A randomized controlled trial on the effects of decision aids for choosing discharge destinations of older stroke patients

Yoriko Aoki¹*, Kazuhiro Nakayama², Yuki Yonekura²

¹Department of Gerontological Nursing, Faculty of Medicine, University of Toyama, Toyama, Japan
²Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan

* Corresponding Author
E-mail: yoriko18@med.u-toyama.ac.jp (YA)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

In Japanese medical practice, older stroke survivors are bombarded with information regarding their discharge locations, increasing their decision-making difficulties. This study used a randomized controlled trial to evaluate the influence of using decision aids (DAs) matching the values of older stroke patients and their families on the internal conflict and participation in discharge destination decisions.

Participants were randomly allocated to intervention and control groups. The intervention lasted for two months, from admission to discharge, and a survey was conducted on both occasions. DAs were provided to the intervention group, and brochures to the control group. The decisional conflict scale (DCS) and the control preference scale (CPS) were the primary and secondary endpoints, respectively. An unpaired t-test and z-test analyzed inter-group differences in DCS, and CPS, respectively. This trial was registered with the University Hospital Medical Information Network (UMIN Registration No.: UMIN00032623), certified as a test registration institution by the World Health Organization.

Ninety-nine participants completed a full analysis set, which revealed that the intervention group had significantly more participants who had already decided on their discharge destination while they were admitted to the hospital. These were “the same place as before admission” in a significant number of cases. No significant inter-group differences were found in
the DCS and CPS scores. DAs were effective at reducing uncertainty and controlling the decline
in participation rates, especially in participants living alone who were unable to decide their
discharge destination, and at clarifying the values of those aged 75 and older. The DA made it
possible to increase available choices and explain the disadvantages regarding various locations
of discharge destinations, allowing fewer internal conflicts in the decision-making process. Going
forward, there is a need to further our understanding of methods of offering DA, the ideal duration
of these interventions, and the identification of beneficiaries.

Introduction

Medical care for strokes has advanced, and its mortality rates have drastically declined.
However, age-related morbidity and recurrence rates of strokes remain high, with strokes being
the second most common condition, only after dementia, leading to patients requiring long-term
nursing care [1]. As a result, the roles of care personnel and the need for recovery rehabilitation
enabling patients to live independently have intensified. However, individuals who have suffered
a stroke experience such drastic changes in their lives that an internal conflict arises between their
past self (that is hard to let go of) and their shattered self-image [2]. Due to these reasons, it is
necessary to take into account numerous factors when selecting their discharge destination,
including the role of their families, cognitive aspects, individual patient care behaviors and
activities, health status, age, and income [3]. Patients then face a dilemma about their housing after discharge: to continue living at home or receiving care at a different location. In Japan, elders are often cared for by their families. Therefore, post-discharge housing decisions are often finalized between the family and healthcare professionals without any input from the older patients [4]. The reasons for this include difficulties in communicating with the older patients due to the severity of their condition and their families’ mindset that the older patient’s participation in decision-making is unnecessary [5]. As a result, hospitals face the challenge of coordinating among the older patients, their families, and healthcare professionals to adjust the “divergences in intentions as to discharge destination” [6]. However, there have been no established methods of aiding decision-making and no assessment criteria for decisions until now in Japan. Therefore, older patients and their families are at risk of being stricken with anxiety and remorse about the decisions made [7,8]. The practice of shared decision-making (SDM) [9], in which patients and physicians are involved in making medical decisions together, is gradually being adopted at clinical sites. Moreover, an improved version of SDM, called the international professional SDM (IP-SDM) model [10], has now been developed that also includes families and multidisciplinary professionals in the decision-making process. This multi-professional approach has been reported as being helpful when applied to making housing decisions [11]. One method of aiding decision-making that the IP-SDM model promotes is the use of decision aids (DAs). Numerous DAs have
been developed overseas and are being adopted as decision-making tools [12]. Unlike conventional informative materials, DAs compare the advantages and disadvantages of various choices and encourage choosing those that match a person’s values [13]. Some effects that have been confirmed so far and reported in all populations include increased knowledge, decreased ambiguity of internal conflicts and values, and increased participation in decision-making [14]. They have also proven to be equally effective for older people [15]. However, in the case of older people, due to reasons such as frailty and dementia, it is not easy to develop DA [16] and the progress has been limited. In Japan, patients are given informative brochures upon hospital discharge. However, the massive amounts of information in these booklets overwhelm older adults, making decision-making even more difficult [17]. However, there are no DAs in Japan that target older stroke patients or those that families and multidisciplinary professionals can use together. The likely effectiveness of such DAs is unknown.

Therefore, this study aimed to use a randomized controlled trial (RCT) to evaluate the influence of the use of DAs that match the values of older stroke patients and their families on the internal conflict over and participation in discharge destination decisions. We hypothesized that the group that is provided with a DA in selecting a discharge location will have significantly reduced decision-making conflict and increased decision-making participation compared to the non-IG. Our hypothesis was confirmed and this study was the first RCT to evaluate DA in Japan.
based on the values of older stroke survivors. It is hoped that the use of DAs will encourage the
active participation of older stroke patients in their post-discharge housing decisions and
minimize their anxiety and internal conflicts.

Materials and methods

A protocol document for the methods of this study is included in an unpublished thesis,
and we plan to publish the protocol in a journal soon.

