The use of the Registered Reports format for publication of clinical trials: a cross-sectional study

Norah Anthony, *Public Health Doctor1 Antoine Tisseaux, Public Health Resident1, Florian Naudet, Professor of Therapeutics2,3*

1: National Institute of Health and Medical Research (INSERM), CIC 1410 Saint Pierre, Reunion Island
2: Univ Rennes, CHU Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, CIC 1414 [[Centre d’Investigation Clinique de Rennes]], F-35000 Rennes, France
3: Institut Universitaire de France (IUF)

*: corresponding author; mail a-norah@hotmail.fr

ORCID
Norah Anthony: 0000-0002-2738-0336
Antoine Tisseaux: none
Florian Naudet: 0000-0003-3760-3801

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective: Registered Reports is a new publication format that aims to strengthen the methodology and transparency of research papers by reducing issues such as publication bias and outcome switching. It involves a peer review of the protocol before the start of the study followed by an in-principle acceptance by the journal without knowing the study results. Because of the coherence of the requirements of this format with the confirmatory nature of randomised controlled (RCTs) trials, we aimed to identify and describe RCTs published as Registered Reports.

Design: Cross-sectional study

Setting: PubMed/Medline and a Zotero library compiled by the Center for Open Science

Eligibility criteria: Publications identified as Registered Reports reporting results of RCTs

Main outcome measures: The primary outcome was the proportion of reports that received an in-principle acceptance and/or published a protocol before inclusion of the first patient. The secondary outcome concerned information collected on changes in the primary outcome (in relation to the protocol).

Results: A total of 93 RCT publications identified as Registered Reports were included. All but one were published in the same journal group. The date of the in-principle acceptance was never documented. For 8/93 reports (8.6%, 95%CI [3.8%-16.2%]), a protocol was published in a journal before inclusion of the first patient. Missing dates prevented any checks for a further 6/93 reports. The remaining 79/93 (84.9%) had a protocol published after the date of inclusion of the first patient. A change in the primary outcome in relation to the protocol was noted in 40/93 (44%) of these publications and 3/40 (33%) mentioned this change.

Conclusions: Registered Reports have been developed as a means to improve research reproducibility. Not only is therapeutic research lagging behind with regard to the implementation of this new format, but its implementation to date has been far removed from the very idea of a Registered Report. Journals need to implement this new publication format correctly in order to increase reproducibility in therapeutic research.

Protocol registration: https://osf.io/zfS3p/
Introduction

Clinical trial results shape clinical practice guidelines and support decisions that affect millions of people’s health. Because their results must be trustworthy and resist the considerable financial and ideological conflicts of interest inherent in the evaluation of therapeutics, clinical trials have long been at the forefront of efforts to ensure transparency and reproducibility. Following the Thalidomide crisis in 1962 (1), randomization became the norm in clinical trials in order to maximize their internal validity. In 2005, to enhance transparency, the International Committee of Medical Journal Editors (ICMJE) mandated registration of clinical trials before inclusion of the first patient (2).

However, and despite these efforts, many issues remain. Many clinical trial results remain unpublished, especially when conclusions are “negative” (3). When published, clinical trial results are frequently reported with a certain amount of selective reporting and spin (4). Initiatives promoting clinical trial data-sharing are suboptimal (5). In addition, clinical trials all too often ask the wrong question, e.g. by relying on the wrong comparator, and/or they implement suboptimal methods, e.g. the use of non-informative surrogate outcomes or have a lack of adequate power (6). All these problems hamper reproducibility and reduce the value of therapeutic research. Similar concerns have been described in many scientific disciplines such as psychology (7) and cancer biology (8) suggesting the existence of a reproducibility crisis in science (9).

A new publication format - Registered Reports - was created to address these systemic flaws by increasing transparency and relying on a strict hypothetico-deductive model of scientific method (10,11). In a Registered Report, the study protocol - including theory, hypotheses, detailed methods, and analysis plan - is submitted directly to a journal, and peer-review of this material - i.e. stage 1 peer review - occurs before the research is underway. Stage 1 peer review appraises both the importance of the research question and the quality of methodology prior to data collection (12–14). Following the stage 1 peer review, high quality protocols exploring relevant research questions receive an in-principle acceptance for publication in the journal, conditional on the successful completion of the study in accordance with the protocol. Provisional acceptance is therefore given without knowledge of the research results, or whether or not the study hypothesis is verified.

