy controls in all types of electrophysiologically defined regions, (i.e. EZ, PZ and NIZ) with no significant differences between these three region categories within patients (see Table 2 and Figure 3.A). The short fraction \(f\) was significantly increased in EZ relative to corresponding ROIs in healthy controls, but was not significantly different compared to healthy controls in regions corresponding to PZ and NIZ. In patients, \(f\) within EZ was also significantly increased relative to PZ and to NIZ.
In patients, NAA levels were significantly decreased in all types of regions relative to controls (see Table 2 and Figure 3.B). In addition, NAA was significantly decreased in EZ compared to PZ and NIZ. In patients relative to controls, tCho levels were significantly increased in EZ, decreased in NIZ and not significantly different in PZ; tCr levels were not significantly different in EZ and PZ but significantly decreased in NIZ.

3.3. Association between ionic and metabolic parameters

To study the relationship between sodium concentrations and metabolite levels, a multiple linear regression analysis was conducted. We evaluated the prediction of each 23Na-MRI measure from all 1H-MRSI measures in each region category, namely EZ, PZ and NIZ, setting Bonferroni corrected p for coefficient t-test was set at 0.05/ 2*3*3 = 0.0028.

Significant regression equations were found for the model predicting TSC from metabolites predictors alone in PZ (F(3, 80) = 10.76, p < 0.0028) and in NIZ (F(3, 283) = 16.25, p < 0.0028) but not in EZ (F(3, 34) = 1.29, p = 0.295). As mentioned previously, the significant regressions only partially thinly explained variations in TSC, with R^2 of .29 in PZ and a R^2 of .15 in NIZ. We observed a negative association between TSC and NAA in PZ ($\beta = -0.87$, p < 0.0028) and in NIZ ($\beta = -0.45$, p < 0.0028). We also found a negative association between TSC and Cho and a trend towards a positive association with tCr in NIZ (Table 3). Multiple linear regression analysis of f does not provide significant results in any ROI.

4. Discussion

This work aimed to explore both in vivo ion homeostasis and metabolic alterations in focal drug-resistant epilepsy investigated by SEEG. We observed global brain impact in patients reflected by consistent multimodal alterations including an increase of TSC as well as
decreases in NAA levels within all categories of electrically defined regions, namely EZ, PZ and NIZ. Interestingly, the EZ showed a characteristic pattern with significantly higher f, as well as significantly lower NAA and higher Cho levels. TSC exhibits strong association with metabolites, especially in the PZ and NIZ. These imaging features likely reflect both hyperexcitability and tissue alterations with a specific pattern of f for the epileptogenic tissues.

4.1. Deciphering sodium homeostasis processes with 7T 23Na MRI

Accumulation of TSC is a feature described in a number of neurological diseases including multiple sclerosis (Maarouf et al., 2017; Zaaraoui et al., 2012), amyotrophic lateral sclerosis (Grapperon et al., 2019), Huntington’s disease (Reetz et al., 2012) and epilepsy (Ridley et al., 2017). Attempts to model processes involved in TSC increases have been proposed considering in vitro experiments showing increases of intracellular sodium concentrations in multiple sclerosis (Waxman, 2006). In this model, an increase in TSC – the total sodium concentration - is usually associated with an elevation of intracellular sodium concentration due to an influx of sodium resulting from a dysfunction of the sodium potassium pump (Na+/K+ pump) (Pike et al., 1985). However, though sensitive, TSC is not specific to altered homeostasis between sodium compartments.

TSC alterations in humans in vivo have largely been demonstrated at 3T. Here, to improve our understanding of the dysregulation mechanisms affecting the sodium ion homeostasis in epilepsy, we used 7T 23Na MRI. Ultra-high field offers the opportunity to study the complexity of the T_2^* decays of the 23Na MR signal influenced by the quadrupolar relaxation. Indeed, multi-exponential relaxations of this three-half spin reflect the time-dependent relative position of the quadrupolar moments of sodium nuclei and the electric field gradients.
of charged molecules at their vicinity. The multi-TE density adapted radial 23Na, ultra-short echo time (UTE) approach used here permits the characterization of the signal decay components through a bi-exponential fit. While related, the signal fraction of the short T_2^* decay component (f), and the total sodium concentration (TSC) may reflect different consequences of ion homeostasis dysregulation (Ridley et al., 2018).