Study design

This study performed a two-arm parallel RCT, based on the Ottawa decision support
framework [18]. This was a single-center, single-blinded test with participants allocated to the
intervention group (IG) and the control group (CG) at a 1:1 ratio. The entire trial complied with
CONSORT (Consolidated Standards of Reporting Trials) guidelines [19,20], met the
requirements of the CONSORT checklist, and thus conformed to the definition of a randomized
test. This trial was registered with the University Hospital Medical Information Network (UMIN
Registration No.: UMIN00032623), certified as a test registration institution by the World Health
Organization.
Setting

Toyama Prefectural Rehabilitation Hospital and Support Center for Children with Disabilities was made the sole institution participating in the research. The facility has 100 beds, 50 each in the third and fourth wards. The personnel who usually provide discharge assistance are physicians, nurses, physical therapists, occupational therapists, and medical social workers. While dividing roles among themselves, these multidisciplinary professionals ask older stroke patients and their families about the discharge destinations of their choice. Based on their wishes, they narrow down two to three potential facilities and social welfare services and then propose them to the patients. The staff holds numerous meetings and offers explanations orally as needed while handing out the brochures issued by the facility and municipalities. This discharge assistance method leaves the decision to multidisciplinary professionals and focuses on providing information about limited choices. Moreover, the materials offered contain vast information, such as an overview of the facilities and social welfare services. They lack content that would aid decision-making, such as the types of choices available and information on their advantages and disadvantages.

Participants
The research participants were as follows: (1) older persons aged 65 and older, (2) those who had suffered a stroke (cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage), and (3) those admitted to rehabilitation wards during their convalescence and who had to decide their location of care after discharge. However, we excluded individuals who had difficulty making decisions because of severe dementia, aphasia, and/or an altered state of consciousness.

Enrollment and allocation

Based on the prescribed facility criteria and preliminary survey [21], we found that the third and fourth wards were similar and concluded the baseline conditions to be the same for both in terms of patient gender, age, severity of illness, and the ratio of the number of stroke patients. About two weeks after admission, when the patients had familiarized themselves with their hospital environment, those who met the eligibility criteria were introduced to us by the head nurse. The principal investigator described the outline of the study orally to the patients, using an explanatory document. The participants were enrolled in the study after their informed consent was obtained in writing. While following the allocation table, the principal investigator randomly allocated the participants to the intervention or the CGs according to the hospital room where the initial meeting with the research participants had occurred. The principal investigator created a table by integrating (a) a random number table that Research Assistant A had created using a
computer at a 1:1 ratio, and (b) an allocation table of patients according to their condition’s severity designed by the ward’s head nurse. The severity of illness was determined by the lowest total score of a daily living function assessment and the Functional Independence Measure (FIM). According to the facility criteria prescribed by the government, the severely ill are those who have a daily living function assessment of 10 points or more, or a total FIM score of 55 points or less. Until the allocation to the groups was completed, the order of allocation was concealed from Research Assistant A, the ward’s head nurse, the patients, their families, and multidisciplinary professionals (as part of the “allocation concealment mechanism”).

The flow of selecting participants

From October 2018 to May 2020, we invited 135 individuals who had met the eligibility criteria to take part in the trial. After excluding those who had declined to take part (n = 28), we randomly allocated 107 individuals to the intervention or the CGs. Further, eight individuals were excluded with whom, in the course of follow-up, no questionnaire survey could be carried out. Finally, a total of 99 people, comprising 51 in the IG and 48 in the CG, constituted the full analysis set who were to undergo analysis (Fig 1).
Fig 1. Flow diagram of the CONSORT study. The figure describes the stages of the CONSORT study, beginning with the enrollment of the participants, followed by their allocation into intervention and CGs, their follow-up, and finally the analysis of the two groups.

Although we planned to enroll 122 patients, we were not allowed to enter the hospital because of the COVID-19 pandemic; hence we halted the process temporarily. Given that the situation remained unchanged, even after a year, we decided to carry out an analysis using the number of patients we had obtained up till then.

Intervention method

Following Coulter’s [22] systematic development process, a DA was developed based on the international patient DA standards instrument [23]. DAs consisting of 12 A4 pages were developed, listing the following six values that were common to older stroke patients and their families: (1) living standards, (2) services and costs, (3) emergencies, (4) family support, (5) environment, and (6) home repair and renovation [24].

For both groups, the duration of intervention was approximately two months, from admission to discharge. With the help of Research Assistants B (this included four research assistants who had similar roles but worked separately, as required for the study), we conducted
a questionnaire survey twice, once on admission and once at discharge. The research participants and their families, the ward’s head nurse, multidisciplinary professionals, and Research Assistants B were blind to the intervention.

After a month of admission, we enquired with the IG regarding the usage of the DAs and whether they had received them. Approximately two weeks after admission, the principal investigator offered DAs to the participants in a private room. The principal investigator explained the purpose of the DA, its content, method of use, and points to note. The principal investigator ensured that the participants understood the advantages and disadvantages of the two possible post-discharge destinations, namely “the same place as before admission” and “a place different from before admission.” The investigator explained to them that the purpose of the DA was to assist them in making decisions that suited their circumstances and values. The principal investigator also explained that the content of the DA consisted of (1) information to help with devising a discharge plan, (2) information on the types and characteristics of services available, (3) information about the advantages and disadvantages of the discharge destination, (4) help with judging important values, and (5) help with organizing hospital discharge after preparations for discharge have been completed. The principal investigator explained that the patients could read the DA whenever they wished to prepare themselves for discharge and use it with their families and multidisciplinary professionals if needed. The participants were
reminded not to share and show the booklets to other patients within the ward or their families
by explaining to them that the efficacy of DAs has not yet been established and so two types of
booklets have been handed out to all the patients to investigate their efficacy. Approximately
one month after admission, after discussing the future course of action with a physician, a 15-
minute interview was conducted privately to understand how the patients were using the DAs.
We asked the patients if they had read the DA, used it with their family or multidisciplinary
professionals, and had any questions about the content and method of using the DA after using
it for approximately one month. After a month of admission, we enquired with the CG regarding
the usage of the brochures (given in place of DAs) and if they had received them. The
brochure’s content, describing the type and characteristics of the services available, was similar
to that of the DA. The participants were explained that the brochure had been provided for their
reference while deciding their discharge destinations and that it contained the same methods of
usage and points of special note as those provided to the IG.