Following an in-principle acceptance, the investigators can register their protocol and start the research. Once the research is completed, stage 2 peer review checks compliance with the protocol and the accuracy of conclusions in view of the evidence. This approach is expected to ensure the soundness of methods and to reduce issues such as publication bias. It also presents the advantage of pre-emptively fixing the terms of important issues such as data-sharing which should indeed be addressed before inclusion of the first patient in order to make sure that trial participants are adequately informed.
To date, more than 300 scientific journals, mainly, but not only, from the field of psychology (11), have adopted the Registered Report format. These journals include PLOS Biology, BMJ Open Science and Nature Human Behavior. Despite the adequate fit between the requirements of the registered format and the confirmatory nature of clinical trials (14), few medical journals have implemented Registered Reports. BMC Medicine launched the first Registered Report format for clinical trials in 2017 (14). The mega-journal PLOS ONE which occasionally publishes clinical trials has adopted the Registered Report format. The specialist journals affiliated to the Journal of Medical Internet Research (JMIR) also accept Registered Reports and assign them an International Registered Report Identifier (IRRID) number (15). Our objective was to identify and describe features of randomised controlled trials published as Registered Reports.

Method

The methods of this cross-sectional study were specified in advance. They were documented in a protocol registered with the Open Science Framework on 17th December 2021 (https://osf.io/zf53p/).

Eligibility criteria

We surveyed RCTs published as final reports of a Registered Report. Registered Report protocols were not included.

Search strategy and study selection

The search of these Registered Reports used the Medline database with the following search string: “registered report” or “IRRID”. In addition, we searched a list of published Registered Reports in a Zotero library compiled by the Center for Open Science https://bit.ly/2pJRYz3. Database searches were performed on 17th December 2021.

All references identified were first automatically screened using R, excluding references where the title included the word "protocol" and/or did not include the word "randomized". This procedure was validated on 100 randomly-sampled references, retrieving 100 % accuracy before being implemented (details of the validation procedure are shown in Web Appendix 1). All remaining references were then manually selected by two independent reviewers (NA and AT). Any disagreement was resolved by consensus with FN.

Outcomes

Primary outcome

The primary outcome was the proportion of RCTs identified as a Registered Report that had received an in-principle acceptance and/or had published a protocol before inclusion of the first patient.
Additional information was collected on i) the protocol (protocol availability, date of the time-stamped protocol and publication of the protocol in the same journal or journal group), ii) the primary outcome used in the Registered Report (change in the primary outcome and in case of a change, mention of the change in the Registered Report), iii) the secondary outcomes used in the Registered Report (change in the secondary outcomes and in case of a change, mention of the change in the Registered Report), iv) result of the study for its primary outcome (positive or negative), v) sample size, vi) power to detect effect sizes of respectively 0.3, 0.5 and 0.8, vii) citation rate, viii) Altmetric attention score and ix) characteristics of the Registered Report (journal, journal impact factor and topic).

Data extraction

Two authors (NA and AT) independently extracted the data from the studies included. Disagreements were resolved by consensus or in consultation with a third reviewer (FN). Data extraction for the number of citations and the Altmetric attention score was performed on the 27th April 2022.

Statistical methods

A descriptive analysis was performed using the following: medians (and range) for quantitative variables, numbers and percentages for qualitative variables. We computed percentages with 95% confidence intervals (exact 95%CI were computed if necessary). Statistical analyses were performed using R version 4.0.3.

Deviations from the protocol or addition of elements

For the sake of simplicity, the power calculation was limited to parallel RCTs, which accounted for most of the Registered Reports. Since the date of the first inclusion of patients was only documented as month and year, we computed time lapses using months as the unit.

As during our searches we identified several publications that, despite being identified as Registered Reports, were secondary analyses and not the report of the primary analysis of the trial (e.g. based on the pre-specified analysis of its primary outcome), we added this feature (primary/secondary analysis) as part of our outcomes and have detailed our results according to this variable.