Normal physiological neuronal activity has been observed to dynamically alter sodium signal across different TEs, in a manner consilient with fMRI and consistent with physiological mechanisms that should dominate at different points of ‘activation’ (Bydder et al., 2019). Using dynamic sodium MRI acquisition compared to BOLD functional MRI, variations in sodium signals recorded at different TE (0.2ms, 10ms, 19ms) during a right finger tapping task showed a slightly increased TSC (TE=0.2ms) in the activated left contralateral motor area interpreted as increased cerebral blood volume, and a more drastic signal decrease at longer TEs considered, at least in part, to a decrease in extracellular contributions due a reduced extracellular volume fraction (Antonio et al., 2016; Dietzel et al., 1982; Lux et al., 1986), while reverse signal variations were observed in the deactivated motor area ipsilateral to movement. The f metric, reflecting the variations in the ratio of apparent short and long T_2^* sodium signal decays, enables to pool in a single parameter these effects seen at different TEs, and has the potential to locate regions with abnormal excitability as shown in the present study.

4.2. Sodium changes in epilepsy

In the context of epilepsy, abnormal TSC increase has been found in EZ and to a lesser extent also in other regions of the brain at 3T (Ridley et al., 2017). In addition, rat models of acquired epilepsy have reported persistent TSC increases in affected cortices in response to kainate-induced epileptogenesis (Mori et al., 2000; Y. Wang et al., 1996). TSC may
incorporate various processes including both structural reorganization and dysregulation of ionic homeostasis. Indeed, several structural modifications can impact ^{23}Na-MRI signals, particularly changes in the extracellular volume (ECV). Cell shrinkage and cerebral atrophy could lead to ECV increase, and subsequently to increases in TSC. Both have been reported in epilepsy, localized in the epileptic areas, but also often extended to the non-epileptogenic regions (Bernhardt et al., 2009; Dingley et al., 2014; Liu et al., 2005; Voets et al., 2017). Thus, even though excessively high CSF levels ($Z\text{-score}_{\text{CSF}} > 1.95$) led to the removal of a ROI from consideration, its contribution cannot be entirely ruled out. In addition, ECV increase was recently shown to be related to neuronal excitability (Colbourn et al., 2019). Moreover, increases of perivascular space were also reported in epilepsy (Feldman et al., 2018, 2019), and could contribute to TSC accumulation due to the CSF surrounding the vessels. Recently, venous blood was also demonstrated to have an impact on total sodium signal (Driver et al., 2020), leading to overestimation of sodium concentration measures in case of atrophy. In addition, reactive astrogliosis and microgliosis (Devinsky et al., 2013; Seifert & Steinhäuser, 2013; Sofroniew & Vinters, 2010) can be associated to epilepsy implying changes of astrocytes proportion, size (Boscia et al., 2016) and ion homeostasis, leading to surrounding cell homeostasis disruption (Karus et al., 2015). Interestingly, TSC was also shown to correlate with conductivity at 3T (Liao et al., 2019).

Beyond general explanations for alterations of TSC in epilepsy, cortices subject to different epileptiform manifestations (EZ, PZ; NIZ) are likely to differ in underlying pathological mechanisms, something that was probed in the current work through the use of a multiparametric approach. While keeping in mind that both sodium signal fractions (i.e. short and long) will contain contributions from extracellular sodium – albeit with potentially different weightings – a plausible reason for the concomitant EZ-specific increase relative to
both HC and other cortices of both f and TSC is an increase of intracellular sodium concentration. This would be consistent with a range of known mechanisms associated with the EZ while TSC increase outside the EZ in the absence of changes in f may could be related to structural changes combined with preserved perfusion, which is usually decreased in the EZ during the interictal period (Kojan et al., 2021; Y.-H. Wang et al., 2018).

Sodium homeostasis dysregulation in the EZ could be induced by several mechanisms affecting ion channels such as (i) alterations in type II and III voltage gated sodium channel (VGNC) properties (Bartolomei et al., 1997; Gastaldi et al., 1997; Gorter et al., 2010; Lombardo et al., 1996), (ii) incomplete inactivation of sodium channels and a consequent increase in persistent sodium currents (Mantegazza et al., 2010; Oliva et al., 2012) and (iii) the reduced efficiency of clearance by the Na+/K+ pump induced by a lack in ATP supplies (Folbergrová & Kunz, 2012; Grisar et al., 1992; Kovac et al., 2017).