We held two meetings with the multidisciplinary professionals to explain the purpose,
significance, and method of research. We explained that we could not reveal the contents of the
DA or the brochure, or the allocation of patients between the two groups. We also informed them
that they may respond to the queries of the older stroke patients and their families but should
avoid providing instructions regarding the content of DA or about utilizing the tool. Furthermore,
we asked licensed nurses and fourth-grade nursing university students who had completed their practical training to serve as Research Assistants B for conducting the questionnaire survey together. Furthermore, we trained them using a manual developed by the authors to ensure that they could provide standard and appropriate answers to anticipated questions from the research participants. (Supporting Information S1) We explained to them that we cannot reveal the allocation of the patients to them and that they were not allowed to look at the content of the DA and the brochures throughout the study duration.

Evaluation items

The primary and secondary endpoints were evaluated, on admission and at discharge, together with the Research Assistants B, via a questionnaire survey. The primary endpoint pertained to internal conflict over decision-making and was evaluated using the 16-item Japanese-language edition of the decision conflict scale (DCS) [25]. The DCS was developed by O’Connor [26], and it is a highly reliable scale to identify the intervention effects of DAs. The test-retest reliability coefficient was 0.81, and the internal consistency coefficients ranged from 0.78 to 0.92. The Japanese-edition DCS also shows high internal consistency (Cronbach’s α: 0.84 – 0.96) [25]. DCS comprises five items, namely Sufficient explanation of information, Clarification of values, Support, Uncertainty, and Effective decision-making. Each item is evaluated using a 5-point
Likert scale. All the DCS items are totaled, divided by 16, and multiplied by 25 to arrive at the total score. The total score is converted into a score ranging from 0 to 100 points, with a high score indicating a high decision-making internal conflict level. A score below 25 points indicates implementation of decision-making, and a score of 37.5 points or higher indicates a delay in decision-making and a feeling of uncertainty about its implementation [27].

The secondary endpoint pertained to participation in decision-making and was evaluated using one control preference scale (CPS) item. The CPS was developed by Strull et al. [28] and modified by Degner et al. [29]. Its reliability has been confirmed (Coombs’ criterion of 50%). The reliability of the Japanese edition of CPS has also been confirmed. The test-retest reliability of the kappa coefficient was 0.61; the weighted kappa coefficient was 0.61; and Kendall’s tau coefficient was 0.61 [30]. The role in decision-making desired by the participant is evaluated from the five written answers. Answers to Choices 1 and 2 are classified as “Active roles” (decision-making by the self), Choice 3 is classified as “Shared roles” (SDM),” and Choices 4 and 5 are classified as “Passive roles” (decision-making by others). The percentages of participation rates were also calculated, using a 10-point Visual Analog Scale.

Besides these, we asked for the following details regarding the participants’ attributes, on admission: sex, age, disease name, family makeup, the desired and the ultimate discharge
destination, educational background, work history, duration of hospitalization, the status of readiness for decision-making, and the person(s) with whom a decision had been made.

Calculation of sample size

The sample size was calculated based on the effect size of 0.3–0.4 of past studies whose primary endpoint was the DCS in the systematic review of a patient’s DAs [14]. The effect size of 0.4–0.8 shows a clinically meaningful difference in DCS and can be divided into those who make decisions and those who procrastinate [27]. Therefore, we assumed that 61 individuals were needed per group by considering a power of 0.80, an effect size of 0.5, a level of significance of two-sided α of 0.05, and losses to follow-up of 20%.

Method of analysis

After checking the input data independently by two Research Assistants B, the primary investigator, who was not blind to the allocation process, handled the data. To retain the random allocation, we made all randomized data the targets of analysis following interventions that had been initially allocated (intention-to-treat). All the participants’ characteristics at the baseline underwent descriptive statistical testing, a t-test, a χ^2-test, and a Mann–Whitney’s test. The internal conflict over decision-making, which is the primary endpoint, was subjected to an
unpaired \(t \)-test to compare the inter-group amount of changes of the DCS subscales between the
time of admission and discharge. A multiple regression analysis was also carried out to adjust the
baseline values. Regarding participation in decision-making (secondary endpoint), a \(z \)-test was
carried out to examine the differences in the inter-group ratios of the roles in decision-making
(CPS), and a Cochran’s Q test was conducted to examine the differences in the ratio between the
time of admission and discharge. An unpaired \(t \)-test was conducted to make inter-group
comparisons between participation rates, and a paired \(t \)-test was conducted to compare the
temporal differences in the time of admission and discharge. A subgroup analysis was also
conducted on those experiencing intense internal conflict (DCS of 37.5 points or higher on
admission), those living alone, older adults aged 75 and older, those who were undecided about
their discharge destination in terms of the status of readiness for decision-making at their time of
admission, and those experiencing long hospitalization (average duration of hospitalization: 78
days or more). SPSS Statistics for Windows, version 28 (IBM Corp., Armonk, N.Y., USA), was
used for statistical analysis, and the level of significance was made two-sided, 5% or less.

Results

Characteristics of the participants
Table 1 summarizes the characteristics of the participants at the baseline. The participants were hospitalized for an average duration of 72.6 days (SD = 31.1) for the IG, and 82.0 days (SD = 36.3) for the CG. The average age of the participants was 75.0 years (SD = 6.4) in the IG and 75.5 years (SD = 6.6) in the CG. In both groups, a majority of the participants were males (IG = 32 [62.7%]; CG = 32 [66.7%]), many suffered cerebral infarction (IG = 36 [70.6%]; CG = 34 [70.8%]), lived with their partners (IG = 23 [46.0%]; CG = 18 [38.3%]), and had been corporate employees (IG = 29 [56.9%]; CG = 26 [54.2%]), and more than half of the participants were high school graduates or higher (IG = 40 [78.5%]; CG = 38 [79.2%]). In terms of the status of readiness for decision-making, in the IG, 66.7% had already decided on their discharge destination and 45.8% had done so in the CG. The discharge destination was the same place as before admission in 78.4% of the participants, and a different place in 21.6% of the participants.

Of the 16 participants who were discharged to a place that was different from before, 6 (37.5%) were living alone. As to where the participants wanted to decide their discharge destination, the largest number of the participants wanted to do so “With their family,” followed by “With family and healthcare professionals.”