Patient involvement

We had no established contacts with specific patient groups who might be involved in this project. No patients were involved in defining the research question or the outcome measures, nor were they involved in the design and implementation of the study. There are no plans to involve patients in the dissemination of results, nor will we disseminate results directly to patients.
Results

A total of 2074 references were identified from both Zotero (n=194) and Medline (n=1880). 115 references remained after deduplication and automatic screening. Of these, 22 were not identified as Registered Reports, and 93 references were eligible for inclusion because they were identified as Registered Reports and/or had an IRRID (Figure 1). Of the 93, 78 (83.9%) reported results on the primary trial analysis and 15 (16.1%) reported on a secondary analysis.

Primary outcome

The date of the in-principle acceptance was never documented in the reports included. Consequently, we relied on the date of protocol publication. For 8/93 reports (8.6%, 95% CI [3.8%-16.2%]) we identified a protocol published in a journal before inclusion of the first patient. The lack of dates prevented any checks for an additional 6/93 Registered Reports. The remaining 79/93 (84.9%) had a protocol published after the date of inclusion of the first patient. Figure 2 reports the results for our primary outcome in the sample of 78/93 (83.9%) Registered Reports reporting results of primary analyses. In this sample, 7/78 (9%, 95% CI [3.7%-17.6%]) had a protocol published in a journal before inclusion of the first patient, 5/78 (6.4%) had missing data and 66/78 (84.6%) had a protocol published after the date of inclusion of the first patient. Among Registered Reports reporting on primary analyses, protocol publication ranged from a minimum of 1.4 years before to a maximum of 3 years after the inclusion of the first patient (median time lapse was 1 year); of these 78, 42 (53.8%) had their protocols published up to one year after the first inclusion. 52/78 (66.7%) were registered in a trial registry before inclusion of the first patient, 21/78 (26.9%) were registered after inclusion of the first patient, and dates were not available for 5/78 (6.4%).

Secondary outcomes

A protocol was available for 90/93 (97%) reports, all were published in a journal. The published protocol and its associated report were not published in the same journal group for 55 (61%) of these 90. A change in primary outcome compared to the protocol was noted for 40/93 (44%) of the reports, including 27/78 (35%) of the reports reporting the results of primary analyses. 13/40 (33%) of the reports with a change in the primary outcome mentioned this change and these 13 reports were exclusively secondary analyses. A change in at least one of the secondary outcomes was present in 46/87 (53%) reports of studies with secondary outcomes (absence of secondary outcomes in 5 protocols/reports) and this change was mentioned by 8/46 (17%) of them. Figure 3 details these results with a specific focus on reports reporting the results of primary analyses versus those only reporting secondary analyses. The study outcomes were considered positive, mixed and negative in respectively 49 (52.7%), 10 (10.8%) and 34 (36.6%) of the reports included. The median sample size
was 239 (range 13-14 482) for the 93 reports. Over the 75 trials with a parallel design, 21 (28%), 47 (63%), 67 (89%) had a power >= 80% to detect respectively effect sizes of 0.3, 0.5 and 0.8 (Figure 4). 53/93 (57%) of the reports were published in the JMIR and an additional 39 (42 %) were published in a JMIR-affiliated journal, leaving only one report published in Nurse Educ Today. Descriptive statistics for all other outcomes are displayed in Table 1.

Discussion

Statement of principal findings

We found 93 publications identified as Registered Reports with a registered report identification number and reporting the results of clinical trials. Most of these reports were published in the JMIR or its companion journals. None of the trials included was from PLOS One. To date, BMC Medicine has only published 3 Registered Reports (16–18), none concerned a clinical trial.

