Left anterior fascicular block is associated with increased non-ischemic myocardial scar burden and a proportionately decreased ejection fraction

Johan von Scheele MD¹, Brett D Atwater MD², Igor Klem MD³, Henrik Engblom MD PhD¹,
Daniel E Loewenstein MD¹, Björn Wieslander MD PhD¹, Martin Ugander MD PhD¹,⁴

¹Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
²Inova Heart and Vascular Institute, Falls Church, VA, USA
³Duke University Medical Center, Durham NC, USA
⁴Kolling Institute, Royal North Shore Hospital, and University of Sydney, Sydney, Australia

Address for correspondence:
Martin Ugander, MD, PhD
Professor of Cardiac Imaging, University of Sydney
Kolling Building, Level 12, Royal North Shore Hospital
St Leonards, Sydney NSW 2065, Australia
martin.ugander@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Left anterior fascicular block (LAFB) has been associated with increased mortality, but the underlying causes are unknown. We hypothesized that LAFB is associated with increased left ventricular (LV) scar burden and reduced LV ejection fraction (LVEF).

Methods: Patients referred for cardiovascular magnetic resonance imaging (CMR) and electrocardiography (ECG) were retrospectively enrolled. Patients with LAFB (n=51) and matched control patients without LAFB (n=600) were compared regarding size and location of LV scar, LVEF, and a dysfunction index describing the difference between measured LVEF and expected LVEF where the expected LVEF is based on scar size. Results: Compared to matched controls, patients with LAFB had on average a larger LV scar (median [interquartile range] 0.7 [0.0-6.6] vs 0.0 [0.0-1.5] % LV mass, p<0.001). LAFB was associated with a higher prevalence of any scar (59% vs 33%, p<0.001). Patients with LAFB had similar prevalence of ischemic scar (29% vs 23%, p=0.40) but a higher prevalence of non-ischemic scar (29% vs 10%, p=0.001) which was most frequently located in the basal and mid inferoseptal segments and the anterior and lateral apical LV segments. LVEF was lower in patients with LAFB than matched controls (58 [43-60] vs 60 [55-60] %, p=0.02), but there was no difference in dysfunction index (24.0 [17.8-25.5] vs 24.0 [19.0-27.8] %-points of LVEF, p=0.32) Conclusions: In a matched hospital cohort, LAFB was associated with a small decrease in LVEF that was proportionate to the increased LV scar burden. This increased LV scar burden was more commonly due to non-ischemic etiology and not infarction, and not more commonly located near the expected course of the left anterior fascicle.

Keywords: left anterior hemiblock, conduction abnormality, left axis deviation, late gadolinium enhancement, focal myocardial fibrosis
Condensed abstract: This study compared left ventricular (LV) myocardial scar prevalence and location, LV ejection fraction (LVEF), and mortality among patients with left anterior fascicular block (LAFB) and matched controls. Patients with LAFB had lower LVEF and higher LV scar burden more commonly of non-ischemic origin, but not more commonly located near the left anterior fascicle.
Abbreviations:

LAFB – Left anterior fascicular block
ECG – Electrocardiogram
CMR – Cardiovascular magnetic resonance imaging
LV – Left ventricle
EF – Left ventricular ejection fraction
LGE – Late gadolinium enhancement
LBBB – Left bundle branch block
RBBB – Right bundle branch block
CAD – Coronary artery disease
HF – Heart failure
Introduction

Left anterior fascicular block (LAFB) is a cardiac conduction abnormality with slow or absent conduction in the anterior fascicle of the left bundle branch, resulting in delayed activation of the left ventricular (LV) anterior or anterolateral wall, shifting the electrical axis in the frontal plane leftward. This conduction block is diagnosed by electrocardiography (ECG) as a frontal plane QRS axis between -45 and -90 degrees, and other associated ECG markers. LAFB is a relatively common conduction abnormality and its prevalence increases with age (1). LAFB has been reported in 4-6% of the general population aged 60 years or older, and in 10% of people aged 80 years or older (2). Unlike complete left bundle branch block, LAFB has long been regarded as a benign ECG finding that has a limited association with increased morbidity or mortality when not combined with other risk factors (3-5). However, in recent years this view has been challenged. LAFB has relatively recently been shown to be related to all-cause and cardiovascular mortality as well as incident atrial fibrillation (6). The underlying pathophysiological mechanisms by which LAFB is associated with these outcome measures are still not known. It has previously been indicated that LAFB might be associated with increased fibrosis in the left ventricular myocardium at histopathology (7, 8). However, histopathological studies have been limited in cohort size and have not found any clearly focal distribution of the fibrosis near the course of the anterior fascicle associated with LAFB (7-9).