Other mechanisms secondary to hyperexcitability or energy failure affecting astrocytes could also lead to an alteration of sodium homeostasis and an increase in intracellular sodium (Gerkau et al., 2017; Kirischuk et al., 2012; Rose & Karus, 2013). Indeed, as a consequence of hyperexcitability, astrocytes may uptake sodium through various transporters(sodium-potassium-chloride co-transporter (NKCC1), sodium-bicarbonate co-transporter (NBC), sodium-proton exchanger (NHE) and sodium-calcium exchanger (NCX)) increasing the intracellular sodium concentrations. Heightened intracellular sodium concentrations reduce the Electrochemical gradient for glutamate uptake (Karus et al., 2015) by the excitatory amino acid transporter (EAAT), a transmembrane transporter of sodium and glutamate from peri-synaptic extracellular space into astrocytes, ensuring ion and neurotransmitter clearance. Then extracellular glutamate concentration increases and
eventually downregulates EAAT (Rose & Karus, 2013); as astrocytes store energy supplies, astrocytic energy failure is critical for ion homeostasis of both astrocytes and the surrounding neurons. The reduced availability of ATP associated with increases in intracellular sodium also leads to the dysregulation of homeostasis for other ions such as potassium, calcium and proton, resulting in excitotoxicity (Gerkau et al., 2017). During hyperexcitability, intracellular pH decreases which leads to sodium uptake via NBC, VGNC or Na+/K+ pump among others. This reduced intracellular pH was suggested to result from lack of NHE1 (Zhao et al., 2016). The relationship between reduced intracellular pH and increased intracellular sodium was also shown in epilepsy during hepatic encephalitis (Kelly et al., 2009) with ammonium intoxication. The intoxication of cerebral tissue promotes intracellular pH increase (in particular in astrocytes) resulting in intracellular sodium increase.

4.3. Metabolic changes

The multimodal nature of our investigation provides further evidence of an alteration in ionic homeostasis in epilepsy due to a disruption of metabolic energy supply. The decreased NAA we observed has been consistently associated with neuronal death, mitochondrial dysfunction (Stefano et al., 1995) and subsequent ATP decrease (Vagnozzi et al., 2007). NAA decrease in the EZ has been widely reported since the 90’s (Guye et al., 2005; Hugg et al., 1993; Kuzniecky et al., 1998; Petroff et al., 2003; Simister et al., 2002; van der Hel et al., 2013). While more recent research indicates that decreases in NAA extends to other regions, those involved in seizures remain the most affected (Guye et al., 2005; Lundbom et al., 2001; Mueller et al., 2011) as is the case for TSC as well as NAA in this study. This finding is in line with our energetic failure hypothesis, however, it should be noted we were unable to observe a significant association between these two measures when explored by multiple linear regression.
Increased Cho has also been reported in temporal lobe epilepsy (Achten et al., 1997; Simister et al., 2009) and is frequently associated with cellular proliferation and increased membrane turnover (Miller, 1991; Urenjak et al., 1993). These processes are likely to be linked to structural changes associated with epileptogenic lesions such as tumors, tumor-like tissue and gliosis (van der Hel et al., 2013). The Cho decrease in NIZ was rather unexpected and has not to our knowledge been previously reported. It could result from reduced cellular density or neuronal loss extending beyond the EZ.

In our cohort, tCr was significantly decreased in NIZ only. Heighted tCr was previously related to decreased intracellular energy status or reactive astrocytes in the litterature (Achten, 1998; Urenjak et al., 1993). This result also points to alterations beyond EZ potentially accompanying structural changes and cognitive co-morbidities (Kreis et al., 1992; Kreis & Ross, 1992).

4.4. Technical limitations

For both \(^{23}\)Na-MRI and \(^1\)H-MRSI, CSF signal contribution is critical as it can clearly bias the data. MIDAS software handled this bias for \(^1\)H-MRSI data (Lecocq et al., 2015). For \(^{23}\)Na-MRI we corrected for partial volume effect and removed ROIs with remaining CSF after segmentation. We designed a quality check procedure inspired by (Ridley et al., 2017) in order to get rid of this CSF contribution. Despite this, it is impossible to totally delimit the partial volume effect completely for the moment, neither for \(^1\)H-MRSI nor \(^{23}\)Na-MRI. Another limitation is inherent to the SEEG procedure, which suffers from limited spatial sampling, whereas MRI gives access to information across the entire brain. Conversely, the
pathological specificity offered by SEEG is considered gold-standard and beyond what is possible with anatomically defined and atlas derived ROIs.