None of the reports identified mentioned a date of in-principal acceptance. Instead of being typical Registered Reports, these publications were rather clinical trials with a published protocol, this protocol being generally published after inclusion of the first patient. These protocols were often published in journals that were different from the journal publishing the final report. Of course, having a published protocol is surely a good thing for a clinical trial, as it should be associated with greater quality (19). For instance, the trials included in our survey may be larger than the prototypical RCT published in the field of biomedicine - as illustrated by a recent example in clinical trials on interventions for mood, anxiety, and psychotic disorders (20) - with a majority sufficiently powered to detect effect sizes larger than 0.5. However, having a published protocol is not sufficient for being a Registered Report, especially when the protocol is published in a journal that is independent from the journal accepting the final report. An even greater subject of concern is that some of the trials included were registered retrospectively on a clinical trial registry. Some of the publications with a Registered Report identification number reported on the results of secondary analyses. For the reports of results of primary analyses, we identified frequent changes in the primary outcomes between the published protocol and the final publication. Few of those changes were explicitly discussed in the reports.

Strengths and weaknesses of this study

Our focus on clinical trials makes sense because of the importance these studies have in evidence-based medicine. In addition, proponents of Registered Reports have explicitly proposed that this format should be mandatory for clinical trials because of the confirmatory nature of these trials (14). However, care should be taken to not generalize our results to other types of study, other journals and indeed to other fields. We found a very selected sample of trials, derived from a specific
journal group - JMIR focuses mainly on digital interventions - with its own policy. Measures of impact and attention - such as citations and attention score - suggest that the trials included had modest impact/media coverage.

Identifying Registered Reports is a difficult task. It is possible that our literature searches missed some references, as it has been previously noted that a substantial number of published final reports did not clearly identify themselves as Registered Reports (21). In contrast, the use of IRRID may have more easily captured all JMIR publications.

A nice perspective or “mise en abîme” would have been to publish this study as a Registered Report, but on this occasion, we refrained because it is more a descriptive survey that was not based on hypothesis testing. To ensure transparency and reproducibility, the study was registered before data collection and all data, including all references included, are shared on the Open Science Framework.

Strengths and weaknesses in relation to other studies

Previous studies of Registered Reports have highlighted a number of implementation issues and have proposed to develop standards that ensure optimal implementation of this new publication format (14,21). These standards are definitely needed for Registered Reports of clinical trials. Of course, there is a continuum of practices between protocol registration, publication of the protocol and indeed the Registered Report (14) and some of the practices at JMIR may be good for reproducibility purposes. Still, one should pay a very particular attention to the use of the term Registered Report or to the assignment of a registered report identification number to these studies.

If Registered Reports hold major promises in strengthening the integrity of the publication landscape, it must be acknowledged that there is little evidence of their real impact. One specific study has attempted to evaluate the quality of Registered Reports in comparison to non-Registered Report papers in psychology and neuroscience, with positive results regarding the soundness of the Registered Report methodology and overall quality (22). Future development will therefore require meta-research to demonstrate the beneficial impact of this format. A collaboration of journals with the Center for Open Science (COS) is underway for the conduct of a large pragmatic randomized controlled trial of Registered Reports compared with standard practice, to assess their impact on publication, research outcomes, and quality of methodology (23).
Meaning of the study: possible explanations and implications for clinicians and policy-makers

Overall, those results are compelling: not only is therapeutic research lagging behind with regard to the implementation of Registered Reports (21), but their implementation to date is far removed from the very idea of a Registered Report. With just a few exceptions, trialists interested in adopting this format cannot implement it because the journals - especially the leading general medical journals - do not provide this opportunity. Providing for Registered Reports is a first step toward a much-needed open science pathway for clinical trials (6). The development of a model of this sort is not without risks for journals, and there is a need to consider some specific methodological developments relating to specific features of clinical trials. For instance, usually these trials are long and carry a risk of premature trial discontinuation (19). There is also a need to coordinate the various peer reviews that a trial receives in its life-cycle, e.g. before funding, by the IRB, or by health authorities, in order to make the process the most efficient possible. Reporting guidelines such as CONSORT (24) could also evolve to fit the needs of this new publication format.

Unanswered questions and future research

Registered Reports have been developed as a means to improve research reproducibility. We invite important clinical trial funders, the main health authorities and major medical journals to join forces to develop piloting systems for Registered Reports for clinical trials. We cannot be satisfied with the current status quo for clinical trials in which the concept of Registered Reports is almost nonexistent if not subverted.

