Superior local control of image-guided superficial radiotherapy (IGSRT) compared to non-image-guided radiotherapy for the treatment of non-melanoma skin cancer (NMSC)

Yu L 1, Moloney M 2, Zheng S 3 and Rogers J 4

1 Laserderm Dermatology Smithtown, NY, USA
2 New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
3 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
4 Summit Analytical LLC, Denver, CO, USA

Corresponding Author:
Yu L, M.D., DABR, Director of Radiation Oncology, Laserderm Dermatology, 327 Middle Country Rd, Smithtown, NY 11787, USA, Tel: 516-236-6209, Fax: 631-979-0455, Email: lio.yu@protonmail.com

Abstract:

Background: Non-image-guided forms of radiotherapy (external radiation therapy [XRT], including superficial radiation therapy [SRT]), have been used to treat non-melanoma skin cancer (NMSC) for over a century. More recently, image-guided superficial radiation therapy (IGSRT), which allows visualization of tumor configuration and depth throughout treatment, is being used to treat NMSC with high local control (LC) rate.

Methods: Two recent studies report the results of IGSRT. Further, the American Society of Radiation Oncology (ASTRO) has published a comprehensive review of studies examining XRT/SRT outcomes of which four high-quality, recent, evidence-based, large (with more than 100 cases), United States (U.S.) based studies exist. Using information from these six studies, we employ logistic regression to compare basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and squamous cell carcinoma in situ (SCCIS) treatment outcomes between IGSRT and XRT/SRT.

Findings: IGSRT local control (LC) was statistically superior to each of the four large non-image-guided radiotherapy studies individually, collectively, and stratified by histologic subtype.

Interpretation: IGSRT LC is superior to non-image guided radiotherapy LC for the treatment of early-stage epithelial cancers. We propose that because lower recurrence rates result in less economic, social, and psychological burden on patients, IGSRT could be considered the preferred standard for the non-surgical radiotherapeutic treatment of early-stage NMSC with LC comparable to Mohs micrographic surgery (MMS).
Keywords: Non-melanoma skin cancer; basal cell carcinoma; squamous cell carcinoma; squamous cell carcinoma in-situ; image-guided superficial radiotherapy

Abbreviations: NMSC – non-melanoma skin cancer; basal cell carcinoma (BCC); squamous cell carcinoma (SCC); squamous cell carcinoma in-situ (SCCIS); Mohs micrographic survey (MMS); 5-flourouracil (5-FU); electron beam radiotherapy (EBRT); external radiation therapy (XRT); superficial radiation therapy (SRT); megahertz (MHz); image-guided superficial radiation therapy (IGSRT); local control (LC); American Society of Radiation Oncology (ASTRO)
Introduction:

Non-melanoma skin cancer (NMSC) is the most common cancer diagnosed in the United States and it is comprised mostly of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and squamous cell carcinoma in-situ (SCCIS). The most current estimates of NMSC incidence are from 2012, where it was estimated that 5.43 million NMSC lesions in 3.32 million individuals in the U.S. were diagnosed. The incidence is expected to be increasing by two to three percent yearly. In 2022, this translates to 6.62 to 7.30 million cases in 4.05 to 4.66 million individuals.

Despite NMSC having a low mortality, high cure rates, rare metastasis, and only accounting for 0.1% of cancer deaths, the standard of treatment is surgical removal. Surgical options consist of Mohs micrographic surgery (MMS), standard surgical excision, shave removal, curettage, and electrodessication. However, numerous nonsurgical, non-invasive modalities exist including topical treatments (ie. imiquimod, 5-flurouracil [5-FU] etc.), cryotherapy, photodynamic therapy (PDT), laser therapy, and radiotherapy with several techniques available within each category. However, surgery, specifically MMS, has remained the mainstay of treatment as the literature promises the highest cure-rates at around 99%.5,6

Multiple radiation modalities exist for the treatment of NMSC, including brachytherapy, electron beam radiotherapy (EBRT), external radiation therapy (XRT), and superficial radiation therapy (SRT). Specifically, superficial radiation therapy, has been used by dermatologists for the past century to treat NMSC. With the advent of MMS, this modality fell out of favor. However, more recently there has been advancements to SRT, including the use of a high frequency 22 megahertz (MHz) dermal ultrasound to visualize superficial depth of the skin. This has led to the development of image-guided superficial radiation therapy (IGSRT) commercial units in 2013 that allow for lesion visualization prior to, during, and after treatment. A recently published study by Yu et al. using IGSRT to treat 2917 early-stage keratinocytic cancers yielded a high local control (LC) rate of 99.3%. An updated abstract that added 93 patients and 133 lesions for a total of 1725 patients with 3050 early-stage keratinocytic lesions showed a continued high local control (LC) of 99.2%. This suggests that this noninvasive, nonsurgical modality, can offer