Currently, the use of cardiac magnetic resonance imaging (CMR) with late gadolinium enhancement (LGE) enables non-invasive detection of focal myocardial fibrosis of both ischemic and non-ischemic etiology (10, 11).

The aim of this study was to address the hypothesis that LAFB is associated with increased LV scarring and decreased LVEF compared to matched control patients, and to investigate
whether LAFB is associated with a particular type of scar pattern or myocardial location of scar.

Materials and methods

Study cohort and design

In this retrospective study, n=651 patients were retrospectively and consecutively included from a clinical database of patients undergoing CMR at Duke University Medical Center (NC, USA). All patients had undergone resting ECG between 2012 and 2014. All patients (51 patients with LAFB and 600 matched controls without LAFB) had a LGE CMR examination performed within -1 to 180 days of the ECG recording. LAFB was defined by 12-lead ECG as a frontal plane QRS axis between -45 to -90 degrees in the absence of LV hypertrophy on ECG, and with QRS duration less than 120 ms. Exclusion criteria for the control group were: LAFB, LBBB, right bundle branch block (RBBB), RBBB+LAFB, left posterior fascicular block, or pre-excitation on the ECG recorded closest to the CMR examination. Furthermore, controls were statistically matched to the LAFB group regarding age and sex using an exact matching method. Further exclusion criteria included subjects with asymmetric or apical LV hypertrophy on CMR. All CMR images were reported by a board-certified cardiologist with level 3 CMR training. The study was approved by the Institutional Review Board at Duke University, Durham, North Carolina, USA (IRB# 48875), with a retrospective waiver of individual informed consent.

Scar assessment

The presence and location of hyperenhanced tissue on LGE, which was interpreted as representing scarred myocardium, was determined by visual inspection using the AHA 17-segment model (12). Regional LGE was scored according to the spatial extent within each
segment (0=no hyperenhancement, 1=1-25% hyperenhanced, 2=25-50%, 3=50-75%, 4=75-100%). Scar size as a percentage of LV myocardium was then calculated by summing the segments with hyperenhancement (each weighted by the midpoint of the range of hyperenhancement for the given segmental score, i.e. 1=12.5%; 2=37.5%; 3=62.5%; 4=87.5%) and dividing by 17 (13).

LVEF and dysfunction index

LVEF was assessed visually after assessment of cine images in multiple projections. A dysfunction index was defined as the difference between expected maximum LVEF and estimated LVEF as previously described (14). Briefly, expected maximum LVEF was determined iteratively by the straight line on a graph of scar versus LVEF yielding the smallest area under the line while simultaneously satisfying the condition of letting at least 95% of all control patients with >0% scar be found under the line (Figure 1). A larger dysfunction index is seen when factors other than scar play a larger role in decreasing the LVEF. One possible factor contributing to an increased dysfunction index is dyssynchronous contraction of the myocardium causing a decreased pumping efficiency. Consequently, when the dysfunction index is low, there is a low likelihood that factors other than scar play a role in reducing LVEF.

Statistical analysis

Statistical analyses were performed in the software R (RStudio 1.2.5042, Boston, MA, USA). The Shapiro-Wilk test was used for assessing normality of distribution. Non-normally distributed continuous measures are reported as median [interquartile range], and differences were tested using the Mann-Whitney U test. Exact matching was performed using the MatchIt...
package in R (15). Differences in prevalence were tested using the Chi squared test or Fischer’s exact test, as appropriate. For statistical tests, a \(p \)-value <0.05 was considered statistically significant except for segmental scar analysis where Bonferroni correction was used to correct for multiple tests. For these analyses, a \(p \)-value <0.05/17 (0.003) was considered statistically significant for segmental scar analysis in the 17-segment model.

Results

Patient characteristics are presented in Table 1. A total of 1612 subjects underwent matching (\(n=51 \) LAFB and \(n=1561 \) controls), resulting in a LAFB group (\(n=51 \)) and a matched control group (\(n=600 \)). Compared to matched controls, LAFB was associated with a higher prevalence of heart failure (HF). All other evaluated patient characteristics showed no difference in frequency between LAFB and controls.