4.5. Conclusion and Perspectives

An increase of the signal fraction of the short T_2^* decay component (f) was found to be associated with the EZ whereas increased TSC was not limited to epileptogenic regions. Taken together with the patterns of metabolite changes our results are in line with the energetic failure hypothesis in epileptic regions associated with widespread tissue changes beyond electrically abnormal areas. Here, a multimodal approach has allowed parallel insights supporting pathological processes in epilepsy. This and additional combinations - including for example 31P-MRSI, which provides information about energy metabolism via ATP quantification and pH estimation - could further strengthen the delineation of the EZ as non-invasive information would complement the current presurgical evaluation in patients suffering from drug resistant focal epilepsy.

Acknowledgements

The authors would like to thank L. Pini, C. Costes, and V. Gimenez for data acquisition and study logistics. We would also like to thank A. Ivanov and C. Bernard for helpful discussions.

Funding

This work has received support from the French government under the “Programme Investissements d’Avenir”, Excellence Initiative of Aix–Marseille University –A*MIDEX (AMX-19-IET-004), 7TEAMS Chair, EPINOV (Grant ANR-17-RHUS-0004) and ANR (ANR-17-EURE-0029); and from the European Union’s Horizon 2020 Framework Program
for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2) and No. 945539 (Human Brain Project SGA3)

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to sensitive information that could compromise the privacy of research participants.

CRediT authorship contribution statement

Mikhael Azilinon: Investigation, Methodology, Data Curation, Formal Analysis, Writing - original draft. Julia Scholly: Resources, Data Curation, Formal Analysis, Writing - review and editing. Wafaa Zaaraoui: Funding Acquisition, Writing - review and editing. Samuel Medina Villalon: Methodology. Patrick Viout: Formal Analysis. Tangi Roussell: Methodology, Writing - review and editing. Mohamed Mounir El Mendili: Methodology, Writing - review and editing. Ben Ridley: Methodology, Writing - review and editing. Jean-Philippe Ranjeva: Supervision, Validation, Methodology, Writing - original draft. Fabrice Bartolomei: Funding Acquisition, Resources, Writing - review and editing. Viktor Jirsa: Funding Acquisition, Supervision, Writing - review and editing. Maxime Guye: Project Administration, Funding Acquisition, Resources, Conceptualization, Supervision, Validation, Writing - original draft.
References

cross-platform and modular software for visualizing and processing electrophysiological signals. *Journal of Neuroscience Methods*, 242, 118–126. https://doi.org/10.1016/j.jneumeth.2015.01.017

Ridley, B., Marchi, A., Wirsich, J., Soulier, E., Confort-Gouny, S., Schad, L., Bartolomei, F.,

Figures and Tables

Figure 1: 3D representation of an example of SEEG electrode implantation scheme (top) and f, TSC and NAA maps slices corresponding to the transversal green section on the 3D view. Red spherical ROIs correspond to regions belonging to the epileptogenic zone (EZ), yellow ROIs correspond to regions belonging to the propagation zones (PZ), blue ROIs correspond to regions non-involved by electrical abnormalities (NIZ) and black ROIs correspond to regions not explored in this study. Black spheres correspond to regions excluded from the analyses based on the SEEG signal. The red dot in the transverse planes (i.e. T1w image and f, TSC and NAA maps) represents the ROI corresponding to electrode OF’ (left orbitofrontal location) contact 5 and 6 (or bipolar contact 5-6). OF’5-OF’6 ROI is circled in red in the implantation scheme. Red arrows are pointing to the mean ROI value for each map.
Figure 2: Spectrogram from a healthy control cortical voxel. Here we highlighted the three metabolites we focused on in this study, namely total Choline (Cho), N-Acetyl Aspartate (NAA) and total creatine (tCr).

Glx: glutamate, glutamine and glutathione; m-Ino: myo-Inositol.
Figure 3: Violin plot of mean Z-scores of sodium (A) and metabolite estimates (B) observed in patients within epileptogenic zones (EZ, red), propagation zones (PZ, yellow) and non-involved zones (NIZ, black), compared to healthy controls (HC, gray). Asterisks indicate significant differences between patients and controls when under violins, and between regions within patients when above violins. *: p-uncorrected < 0.05. **: p-FDR < 0.05
Table 1. Patient clinical demography