This preprint is not peer reviewed and should not be cited as evidence. The authors retain all rights and do not grant any license for further reproduction of this material.
comparable cure rates to that of the current gold standard treatment modality, MMS, for early-stage NMSC.A

Objective:
To statistically evaluate the local control (LC) differences, if any, of image-guided superficial radiotherapy versus non-image-guided radiotherapy modalities for the treatment of early-stage epithelial cancer.

Methods:

Source Information. IGSRT results have been investigated in two seminal studies referenced hereafter as the Yu study and the Moloney study.8,9 Data from the Yu study was obtained via direct chart analysis of patients with histopathologic confirmed NMSC treated with IGSRT from multiple institutions. Data from the Moloney study utilized the same data from the Yu study with the addition of 133 histopathological confirmed NMSC from 94 patients with updated follow-up intervals. Data on the additional 133 histopathologic confirmed NMSC in 94 patients was previously published.10

IGSRT outcomes included in the present analyses are from a conservative subset of the Yu study patients who have a follow-up of greater than 52 weeks; and are from the entire study population of the Moloney study.

The American Society of Radiation Oncology (ASTRO) published a literature review containing 143 studies on curative radiation treatment for NMSC.11 A subset of modern, pertinent, comparable studies that utilized superficial radiotherapy (SRT) and external radiotherapy (XRT) were identified as meeting the following inclusion/exclusion criteria.

A Per the American Academy of Dermatology practice guidelines, Mohs micrographic survey (MMS) local control is reported to have local control (LC) of 99% for basal cell carcinoma (BCC) and about 97% for cutaneous squamous cell carcinoma (SCC).5,6 The 5-year local recurrence rate for primary SCC lesions treated with MMS is reported to be 3.1%. The 5-year local recurrence rate for primary BCC lesions treated with MMS is reported to be 1%. Our reported image-guided superficial radiation therapy LC is 99.1% (Yu) and 98.9% (Moloney) for BCC and is 99.3% (Yu) and 99.2% (Moloney) for SCC, and thus appears to be as good as MMS for BCC and potentially better for SCC.
Inclusion: Only studies performed in the USA

Exclusion: Meta-analysis, brachytherapy, pre-operative, post-operative +/- chemo/targeted agents used, recurrent or predominately recurrent, prior radiotherapy, T4 only/predominant, metastatic to parotids, involvement of parotids, wound healing only, no local control reported, perineural invasion in ≥50% of cases, and those lesions arising from scar.

These criteria resulted in four high-quality, recent, evidenced-based studies, each with greater than 100 subjects. The four studies provided the XRT/SRT outcome data for this study and are hereafter referenced as the Lovett study, Locke study, Silverman study, and Cognetta study.12–15

Local Control (LC) Calculation. Lesion counts for the two IGSRT studies and the four XRT/SRT studies were used to compute LC as “Number of lesions that did not recur / Total number of lesions”. Lesions were analyzed as independent events.

Statistical Analysis. Data availability in the two IGSRT studies and the four XRT/SRT studies made it possible to compare each IGSRT study (i.e., Yu study and Moloney study) to the following XRT/SRT studies: Lovett, Locke, Silverman, and Cognetta for BCC; Lovett, Locke, and Cognetta for SCC; and Cognetta for SCCIS. For each comparison, a logistic model was implemented that contained the effect of treatment with treatment levels defined as the studies under consideration. Odds ratios were then derived that compared the IGSRT study to each available XRT/SRT study and to all XRT/SRT studies combined.