LV scar size and systolic function. The maximum predicted EF in relation to scar for the control population was found to be described by the formula \(EF = 84 – 1.66 \times \text{scar extent} \) (Figure 1). Compared to controls, patients with LAFB had reduced LVEF (58 [43-60] vs 60 [55-60] \%, \(p=0.02 \)) and an increased amount of LV scar (0.7 [0.0-6.6] vs 0.0 [0.0-1.5] \% LV mass, \(p<0.001 \)). However, there was no difference in dysfunction index between LAFB and controls (24.0 [17.8-25.5] vs 24.0 [19.0-27.8 \%-points of LVEF, \(p=0.32 \)) (Figure 2).

LV scar etiology and location. LAFB was associated with a higher prevalence of any scar (59\% vs 33\%, \(p<0.001 \)), and this was due to a higher prevalence of non-ischemic scar (29\% vs 10\%, \(p=0.001 \)) but not more scar due to myocardial infarction (29\% vs 23\%, \(p=0.40 \)) (Figure 3). Figure 4 shows the comparison of the amount of scarring for each of the 17 segments of the LV. LAFB showed a higher prevalence of scar in the basal inferoseptal, mid inferoseptal, and apical lateral segments (\(p<0.003 \) for all). Those same segments, as well as the apical anterior segments, were all associated with a higher prevalence of non-ischemic...
scar in LAFB (p<0.003 for all). There were no differences in scar prevalence due to myocardial infarction between any of the 17 segments when comparing LAFB to controls (p>0.003 for all).

Discussion

The main finding of the study is that in a hospital-based cohort of patients having undergone CMR, LAFB was associated with a decreased LVEF that was proportionate to the increased LV scar burden, and which was more commonly due to non-ischemic etiology and not infarction, and not more commonly located near the origin of the left anterior fascicle.

LV scar size, etiology, and location

The current study found that LAFB is associated with increased LV scar size and reduced LVEF. Differences in LV scar size were driven by a higher prevalence of non-ischemic pattern scar. Interestingly, there was no increase in prevalence of scarring in the basal anteroseptal and anterior segments of the LV, which are those segments where the left anterior fascicle has its course (16, 17). It thus seems unlikely that focal non-ischemic scarring or infarction detectable by LGE CMR along the course of the left anterior fascicle is the primary etiology of LAFB. Instead, LAFB may be an ECG marker of diffuse myocardial fibrosis or functional block of the conduction system seen e.g. in aging or in what sometimes is referred to as Lenègre’s and/or Lev’s disease (18), and which is not visible by LGE CMR.

Dysfunction Index

The dysfunction index makes it possible to quantitatively compare the influence of LV scarring on the reduction in LVEF in relation to causes other than scarring. This comparison is performed in order to assess whether scar associates as much to reduced LVEF in LAFB patients as it does in patients with normal conduction.
The dysfunction index has recently been found to be increased in LBBB compared to controls (19). Those findings imply that factors other than scar (e.g. LV dyssynchrony) play a role in reducing EF in LBBB. Prior work shows that more than 10% of the patients with a LVEF <35% and QRS duration <120ms exhibit interventricular dyssynchrony, and nearly 30% have intraventricular dyssynchrony (20). If LAFB caused LV dyssynchrony, LAFB would have been expected to have an increased gap between measured and expected maximum LVEF, and subsequently an increased dysfunction index. That would indicate that the reduction in LVEF could be influenced by factors other than scar. However, this was not the case in our study. The dysfunction index was similar in patients with LAFB and matched controls suggesting that LAFB does not have an additional effect beyond its association with increased LV scar on lowering global LV function measured as LVEF.

Clinical covariates

The current study identified a control group that was matched for age and sex. However, the one exception to matching was that LAFB was more often associated with a clinical diagnosis of heart failure. The increased prevalence of HF in the LAFB group goes hand in hand with the demonstrably lower LVEF and a larger scar size. It is possible that comorbidities or factors other than those available for comparison herein were prevalent to a higher or lower degree among either LAFB or controls.

Limitations

The findings in the present study should be interpreted in the light of some limitations. First, the 180-day period allowed between ECG and CMR is a limitation of the study as the electrical axis may change or other diagnoses arise on ECG over time. Ideally, all patients would have had ECG performed the same day as CMR. However, the median difference in
time between ECG and CMR was low for both groups (four and seven days, respectively). This suggests that time difference between CMR and ECG was not a major factor.

Another factor that may influence the results is the fact that all patients were recruited from a hospital population having undergone both ECG and CMR with LGE. This could mean that both study groups on average are less healthy than a primary care outpatient population or the general population, in which case the study may be less generally applicable.