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Epilepsy duration (y)</th>
<th>Seizure frequency (per month)</th>
<th>Epilepsy type</th>
<th>Side</th>
<th>3T/7T anatomical MRI</th>
<th>Surgical procedure</th>
<th>Engel class</th>
<th>Histology</th>
<th>23Na-MRI/1H-MRSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>14</td>
<td>2</td>
<td>Temporal latero-mesial</td>
<td>L</td>
<td>Normal</td>
<td>TC, SR</td>
<td>II</td>
<td>FCD1</td>
<td>Both</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>26</td>
<td>20</td>
<td>Temporo-parietal mesial</td>
<td>R</td>
<td>R posterior circular FCD</td>
<td>TC, VNS, contra-indication for SR</td>
<td>NA</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>31</td>
<td>2</td>
<td>Insulo-parietal</td>
<td>L</td>
<td>Normal</td>
<td>TC, VNS contra-indication for SR</td>
<td>NA</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>9</td>
<td>4</td>
<td>Temporal mesial</td>
<td>R</td>
<td>Normal</td>
<td>TC, SR (ATL)</td>
<td>I</td>
<td>FCD3a</td>
<td>Both</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>27</td>
<td>3</td>
<td>Temporo-insular</td>
<td>L</td>
<td>Normal</td>
<td>TC, SR</td>
<td>I</td>
<td>FCD1</td>
<td>Both</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>26</td>
<td>120</td>
<td>Temporal mesial</td>
<td>L</td>
<td>Normal</td>
<td>TC, SR</td>
<td>II</td>
<td>slight gliosis</td>
<td>Both</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>11</td>
<td>8</td>
<td>Temporal mesial</td>
<td>L</td>
<td>Normal</td>
<td>TC, SR</td>
<td>II</td>
<td>FCD1b</td>
<td>Both</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>12</td>
<td>4</td>
<td>Temporo-insular</td>
<td>L</td>
<td>Normal</td>
<td>TC, contra-indication for SR</td>
<td>NA</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>24</td>
<td>10</td>
<td>Temporal lateral</td>
<td>L</td>
<td>Normal</td>
<td>TC, SR</td>
<td>III</td>
<td>slight gliosis</td>
<td>Both</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>9</td>
<td>30</td>
<td>Temporal mesial</td>
<td>R</td>
<td>Normal</td>
<td>TC, SR (ATL)</td>
<td>I</td>
<td>FCD1</td>
<td>Both</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>29</td>
<td>60</td>
<td>Orbitofronto-insular</td>
<td>L</td>
<td>L orbitofrontal FCD</td>
<td>TC, SR</td>
<td>III</td>
<td>FCD2a</td>
<td>Both</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>10</td>
<td>30</td>
<td>L parietal mesial</td>
<td>R&L</td>
<td>L posterior circular NDT</td>
<td>TC, LITT (aiming NDT)</td>
<td>III</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>18</td>
<td>100</td>
<td>Bilateral temporal mesial, R insulo-operculo-frontal</td>
<td>R>L</td>
<td>Normal</td>
<td>TC, contra-indication for SR</td>
<td>NA</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>4</td>
<td>5</td>
<td>Temporal latero-mesial</td>
<td>L</td>
<td>Normal</td>
<td>TC, SR</td>
<td>I</td>
<td>FCD2a</td>
<td>23Na-MR</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>47</td>
<td>12</td>
<td>Temporo-parietal</td>
<td>L</td>
<td>L perisylvian PMG, schizencephaly, temporo-parietal PNH, R posterior PNH</td>
<td>TC, contra-indication for SR</td>
<td>NA</td>
<td>NA</td>
<td>1H-MRSI</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>26</td>
<td>12</td>
<td>Temporal mesial</td>
<td>L</td>
<td>Normal</td>
<td>TC, patient refused SR</td>
<td>NA</td>
<td>NA</td>
<td>1H-MRSI</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>10</td>
<td>5</td>
<td>Bilateral temporal mesial</td>
<td>R&L</td>
<td>Normal</td>
<td>TC, DBS, contra-indication for SR</td>
<td>NA</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>10</td>
<td>12</td>
<td>Insulo-opercular</td>
<td>L</td>
<td>Normal</td>
<td>TC, seizure free</td>
<td>NA</td>
<td>NA</td>
<td>Both</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>7</td>
<td>60</td>
<td>Temporal mesial</td>
<td>R</td>
<td>Normal</td>
<td>TC, SR (ATL)</td>
<td>III</td>
<td>FCD1c</td>
<td>Both</td>
</tr>
</tbody>
</table>

Abbreviations: ATL, anterior temporal lobectomy; DBS, deep brain stimulation; DNET, dysembryoplastic neuroepithelial tumor; FCD, focal cortical dysplasia; L, left; LITT, laser-guided interstitial thermal therapy; NA, not applicable; NDT, neuro-developmental tumor; PMG, polymicrogyria; PNH, periventricular nodular heterotopia; R, right; SR, surgical resection; TC, thermocoagulation; VNS, vagus nerve stimulation.
Table 2. Bootstrapped t-value followed by p (or ASL, the bootstrapped achieved significance level).