We found that the IG contained significantly more participants who had already decided their discharge destination than the CG ($p < 0.05$) (Table 1). It was also found that significantly
more participants chose “the same place as before admission” as their discharge destination (p < 0.01) (Table 2).

Table 1. Characteristics of participants at the baseline

<table>
<thead>
<tr>
<th>Survey item</th>
<th>Intervention Group (n = 51)</th>
<th>Control Group (n = 48)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of hospitalization</td>
<td>72.6 (31.1)</td>
<td>82.0 (36.3)</td>
<td>0.25</td>
</tr>
<tr>
<td>Age</td>
<td>75.0 (6.4)</td>
<td>75.5 (6.6)</td>
<td>0.69</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>32 (62.7)</td>
<td>32 (66.7)</td>
<td>0.83</td>
</tr>
<tr>
<td>Female</td>
<td>19 (37.3)</td>
<td>16 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Disease name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>36 (70.6)</td>
<td>34 (70.8)</td>
<td>0.99</td>
</tr>
<tr>
<td>Cerebral hemorrhage</td>
<td>12 (23.5)</td>
<td>11 (22.9)</td>
<td></td>
</tr>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>3 (5.9)</td>
<td>3 (6.3)</td>
<td></td>
</tr>
<tr>
<td>Family makeup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living alone</td>
<td>10 (20.0)</td>
<td>11 (23.4)</td>
<td>0.81</td>
</tr>
<tr>
<td>Living with one more person</td>
<td>23 (46.0)</td>
<td>18 (38.3)</td>
<td></td>
</tr>
<tr>
<td>Living with two other people</td>
<td>12 (24.0)</td>
<td>11 (23.4)</td>
<td></td>
</tr>
<tr>
<td>Living with three other people</td>
<td>3 (6.0)</td>
<td>2 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Living with four or more people</td>
<td>2 (4.0)</td>
<td>5 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Work history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate employee</td>
<td>29 (56.9)</td>
<td>26 (54.2)</td>
<td>0.84</td>
</tr>
<tr>
<td>Self-employed</td>
<td>10 (19.6)</td>
<td>8 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Public employee</td>
<td>1 (2.0)</td>
<td>1 (2.1)</td>
<td></td>
</tr>
<tr>
<td>Healthcare</td>
<td>2 (3.9)</td>
<td>1 (2.1)</td>
<td></td>
</tr>
<tr>
<td>Welfare</td>
<td>0 (0.0)</td>
<td>1 (2.1)</td>
<td></td>
</tr>
<tr>
<td>Part-time worker</td>
<td>2 (3.9)</td>
<td>2 (4.2)</td>
<td></td>
</tr>
<tr>
<td>Housewife</td>
<td>3 (5.9)</td>
<td>4 (8.3)</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>3 (5.9)</td>
<td>4 (8.3)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>1 (2.0)</td>
<td>1 (2.1)</td>
<td></td>
</tr>
</tbody>
</table>

Educational background
Graduated from elementary school in the old educational system (1886 - 1941) 2 (3.9) 5 (10.4) 1.00
Graduated from a girls' school in the old educational system (1886 - 1941) 0 (0.0) 0 (0.0)
Graduated from middle school 9 (17.6) 5 (10.4)
Graduated from high school 28 (54.9) 25 (52.1)
Graduated from vocational college 3 (5.9) 6 (12.5)
Graduated from junior college 1 (2.0) 0 (0.0)
Graduated from university 8 (15.7) 7 (14.6)
Graduated from graduate school 0 (0.0) 0 (0.0)

Status of readiness for decision-making

1. Cannot even begin to think about a discharge destination 10 (19.6) 14 (29.2) p<0.05
2. Not even considering discharge destinations other than the one desired 5 (9.8) 5 (10.4)
3. Also considering discharge destinations other than the one desired 0 (0.0) 4 (8.3)
4. On the verge of deciding where to go to after discharge 2 (3.9) 3 (6.3)
5. Have already decided where to go to after discharge 34 (66.7) 22 (45.8)

Mean (standard deviation), No. of people (%).
The no. of people and percentage in each item were totaled after eliminating people with missing data (NA)
p-value: Unpaired t-test for the duration of hospitalization and age on admission; χ2-test for sex, family makeup, work history, educational background and status of readiness for decision-making; and Mann-Whitney test for disease name.

a) Family makeup: "Living alone" and "Other than living alone" includes living with one more person, living with two other people, living with three other people, and living with four or more people.
b) Work history: "Corporate employee" and "Other than corporate employee" includes self-employed, public employee, healthcare, welfare, housewife, agriculture and others.
c) Educational background: Regarding "Graduated from schools below high school" and "Graduated from schools above high school," "Graduated from schools below high school" includes graduation from elementary school in the old educational system, graduation from a girls' school in the old educational system, and graduation from middle school. "Graduated from schools higher than high
school" includes graduation from high school, vocational college, junior college, university and graduate school.

d) Status of readiness for decision-making: "Have already decided where to go to after discharge" and "Have not decided where to go to after discharge" includes "Cannot even begin to think about a discharge destination," "Not even considering discharge destinations other than the one desired," "Also considering discharge destinations other than the one desired," and "On the verge of deciding where to go to after discharge."
DECISION AIDS TO DISCHARGE ELDERLY STROKE PATIENTS AND ITS EFFECTS

Table 2. Characteristics of discharge decisions

<table>
<thead>
<tr>
<th>Survey item</th>
<th>Intervention Group (n = 51)</th>
<th>Control Group (n = 48)</th>
<th>p-value (inter-group difference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On admission</td>
<td>At discharge</td>
<td>On admission</td>
</tr>
<tr>
<td>Discharge destination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same place as before admission</td>
<td>47 (94.0)</td>
<td>29 (87.9)</td>
<td>42 (87.5)</td>
</tr>
<tr>
<td>Different place from before admission</td>
<td>3 (6.0)</td>
<td>4 (12.1)</td>
<td>6 (12.5)</td>
</tr>
<tr>
<td>With whom the subjects want to decide their discharge destination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By themselves</td>
<td>3 (5.9)</td>
<td>3 (9.1)</td>
<td>2 (4.2)</td>
</tr>
<tr>
<td>With family</td>
<td>34 (66.7)</td>
<td>16 (48.5)</td>
<td>33 (68.8)</td>
</tr>
<tr>
<td>With healthcare professionals</td>
<td>0 (0.0)</td>
<td>1 (3.0)</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>With family and healthcare professionals</td>
<td>14 (27.5)</td>
<td>13 (39.4)</td>
<td>11 (22.9)</td>
</tr>
<tr>
<td>Want to leave it to XX</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (2.1)</td>
</tr>
</tbody>
</table>