Role of the Funding Source. The sponsor of the study (SkinCure Oncology) was not involved in the study design, collection, analysis, interpretation of data, or writing of the report. The decision to submit the paper for publication was solely that of Dr. Lio Yu and the co-authors.
Results:

Table 1 compares each IGSRT study (Yu and Moloney) to each XRT/SRT study (Lovett, Locke, Silverman, and Cognetta). Comparisons using odds ratios from logistic regression models were made for BCC, SCC, and SCCIS, individually, with odds ratios greater than unity (1) favoring IGSRT. As indicated in Table 1, not all studies evaluated all tumor categories, and therefore, only studies that included a given tumor category could be used as a comparator study in the evaluation of that same tumor category. Table 1 also reports comparisons by tumor category between each IGSRT study and all comparator XRT/SRT studies combined. Finally, the LC odds can be converted to a probability with an asymmetrical 95% confidence interval. For the Yu and Moloney IGSRT studies, separately, LC probabilities and 95% confidence intervals were calculated for each IGSRT study. This allows an odds ratio comparison to be envisioned as a plotted difference in LC probabilities.

Table 1 indicates that IGSRT LC was statistically superior to the comparator XRT/SRT studies individually, collectively, and stratified by histologic subtype, with p-values ranging from p<0.0001 to p=0.0438. Figure 1 plots the LC probabilities for each IGSRT study compared to each XRT/SRT study separated by histology. Figure 1 affirms graphically the findings shown in Table 1.

\[<Sup>\text{Minor differences may be present in the raw numbers of each histologic subtype [BCC, SCC, SCCIS] used in the original analysis by Yu et al. and the raw numbers used in this analysis.}^{8}\text{These differences can be attributed to variations in data filtering. For instance, follow-up data was calculated in days and converted to weeks and months, thus data may be filtered by follow-up time in days, weeks, or months. Additionally, seven lesions had multiple histologic subtypes and can be included in both histology categories in this analysis. Despite these minor differences in total lesion number per histologic category, the overall local control rate results remained substantively unchanged.}\]
Discussion:
IGSRT confers a statistically significant improvement in local control for all histologic subtypes (BCC, SCC, SCCIS) compared to all four high-quality, recent, large studies using non-image-guided forms of radiotherapy (XRT/SRT). The improvement in local control can be attributed to the image-guided component of superficial radiotherapy, as the high definition integrated dermal ultrasound with doppler features allows for visualization of the early-stage lesion’s depth, breadth, and overall configuration prior to, during, and after treatment. Visualization during treatment allows for the treatment provider to adjust radiotherapy dosages and energies of penetration daily if necessary. Visualization after treatment allows for confirmation of lesion resolution/response.

Advantages of IGSRT include high cure-rates as demonstrated in this paper. It is cost effective, due to its low-recurrence rate. It offers cosmetic benefits as it is tissue sparing and the majority of NMSC lesions occur in cosmetically sensitive areas, such as the head and neck. Patients can avoid pain, scarring and risk of infection of bleeding since this is a non-surgical treatment modality. Multiple lesions can also be treated synchronously with IGSRT, and many patients often have more than one lesion diagnosed at once. Offices that use IGSRT have reported overall excellent patient satisfaction and provider satisfaction (internal data).

Absolute and relative contraindications to IGSRT include lesion invasion to underlying bone or muscle, thickness > 6mm, previous radiation to the same lesion site, ataxia telangiectasia, active connective tissue disease, lupus or rheumatologic disease, concomitant management with radiation sensitizing chemotherapy agent, T4 stage, and node positive status.8

IGSRT could be considered the preferred standard non-surgical radiotherapeutic treatment modality for appropriate patients with early-stage NMSC (BCC, SCC, SCCIS) with comparable LC to MMS without the drawbacks of surgery. At the minimum, patients should be presented with the option to have their NMSC treated with IGSRT.

Limitations:
No randomized controlled trial exists for direct comparison of IGSRT to radiotherapy modalities, including superficial and external radiotherapy. The follow-up periods in this paper, though long enough to reasonably assure meaningful and accurate IGSRT to XRT/SRT comparisons, are unequal among studies.
Ethics: This study was performed in compliance with the pertinent sections of the Helsinki Declaration and its amendments. This manuscript was reviewed by an IRB committee and was determined to be exempt from IRB approval under 45 CFR § 46.104(d)(4), because the research involves the use of identifiable private information; and information is recorded by the investigator in such a manner that the identity of the human subjects cannot readily be ascertained directly or through identifiers linked to the subjects, the investigator does not contact the subjects, and the investigator will not re-identify subjects. Any health information used in this study has been de-identified for use in this study. All patients gave informed consent before treatment.

Sources of Funding: SkinCure Oncology provided funding for Dr. Lio Yu’s time as an independent contractor for independent researching and writing of this paper. This included reimbursement of professional statistical service fees paid. The sponsor of the study (SkinCure Oncology) was not involved in the study design, collection, analysis, interpretation of data, or writing of the manuscript. Writing of this paper and the submission process was solely that of Dr. Lio Yu and co-authors.