References

11. Center for Open. Registered Reports: Peer review before results are known to align scientific values and practices [Internet]. [cited 2022 Jul 17]. Available from: https://www.cos.io/initiatives/registered-reports

15. Editorial director of JMIR. What is an International Registered Report Identifier (IRRID)? [Internet]. JMIR Publications. [cited 2022 Jul 17]. Available from: https://support.jmir.org/hc/en-us/articles/360003797672-What-is-an-International-Registered-Report-Identifier-IRRID-

FIGURES

Figure 1. Flow chart of Registered Report selection

Figure 2. Chart representing clinical trial registration (*orange*) and protocol publication (*blue*) in relation to date of first inclusion (*black*)

Figure 3. Percentage with 95% CI interval of Registered Reports with changes in outcomes

Figure 4. Box plot representing power values with 95% CI intervals to detect three different effect sizes

WEB-APPENDIX

Web appendix 1: Validation of the procedure for Registered Report selection
Table

Table 1.

<table>
<thead>
<tr>
<th>Journal</th>
<th>All references (N=93)</th>
<th>Primary analyses (N=78)</th>
<th>Secondary analyses (N=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J Med Internet Res (5.428)</td>
<td>53 (57.0%)</td>
<td>48 (61.5%)</td>
<td>5 (33.3%)</td>
</tr>
<tr>
<td>JMI R Cancer (NA)</td>
<td>1 (1.1%)</td>
<td>1 (1.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>JMI R Cardio (NA)</td>
<td>1 (1.1%)</td>
<td>1 (1.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>JMI R Form Res (NA)</td>
<td>4 (4.3%)</td>
<td>3 (3.8%)</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>JMI R Med Educ (NA)</td>
<td>1 (1.1%)</td>
<td>1 (1.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>JMI R Ment Health (4.388)</td>
<td>4 (4.3%)</td>
<td>2 (2.6%)</td>
<td>2 (13.3%)</td>
</tr>
<tr>
<td>JMI R Mhealth Uhealth (4.773)</td>
<td>23 (24.7%)</td>
<td>18 (23.1%)</td>
<td>5 (33.3%)</td>
</tr>
<tr>
<td>JMI R Pediatr Parent (NA)</td>
<td>3 (3.2%)</td>
<td>2 (2.6%)</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>JMI R Public Health Surveill (4.112)</td>
<td>2 (2.2%)</td>
<td>1 (1.3%)</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>Nurse Educ Today (3.442)</td>
<td>1 (1.1%)</td>
<td>1 (1.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicine</td>
<td>57 (61.3%)</td>
<td>49 (62.8%)</td>
<td>8 (53.3%)</td>
</tr>
<tr>
<td>Psychology/Psychiatry</td>
<td>36 (38.7%)</td>
<td>29 (37.2%)</td>
<td>7 (46.7%)</td>
</tr>
<tr>
<td>Protocol availability</td>
<td>90 (96.8%)</td>
<td>75 (96.2%)</td>
<td>15 (100.0%)</td>
</tr>
<tr>
<td>Protocol published in a journal</td>
<td>90 (96.8%)</td>
<td>75 (96.2%)</td>
<td>15 (100.0%)</td>
</tr>
<tr>
<td>Protocol in the same journal / journal group</td>
<td>35 (38.9%)</td>
<td>33 (44.0%)</td>
<td>2 (13.3%)</td>
</tr>
<tr>
<td>RCT presented on a register</td>
<td>89 (95.7%)</td>
<td>74 (94.9%)</td>
<td>15 (100.0%)</td>
</tr>
<tr>
<td>Name of the register</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClinicalTrials.gov</td>
<td>38 (42.7%)</td>
<td>32 (43.2%)</td>
<td>6 (40.0%)</td>
</tr>
<tr>
<td>ISRCTN registry</td>
<td>18 (20.2%)</td>
<td>14 (18.9%)</td>
<td>4 (26.7%)</td>
</tr>
<tr>
<td>ANZCTR</td>
<td>11 (12.4%)</td>
<td>10 (13.5%)</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>German Clinical Trials Registry</td>
<td>7 (7.9%)</td>
<td>6 (8.1%)</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>Chinese Clinical Trial Registry</td>
<td>6 (6.7%)</td>
<td>4 (5.4%)</td>
<td>2 (13.3%)</td>
</tr>
<tr>
<td>Netherlands Trial Register</td>
<td>5 (5.6%)</td>
<td>5 (6.8%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>DRKS</td>
<td>1 (1.1%)</td>
<td>1 (1.4%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>ITRP platform</td>
<td>1 (1.1%)</td>
<td>1 (1.4%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Pan African Clinical Trials Registry</td>
<td>1 (1.1%)</td>
<td>1 (1.4%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>UMIN-CTR</td>
<td>1 (1.1%)</td>
<td>0 (0.0%)</td>
<td>1 (6.7%)</td>
</tr>
<tr>
<td>Parallel design</td>
<td>75 (80.6%)</td>
<td>67 (85.9%)</td>
<td>8 (53.3%)</td>
</tr>
<tr>
<td>Number of arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>2 (1-8)</td>
<td>2 (2-8)</td>
<td>2 (1-4)</td>
</tr>
</tbody>
</table>