Number of people (%).
The number of people and percentages in each item were totaled by eliminating people with missing data (NA).

p-value: In a test of the ratio's before/after differences, Cochran's Q-test was performed for "discharge destination"; a McNemar test was performed for "With whom the subjects wanted to decide their discharge destination"; and a z-test was performed for testing inter-group differences.

a) "With whom the subjects want to decide their discharge destination" was studied with three items: "By themselves," "With family," and "With family and healthcare professionals."
DECISION AIDS TO DISCHARGE ELDERLY STROKE PATIENTS AND ITS EFFECTS

Primary endpoint

In terms of conflicts over decision-making (measured by the DCS), both the intervention and CGs had intense internal conflict over “Support,” “Sufficient explanation of information,” and “Clarification of values.” The intense state of internal conflict continued even after the hospital discharge. On the contrary, the level of internal conflict over “Effective decision-making” was the lowest, during admission and discharge. No significant inter-group differences were seen in terms of the extent of change in DCS scores between admission and discharge (Table 3).
Table 3. Comparison of changes in decision-making conflict

<table>
<thead>
<tr>
<th>Survey item</th>
<th>Intervention Group (n = 51)</th>
<th>Control Group (n = 48)</th>
<th>Amount of change</th>
<th>95% CI</th>
<th>p-value</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>p-value</td>
<td>mean</td>
<td>SD</td>
<td>p-value</td>
</tr>
<tr>
<td>*DCS total score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On admission</td>
<td>47.15</td>
<td>18.57</td>
<td>*<0.01</td>
<td>51.95</td>
<td>21.49</td>
<td>*<0.01</td>
</tr>
<tr>
<td>At discharge</td>
<td>34.65</td>
<td>14.57</td>
<td></td>
<td>34.06</td>
<td>18.40</td>
<td></td>
</tr>
<tr>
<td>Sufficient explanation of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On admission</td>
<td>53.43</td>
<td>32.24</td>
<td>0.07</td>
<td>56.08</td>
<td>31.59</td>
<td>*<0.05</td>
</tr>
<tr>
<td>At discharge</td>
<td>44.44</td>
<td>23.17</td>
<td></td>
<td>39.65</td>
<td>23.92</td>
<td></td>
</tr>
<tr>
<td>Clarification of expectations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On admission</td>
<td>45.75</td>
<td>24.74</td>
<td>0.28</td>
<td>52.43</td>
<td>25.32</td>
<td>*<0.05</td>
</tr>
<tr>
<td>At discharge</td>
<td>41.05</td>
<td>22.99</td>
<td></td>
<td>38.71</td>
<td>24.60</td>
<td></td>
</tr>
</tbody>
</table>
Support
On admission | 59.15 | 22.25 | **p<0.01** | 59.03 | 24.12 | **p<0.01** | -18.55 | 24.30 | 0.37 | **p<0.01** | -9.55, 13.90 | 0.71 | 0.07
At discharge | 40.30 | 17.69 | 38.01 | 23.33 | **p<0.01** | -21.02 | 33.95

Uncertainty
On admission | 43.14 | 28.47 | **p<0.01** | 53.65 | 28.91 | **p<0.01** | -14.75 | 27.95 | 1.18 | **p<0.01** | -4.96, 19.50 | 0.24 | 0.24
At discharge | 28.38 | 18.78 | 31.63 | 23.89 | **p<0.01** | -22.02 | 33.27

Effective decision-making
On admission | 37.50 | 21.90 | **p<0.01** | 41.93 | 25.82 | **p<0.01** | -14.54 | 22.42 | 0.42 | **p<0.01** | -7.89, 12.14 | 0.67 | 0.08
At discharge | 22.96 | 15.83 | 25.26 | 18.84 | **p<0.01** | -16.67 | 27.65

To examine the intervention effects of DCS and participation rates, an unpaired t-test was performed for the amount of change (mean at discharge - mean on admission).
A paired t-test was performed for the mean on hospital admission (baseline) and the mean at discharge.
Mean (mean), SD (standard deviation). People with missing data (NA) were eliminated and then totaled.
Cohen's d shows the effect size, and the yardstick for indices was effect size large: d = 0.80, effect size medium: d = 0.50, and effect size small: d = 0.20.

*DCS: Decision Conflict Scale
Regarding “Uncertainty,” in particular, the number of participants who were undecided in terms of the status of readiness for decision-making showed a significantly high score ($p < 0.05$) (Table 4).
Table 4. Comparison between the amount of changes in decision conflicts and multiple regression analysis results

<table>
<thead>
<tr>
<th>Survey item</th>
<th>*DCS' amount of change</th>
<th>Total score</th>
<th>Sufficient explanation of information</th>
<th>Clarification of value</th>
<th>Support</th>
<th>Uncertainty</th>
<th>Effective decision-making</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>p-value</td>
<td>B</td>
<td>p-value</td>
<td>B</td>
<td>p-value</td>
<td>B</td>
</tr>
<tr>
<td>Duration of hospitalization</td>
<td>0.00</td>
<td>0.98</td>
<td>−0.07</td>
<td>0.45</td>
<td>−0.07</td>
<td>0.40</td>
<td>−0.08</td>
</tr>
<tr>
<td>Status of readiness for decision-making</td>
<td>3.49</td>
<td>0.36</td>
<td>2.06</td>
<td>0.68</td>
<td>5.72</td>
<td>0.27</td>
<td>−0.05</td>
</tr>
<tr>
<td>Presence/absence of intervention</td>
<td>−2.05</td>
<td>0.54</td>
<td>−5.19</td>
<td>0.28</td>
<td>−3.27</td>
<td>0.51</td>
<td>−1.74</td>
</tr>
<tr>
<td>Adjusted coefficient of determination R2</td>
<td>0.52</td>
<td>0.57</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.57</td>
<td>0.57</td>
</tr>
</tbody>
</table>