Role of Medical Writer or Editor: No medical writer or editor was used or involved in preparing this paper for publication.

Declarations of Interest: Dr. Lio Yu is the National Radiation Oncologist for Skin Cure Oncology and has received research, speaking and/or consulting support from Skin Cure Oncology. He has served on an advisory board for Bayer Pharmaceuticals previously. Mairead Moloney has no conflicts of interest to disclose. Songzhu Zheng has no conflicts of interest to disclose. Dr. James Rogers is a managing member of Summit Analytical, LLC, which was contracted to provide statistical analysis for this study. James Rogers received payment for the statistical analysis services he performed from, and thereby has a financial relationship with Next Step Business Services, LLC (a closely-held company owned by Dr. Lio Yu). The payment to Dr. Rogers was made to his own closely-held company known as Summit Analytical LLC.)
Author Contributions: Drafts of the manuscript were shared among the authors. All authors read and approved the final manuscript.

Dr. Lio Yu is responsible for conceptualization of the study design, methodology, data curation, funding acquisition, project administration, writing – original draft, writing – review & editing, supervision, investigation, visualization, and resources. Mairead Moloney was responsible for the literature search, writing – original draft, and writing – review & editing, and visualization. Songzhu Zheng was responsible for formal analysis, validation, and software. Dr. James Rogers was responsible for formal analysis, validation, software, writing – review & editing, figures, investigation, and visualization.

Songzhu Zheng directly accessed and verified the underlying data reported in the manuscript. Dr. James Rogers had access to the underlying data and applied statistical analysis to the data in tabulated format. The logistic analysis was validated under Summit Analytical SOPs.

Data Sharing: Deidentified data are available on request from the corresponding author – Dr. Lio Yu at lio.yu@protonmail.com. Data will be available for request with publication for period of at least 1 year. Additional analyses may be available upon request, including but not limited to all odds and probabilities using logistic regression, conversion of some of the odds to probabilities with asymmetric confidence limits, raw percentages, and raw odds.
References

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Treatment</th>
<th>Study</th>
<th>Outcome</th>
<th>Odds Ratio (XRT/SRT over IGSRT) (95% Confidence Limits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrence (%)</td>
<td>Local Control (%)</td>
</tr>
<tr>
<td>BCC</td>
<td>IGSRT</td>
<td>Yu</td>
<td>6 (0.9)</td>
<td>698</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moloney</td>
<td>16 (1.1)</td>
<td>1471</td>
</tr>
<tr>
<td></td>
<td>XRT/SRT</td>
<td>Lovett</td>
<td>20 (9.0)</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locke</td>
<td>21 (6.4)</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silverman</td>
<td>52 (6.0)</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cognetta</td>
<td>22 (3.1)</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
<td>115 (5.4)</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.1, 11.3)</td>
<td></td>
</tr>
<tr>
<td>SCC</td>
<td>IGSRT</td>
<td>Yu</td>
<td>4 (0.7)</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moloney</td>
<td>7 (0.8)</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>XRT/SRT</td>
<td>Lovett</td>
<td>14 (18.9)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locke</td>
<td>15 (15.2)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cognetta</td>
<td>4 (3.0)</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td></td>
<td>33 (10.8)</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.1, 43.3)</td>
<td></td>
</tr>
<tr>
<td>SCCIS</td>
<td>IGSRT</td>
<td>Yu</td>
<td>2 (0.5)</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moloney</td>
<td>1 (0.2)</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td>XRT/SRT</td>
<td>Cognetta</td>
<td>19 (2.2)</td>
<td>842</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.1, 20.2)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Silverman presented 2-year and 5-year follow-up results. Mean 5-year follow-up used. Mean follow-up for Yu, Moloney, Lovett, Locke, and Cognetta, respectively, was 2-1, 2-1, 5, 5 and 2-6 years. Silverman presented no SCC data. Only Cognetta presented SCCIS.
Figure 1. Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC) and Squamous Cell Carcinoma In Situ (SCCIS) Probabilities of Local Control for the Image-Guided Superficial Radiation Therapy (IGSRT) and External Radiation Therapy (XRT) / Superficial Radiation Therapy (SRT) Investigations

BCC

SCC

SCCIS

Investigator

Investigator

Treatment

- IGSRT
- XRT/SRT