<table>
<thead>
<tr>
<th></th>
<th>EZ Vs HC</th>
<th>PZ Vs HC</th>
<th>NIZ Vs HC</th>
<th>EZ Vs PZ</th>
<th>EZ Vs NIZ</th>
<th>PZ Vs NIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>2.96, 3.8 \times 10^{-3}</td>
<td>-</td>
<td>-</td>
<td>2.51, 0.012</td>
<td>2.43, 0.015</td>
<td>-</td>
</tr>
<tr>
<td>TSC</td>
<td>3.73, 2.5 \times 10^{-4}</td>
<td>5.35, 1.0 \times 10^{-6}</td>
<td>12.83, p < 1.0 \times 10^{-6}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NAA</td>
<td>-6.03, p < 1.0 \times 10^{-6}</td>
<td>-4.51, 8.0 \times 10^{-6}</td>
<td>-9.46, p < 1.0 \times 10^{-6}</td>
<td>-2.32, 0.022</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cho</td>
<td>3.31, 1.8 \times 10^{-5}</td>
<td>-</td>
<td>-2.75, 6.4 \times 10^{-1}</td>
<td>-</td>
<td>3.94, 1.3 \times 10^{-4}</td>
<td>2.47, 0.015</td>
</tr>
<tr>
<td>tCr</td>
<td>-</td>
<td>-</td>
<td>-7.42, p < 1.0 \times 10^{-6}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

FDR-correction yielded p < 0.016 as threshold for tested 23Na-MRI measurements, and p < 0.022 for tested 1H-MRSI.

Table 3. Summary of multiple linear regression analysis for TSC and f.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Coefficients</th>
<th>p</th>
<th>Df Residuals</th>
<th>Df Model</th>
<th>R²</th>
<th>F (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const</td>
<td>0.43</td>
<td>0.191</td>
<td>34</td>
<td>3</td>
<td>0.1</td>
<td>1.29 (0.295)</td>
</tr>
<tr>
<td>Cho</td>
<td>-0.05</td>
<td>0.837</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>-0.59</td>
<td>0.0743</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCr</td>
<td>0.39</td>
<td>0.229</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const</td>
<td>0.86</td>
<td>8.89 \times 10^{-5}</td>
<td>80</td>
<td>3</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Cho</td>
<td>-0.33</td>
<td>0.0787</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>-0.87</td>
<td>9.02 \times 10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCr</td>
<td>0.25</td>
<td>0.0408</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const</td>
<td>0.94</td>
<td>1.60 \times 10^{-1}</td>
<td>283</td>
<td>3</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Cho</td>
<td>-0.29</td>
<td>6.53 \times 10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>-0.45</td>
<td>1.90 \times 10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCr</td>
<td>0.25</td>
<td>0.0392</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const</td>
<td>0.51</td>
<td>6.15 \times 10^{-5}</td>
<td>34</td>
<td>3</td>
<td>0.18</td>
<td>2.48 (0.0781)</td>
</tr>
<tr>
<td>Cho</td>
<td>-0.33</td>
<td>0.0114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>0.01</td>
<td>0.967</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCr</td>
<td>0.24</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const</td>
<td>-0.12</td>
<td>0.448</td>
<td>80</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho</td>
<td>0.03</td>
<td>0.832</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>-0.28</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCr</td>
<td>0.12</td>
<td>0.572</td>
<td></td>
<td></td>
<td></td>
<td>0.94 (0.425)</td>
</tr>
<tr>
<td>NIZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Const</td>
<td>0.02</td>
<td>0.791</td>
<td>283</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho</td>
<td>0.11</td>
<td>0.158</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAA</td>
<td>0.04</td>
<td>0.587</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tCr</td>
<td>-0.16</td>
<td>0.0615</td>
<td></td>
<td></td>
<td></td>
<td>1.4 (0.244)</td>
</tr>
</tbody>
</table>

Bonferroni corrected p-values are highlighted in bold followed by an asterisk, while uncorrected p-values are in bold without asterisk.