A multiple regression analysis was conducted, using the subitem of DCS' amount of change (at discharge- on admission) as the dependent variable, controlling it with the DCS' baseline values, and using the duration of hospitalization, status of readiness for decision-making, and presence/absence of intervention as the independent variables. Consecutive numbers were used for DCS and duration of hospitalization, and dummy variables were used for qualitative variables. Analysis was then performed, using the status of readiness for decision-making (1: Have already decided, 2: Not yet decided), and presence/absence of intervention (1: Yes, 2: No).

§B = Non-standard partial regression coefficient, and people with missing data (NA) were eliminated and then totaled.
368 *DCS: Decision conflict scale*
In terms of the effect size of the amount of change in DCS scores, a moderately significant tendency was seen with “Uncertainty” \[t (21) = –1.35, p = 0.19, d = 0.59 \] in people who were living alone (Table 5) and with “Clarification of values” \[t (49) = 1.98, p = 0.05, d = 0.57 \] in older adults aged 75 and older (Table 6).

Table 5. Difference in the means between intervention and control groups in the effects of living alone on decision conflicts

<table>
<thead>
<tr>
<th></th>
<th>Intervention group (n=10)</th>
<th>Control group (n=11)</th>
<th>t-value</th>
<th>95% CI</th>
<th>p-value</th>
<th>d*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS* total score</td>
<td>-20.63 17.80</td>
<td>-10.23 27.16</td>
<td>-1.03</td>
<td>-31.62, 10.82</td>
<td>.32</td>
<td>.45</td>
</tr>
<tr>
<td>Sufficient explanation of information</td>
<td>-12.27 28.73</td>
<td>-5.14 34.31</td>
<td>-.51</td>
<td>-36.21, 21.94</td>
<td>.61</td>
<td>.22</td>
</tr>
<tr>
<td>Clarification of values</td>
<td>-20.04 30.81</td>
<td>-4.42 33.21</td>
<td>-1.11</td>
<td>-44.97, 13.73</td>
<td>.28</td>
<td>.49</td>
</tr>
<tr>
<td>Support</td>
<td>-17.07 16.01</td>
<td>-20.60 29.12</td>
<td>.34</td>
<td>-18.26, 25.31</td>
<td>.74</td>
<td>.15</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>-31.69 30.78</td>
<td>-11.83 35.89</td>
<td>-1.35</td>
<td>-50.55, 10.84</td>
<td>.19</td>
<td>.59</td>
</tr>
<tr>
<td>Effective decision-making</td>
<td>-21.71 17.49</td>
<td>-9.43 30.97</td>
<td>-1.10</td>
<td>-35.60, 11.03</td>
<td>.28</td>
<td>.48</td>
</tr>
</tbody>
</table>

An unpaired t-test was performed for amount of change (mean value at discharge- mean value on admission) to evaluate DCS intervention results among subjects living alone. Mean and SD are shown. Calculations were made after excluding those with missing responses. §d indicates effect size, and index criteria were as follows: large effect size: d=.80, medium effect size: d=.50, small effect size: d=.20

*DCS: Decision Conflict Scale
Table 6. Differences in the means of intervention and control groups in decision conflicts in participants above 75

<table>
<thead>
<tr>
<th></th>
<th>Intervention group (n=27)</th>
<th>Control group (n=22)</th>
<th>t-value</th>
<th>95% CI</th>
<th>p-value</th>
<th>d§</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS* total score</td>
<td>-11.64±16.93</td>
<td>-18.93±28.92</td>
<td>1.05</td>
<td>-6.90, 21.50</td>
<td>.30</td>
<td>.32</td>
</tr>
<tr>
<td>Sufficient explanation of information</td>
<td>-10.36±34.66</td>
<td>-16.94±39.06</td>
<td>.63</td>
<td>-14.62, 27.78</td>
<td>.54</td>
<td>.18</td>
</tr>
<tr>
<td>Clarification of values</td>
<td>-3.30±28.64</td>
<td>-21.81±36.94</td>
<td>1.98</td>
<td>-.32, 37.36</td>
<td>.05</td>
<td>.57</td>
</tr>
<tr>
<td>Support</td>
<td>-18.33±24.99</td>
<td>-23.67±34.00</td>
<td>.63</td>
<td>-11.62, 22.31</td>
<td>.53</td>
<td>.18</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>-13.66±24.73</td>
<td>-17.43±31.64</td>
<td>.50</td>
<td>-12.42, 19.98</td>
<td>.64</td>
<td>.14</td>
</tr>
<tr>
<td>Effective decision-making</td>
<td>-12.31±23.46</td>
<td>-15.84±27.51</td>
<td>.48</td>
<td>-11.12, 18.17</td>
<td>.63</td>
<td>.14</td>
</tr>
</tbody>
</table>

An unpaired t-test was performed for amount of change (mean value at discharge - mean value on admission) to evaluate DCS intervention results among participants age 75 and older.

Mean and SD are shown. Calculations were made after excluding those with missing responses.