The study was limited by a relatively modest sample size in the LAFB group. However, LAFB represented 3% of the whole cohort before the matching process, which is in line with what could be expected from the prevalence in the general population (1), and no LAFB subjects were excluded in the matching process.

Despite matching for age and sex, patients with LAFB had a higher prevalence of HF than matched patients with normal conduction. This may explain the higher frequency of LV scar and the lower EF observed in the LAFB cohort.

In conclusion, in a hospital cohort referred for CMR, LAFB is associated with an increased scar burden and a proportionately reduced LVEF. LV scarring was more often present in a non-ischemic pattern. There was not an increased presence of scar in the location of the left anterior fascicle, demonstrating that macroscopic focal scarring detectable by LGE CMR is not a common cause of LAFB.
References

Figure legends

Table 1. Patient demographics and prevalence of clinical covariates. Continuous data are presented as median [interquartile range].

Figure 1. The relationship between ejection fraction and scar for LAFB and controls. The diagonal grey line represents the maximum predicted ejection fraction (EF) in relation to scar extent for the control population. See methods for details of how this line was determined. Open circles denote data points for Controls, and black triangles denote data points for patients with LAFB. Note, multiple data points may be identical and overlapping.

Figure 2. Left ventricular ejection fraction, scar size, and dysfunction index for LAFB and controls. Data are shown as box and whisker plots where the box indicates the median and interquartile range, and the whiskers indicate the range.

Figure 3. Prevalence of any type of scar, ischemic pattern scar and non-ischemic pattern scar for LAFB and controls.

Figure 4. Prevalence of scarring across individual myocardial segments for LAFB and controls. Bas = basal, Mid = midventricular, Ap = apical, Ant = anterior, Sep = septal, Inf = inferior, Lat = lateral.

Central illustration.
Table 1. Demographics and prevalence of clinical covariates.

<table>
<thead>
<tr>
<th>Covariate</th>
<th>LAFB</th>
<th>Controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients, n</td>
<td>51</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>69 [60-73]</td>
<td>68 [61-71]</td>
<td>0.54</td>
</tr>
<tr>
<td>Male sex, n (%</td>
<td>35 (69)</td>
<td>387 (65)</td>
<td>0.66</td>
</tr>
<tr>
<td>Time from ECG to CMR, days</td>
<td>4 [0-22]</td>
<td>7 [0-37]</td>
<td>0.51</td>
</tr>
<tr>
<td>Past Medical History, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial flutter or fibrillation</td>
<td>26 (51)</td>
<td>324 (54)</td>
<td>0.79</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disorder</td>
<td>10 (20)</td>
<td>142 (24)</td>
<td>0.63</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>35 (69)</td>
<td>335 (56)</td>
<td>0.10</td>
</tr>
<tr>
<td>Diabetes</td>
<td>17 (33)</td>
<td>211 (35)</td>
<td>0.91</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>29 (57)</td>
<td>211 (35)</td>
<td>0.003</td>
</tr>
<tr>
<td>Hypertension</td>
<td>37 (73)</td>
<td>485 (81)</td>
<td>0.21</td>
</tr>
<tr>
<td>Obstructive sleep apnea</td>
<td>13 (25)</td>
<td>189 (32)</td>
<td>0.46</td>
</tr>
<tr>
<td>Medications, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE Inhibitor</td>
<td>28 (55)</td>
<td>252 (42)</td>
<td>0.10</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>4 (8)</td>
<td>43 (7)</td>
<td>0.78</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>38 (75)</td>
<td>396 (66)</td>
<td>0.28</td>
</tr>
<tr>
<td>Flecainide or propafenone</td>
<td>3 (6)</td>
<td>47 (8)</td>
<td>0.79</td>
</tr>
<tr>
<td>Dofetilide or sotalol</td>
<td>5 (10)</td>
<td>81 (14)</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Continuous data are presented as median [interquartile range].
Any scar type

- Ischemic scar
- Non-ischemic scar

Scar prevalence (%)

<table>
<thead>
<tr>
<th></th>
<th>LAFB</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any scar</td>
<td>59</td>
<td>33</td>
</tr>
<tr>
<td>Ischemic scar</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>Non-ischemic</td>
<td>29</td>
<td>10</td>
</tr>
</tbody>
</table>

- More focal myocardial scar
- More often non-ischemic scar
- Scar not more often infarction
- Scar not more often located in the region of the left anterior fascicle
- Scar not possible to be causally linked to LAFB