JIF: Journal Impact Factor in 2021

* 3 missing data; 4 missing data; 2 missing data
Records identified from*: Pubmed (n = 1880) Zotero library (n = 194)

Records removed before screening:
 Duplicate records removed (n = 3)

Records automatically screened (n = 2071)

Records excluded (n = 1956)

Reports sought for retrieval (n = 115)

Reports not retrieved (n = 0)

Reports assessed for eligibility (n = 115)

Reports excluded:
 Not a registered report (n = 22)

Studies included in review (n = 93)
Change in the Primary Outcome

<table>
<thead>
<tr>
<th>Reporting Results</th>
<th>Count</th>
<th>Percentage (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analyses</td>
<td>27 / 77 (35 % [25 % - 47 %])</td>
<td></td>
</tr>
<tr>
<td>Secondary analyses</td>
<td>13 / 15 (87 % [60 % - 98 %])</td>
<td></td>
</tr>
<tr>
<td>All RR</td>
<td>40 / 92 (43 % [33 % - 54 %])</td>
<td></td>
</tr>
</tbody>
</table>

Change in the Secondary Outcome

<table>
<thead>
<tr>
<th>Reporting Results</th>
<th>Count</th>
<th>Percentage (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analyses</td>
<td>40 / 72 (56 % [43 % - 67 %])</td>
<td></td>
</tr>
<tr>
<td>Secondary analyses</td>
<td>6 / 14 (43 % [18 % - 71 %])</td>
<td></td>
</tr>
<tr>
<td>All RR</td>
<td>46 / 86 (53 % [42 % - 64 %])</td>
<td></td>
</tr>
</tbody>
</table>

If Yes, Mention of this Change

<table>
<thead>
<tr>
<th>Reporting Results</th>
<th>Count</th>
<th>Percentage (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analyses</td>
<td>0 / 27 (0 % [0 % - 13 %])</td>
<td></td>
</tr>
<tr>
<td>Secondary analyses</td>
<td>13 / 13 (100 % [75 % - 100 %])</td>
<td></td>
</tr>
<tr>
<td>All RR</td>
<td>13 / 40 (32 % [19 % - 49 %])</td>
<td></td>
</tr>
</tbody>
</table>

Change in the Primary Outcome

<table>
<thead>
<tr>
<th>Reporting Results</th>
<th>Count</th>
<th>Percentage (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary analyses</td>
<td>2 / 40 (5 % [1 % - 17 %])</td>
<td></td>
</tr>
<tr>
<td>Secondary analyses</td>
<td>6 / 6 (100 % [54 % - 100 %])</td>
<td></td>
</tr>
<tr>
<td>All RR</td>
<td>8 / 46 (17 % [8 % - 31 %])</td>
<td></td>
</tr>
</tbody>
</table>
Random sample (100 papers)

Reviewer NA

- Manual strategy: 4 eligible papers
- Automated strategy: 6 papers

Reviewer AT

- Manual strategy: 3 eligible papers
- Automated strategy: 6 papers

INTERSTRATEGY AGREEMENT = 100%

INTERRATER AGREEMENT = 99%

4 eligible papers after consensus with FN