§d indicates effect size, and index criteria were as follows: large effect size: \(d = .80 \), medium effect size: \(d = .50 \), small effect size: \(d = .20 \)

*DCS: Decision Conflict Scale

Secondary endpoint

In terms of participation in decision-making, as measured by the CPS, both the intervention and CGs gave the highest scores for “Active roles.” However, no significant differences were seen between the groups (Table 7).
Table 7. Comparison of participation in decision-making

<table>
<thead>
<tr>
<th>Survey item</th>
<th>Intervention Group (n = 51)</th>
<th>Control Group (n = 48)</th>
<th>p-value (before/after difference)</th>
<th>p-value (inter-group difference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On admission</td>
<td>At discharge</td>
<td>On admission</td>
<td>At discharge</td>
</tr>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Active role</td>
<td>28 (54.9)</td>
<td>19 (57.6)</td>
<td>27 (56.3)</td>
<td>26 (63.4)</td>
</tr>
<tr>
<td>Cooperative role</td>
<td>19 (37.3)</td>
<td>7 (21.2)</td>
<td>11 (22.9)</td>
<td>8 (19.5)</td>
</tr>
<tr>
<td>Passive role</td>
<td>4 (7.8)</td>
<td>7 (21.2)</td>
<td>10 (20.8)</td>
<td>7 (17.1)</td>
</tr>
</tbody>
</table>

n stands for no. of people; % shows percentages. The no. of people and percentages of each item were analyzed by eliminating people with missing data (NA).

p-value: Cochran’s Q-test was performed to examine the before/after differences in the ratio of CPS' roles in decision-making, and a z-test was performed for testing inter-group differences.

*CPS: Control Preference Scale

Concerning the effect size of the amount of change in participation rate, a moderately significant tendency was seen among participants living alone [t (21) = 1.44, p = 0.17, d = 0.63] (Table 8).

Table 8. Differences in the means of intervention and control groups in the participation rates of those living alone

<table>
<thead>
<tr>
<th></th>
<th>Intervention group (n=10)</th>
<th>Control group (n=11)</th>
<th>t-value</th>
<th>95%CI</th>
<th>p-value</th>
<th>d*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation rate</td>
<td>-3.26</td>
<td>31.66</td>
<td>-29.46</td>
<td>49.16</td>
<td>1.44</td>
<td>-12.02, 64.42</td>
</tr>
</tbody>
</table>

*CC-BY 4.0 International license It is made available under a perpetual license. It is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
An unpaired t-test was performed for amount of change (mean value at discharge - mean value on admission) to evaluate participation rate intervention results among participants living alone. Mean and SD are shown. Calculations were made after excluding those with missing responses.

*d indicates effect size, and index criteria were as follows: large effect size: d=.80, medium effect size: d=.50, small effect size: d=.20

Discussion

This study examined the use of DAs based on the values held by older stroke patients and their families and used an RCT to evaluate their influence on discharge destination decisions, internal conflict, and degree of participation. Regarding internal conflict over decision-making (DCS), no significant reductions in scores were seen that were attributable to the use of DAs. A tendency to be satisfied with decision-making was observed despite high internal conflict states in Sufficient explanation of information, Clarification of values, and Support persisting at discharge, although it was not statistically significant. It has been reported that the place of convalescence desired may vary according to the participant’s condition, period, and what he/she wishes to prioritize [31]. In our study, the share of older stroke patients returning home after discharge was high—approximately 80%—which was roughly 20% higher than the share of older cancer patients [32,33].

Moreover, older stroke patients believe, prior to hospital admission, that they would return home (which is the same place as before admission), and most felt that was the only choice
available to them. Schkade and Kahneman [34] showed the tendency to use only a part of the information that may be used and underestimated information to which they do not direct their attention while making their decisions. Thus, older stroke patients who were already satisfied with being discharged to their homes may have become confused and unable to cope with the excessive information and choices they were offered. On hospital admission, the participants’ DCS scores showed high internal conflict states in all sub-items and significantly impacted the amount of change in scores from the time of discharge. This showed that the discharge destination decision caused older stroke patients’ intense internal conflict. This is reported to cause strong remorse [35] and gaps/discrepancies between the patient and their family and healthcare professionals [36].

Japan followed other countries and, in 2014, specified a DCS score of over 40 points as a condition for individuals to receive Cancer Patient Management Funding II. Assessing DCS beginning with hospital admission helps select patients who should receive nursing interventions and evaluate such nursing interventions. Our trial revealed that individuals who could not make decisions after hospital admission experienced intense internal conflict and uncertainty and that DAs reduced internal conflict caused by uncertainty, especially in people living alone. Researchers have pointed out the psychological need on the part of patients who have developed cerebrovascular disorder, a condition from which recovery is difficult to predict, and their families, to gain prospects of their home convalescent care [37]. In addition to this uncertainty of
visualizing the future, of not being able to see the light at the end of the tunnel, it was believed that uncertainty would increase, in the case of those living alone, due to a shortage of support and assistance. Therefore, our study suggests the need to select people living alone as those requiring discharge assistance, from the time of hospital admission.

In our study, although “Clarification of values” indicated the smallest amount of change from admission to discharge in comparison to the other four DCS scales, it tended to reduce internal conflict in older adults aged over 75. This finding was similar to that by Stacey et al. [14] who reported little evidence that people made choices with DA that matched their values based on information (RR: 2.06, 95% CI: 1.46 – 2.91). Concerning the place of convalescence for older adults, their final abode must also be considered and the grounds for determining the best place for older adults have not yet been clarified [38,39]. As a result, it has been revealed that diverse values exist when deciding the place of convalescence for older adults [16,40,41]. The DA used in our study was developed based on the values of older stroke patients and their families who had to choose where to live after discharge. However, all the values extracted were important, suggesting it to be difficult to differentiate them. Older adults make decisions by relying on their past experiences and predictions, making them liable to biases [42]. Older adult patients agree to return home upon being suggested so, and professionals providing them information feel no need to make an effort to describe other potential locations to the patients. This finding suggests a risk
that the advantages and, especially disadvantages, cannot be compared—which also happens to be part of the decision-making process—and that values are less liable to be clarified. Dugas et al. [43] stated that involving the immediate parties in the development process helps to avoid stigma and to clarify society’s essential problems. It is also reported that DA can reduce the percentage of patients who are unable to make decisions [44]. DA was shown to have the potential to help reduce the ambiguity and uncertainty of values held, especially, by older adults aged 75 and older living alone who, despite having ample experience, are inevitably entangled in a situation in which they are affected by their surroundings and the people around them. Hence, as the result of this study suggests, DA makes it easier for older adults to decide.

Next, in terms of participation in decision-making, no significant increases were seen in the CPS scores after using DA. However, there was a tendency for DA use to control the decrease in participation rate among participants who lived alone. Our study’s percentage of CPS playing an “active role” was about 30% lower than that seen in past research of other countries [45]. Instead, the percentages were characteristically high in terms of “Cooperative role” and “Passive role,” that is, working together with other people or leaving the decision to others. However, Almborg et al. [46] report that almost none of the patients who take part in discharge planning believe that they were taking part in planning their treatment and care needs, services, rehabilitation, or goal-setting. As a result, the roles of decision-making, as evaluated by CPS,
were based solely on self-reporting by older stroke patients. Hence, we feel that they have not been able to appropriately grasp whether or not they had actually participated in decision-making. As cultural characteristics of decision-making among the Japanese, Kawai et al. [47] state that the people tend to emphasize harmony, deliberately refrain from stating their opinions, leave decision-making entirely to others, and provide tacit consent. However, the fact that older stroke patients had wished to decide their discharge destination, and had acknowledged that they had taken part in them, was a new insight we gained. In our study, those who had made decisions with someone else, such as family and healthcare professionals, accounted for approximately 80% and almost no one made decisions on his/her own. As seen, even if the decisions were about older adults and they had to decide where to discharge themselves, the fact that they had decided together with family and healthcare professionals may have led to their high level of awareness that they were also taking part in the process. It has been shown that the ability to take part in decision-making (as evaluated by CPS) is influenced most strongly by a shortage of knowledge of the choices available, the patients’ preferences, and a lack of balance in power relationships [48]. Older stroke patients, expecting to return home after discharge, may have hesitated to make a decision, out of a sense of guilt and awareness of having been afflicted by a stroke and that they would therefore be highly dependent on someone else. Thus, it was suggested that DA might
benefit decision-making among people who live alone and are likely to lack support. This is also
the reason for the need for objective evaluations by family and healthcare professionals.

Limitations

The DA utilized in this study was the first tool of its kind in Japan that was evaluated
via an RCT targeting older stroke patients. However, it is necessary to consider several limitations
while interpreting the results. This study initially verified the genuine effects only of DA, so the
intervention content consisted only of the distribution of DA or brochures, confirming their usage
status. Therefore, although DAs are designed to promote SDM, offering them itself does not
guarantee the implementation of SDM with family and various professionals. Moreover, the
difference in effects was not particularly evident because due to COVID-19 restrictions, the
intended sample size could not be achieved. It is also necessary to bear in mind that the brochure’s
content was the same as certain sections of the DA, and the risk of contamination would have
been caused by moving people to different hospital rooms. Only one institution was used in this
study as the research target facility, and there is the possibility that it has numerous unique facility
criteria and regional characteristics which may not be generalizable to other institutions. Going
forward, there is a need to increase research target facilities and study participants to generalize
and standardize the findings and data and to further understand the period and method of offering DA as well as the selection and content of target individuals.

Conclusion

Our study showed that DA was effective in easing the uncertainty and controlling the decline in participation rates, especially felt by people living alone who had been unable to decide their discharge destinations since the time of their hospital admission, and in clarifying the values of older people aged 75 and older. Henceforth, it is necessary to widen the choices offered to participants while taking the time to ask them about the post-discharge life they were envisaging. Then, while making use of DA, we felt that, by adding explanations of the disadvantages of the choice made, the participants could take part in decision-making, which could reduce internal conflict.

Acknowledgments

We would like to thank all participating older stroke patients and their families, as well as the staff of the Toyama Prefectural Rehabilitation Hospital & Support Center for Children with Disabilities.
References

family caregivers of one IP home care team. BMC Geriatr. 2014;14: 83. Available from:

28. Strull WM, Lo B, Charles G. Do patients want to participate in medical decision making?

40. Murray MA. When you need extra care, should you receive it at home or in a facility?

42. Otake F, Hirai T. Behavioral economics at the sites of medicine: Doctors and patients missing each other. Tokyo: Toyo Keizai; 2018. p. 166.

Supporting Information

S1 File. Manual for Research Assistants
Assessment of eligibility (n = 135)

Excluded (n = 28)
- Turned down request for participation when referred to by the head nurse (n = 14)
- Turned down request for participation after receiving explanation from researchers (n = 14)

Randomization (n = 107)

Intervention Group: Those with Decision Aids (n = 54)
- Intervention discontinued (n = 5)
 - No questionnaires of any type could be conducted (n = 3)
 (Reason: Disliked the questions; poor health; aggravation of anxiety)
 - Did not read the Decision Guide before discharge, even once (n = 2)
 (Reason: Felt that the text was read aloud to them too quickly; too tiring on the eyes)
- Eliminated as analysis targets (n = 19)
 - Gave extreme answers to DCS on discharge (n = 1)
 - Failed to meet the protocol (n = 18)
 (Absence of questionnaire on discharge: Sudden transfers, discontinuation due to COVID, etc.)

Control Group: Those without Decision Aids (n = 53)
- Intervention discontinued (n = 11)
 - No questionnaires whatsoever could be conducted (n = 5)
 (Reason: Could not understand the content of questionnaire; it was not relevant to them)
 - Did not read the Decision Guide before discharge, even once (n = 6)
 (Reason: It was a bother reading it; could not understand it; not necessary)
- Eliminated as analysis targets (n = 11)
 - Gave extreme answers to DCS at discharge (n = 3)
 - Was emotionally unstable while taking the questionnaire (n = 1)
 - Failed to meet the protocol (n = 7)
 (Absence of questionnaire on discharge: Sudden transfers, discontinuation due to COVID, etc.)

ITT Analysis Group (n = 51)
- Those who had been eliminated as analysis targets (n = 3)
- Those for whom no questionnaire of any type could be conducted

ITT Analysis Group (n = 48)
- Those who had been eliminated as analysis targets (n = 5)
- Those for whom no questionnaire of any type could be conducted