Angiotensin converting enzyme (ACE) expression in leukocytes of older adults

Valquiria Bueno1*, Pedro Henrique Destro1, Daniela Teixeira1, Daniela Frasca2

1Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo (Unifesp), São Paulo, Brazil
2Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA email: dfrasca@med.miami.edu.

* Correspondence:
Valquiria Bueno
vbueno@unifesp.br

Keywords: aging, angiotensin converting enzyme, lymphocytes, immunosenescence, inflammaging

Abstract
The renin-angiotensin system (RAS) is composed of several enzymes and substrates on which angiotensin converting enzyme (ACE) and renin act to produce angiotensin II. ACE and its substrates control blood pressure, affect cardiovascular and renal function, hematopoiesis, reproduction, and immunity. The increased expression of ACE has been observed in human monocytes during congestive heart failure and abdominal aortic aneurysm. Moreover, T lymphocytes from hypertensive patients presented increased expression of ACE gene after in vitro stimulation with Angiotensin-II (AngII) with the highest ACE expression observed in hypertensive patients with low-grade inflammation. Our group and others have shown that aging is associated with comorbidities, chronic inflammation and immunosenescence, but there is a lack of data about ACE expression on immune cells during the aging process. Therefore, our aim was to evaluate the levels of ACE expression in non-lymphoid as compared to lymphoid cells in association with the immunosenescence profile in adults older than 60 years. Cryopreserved peripheral blood mononuclear cells obtained from blood samples were used. Cells were stained with monoclonal antibodies and evaluated by flow cytometry. We found that ACE was expressed in 56.9% of non-lymphocytes and in more than 90% of lymphocytes (all phenotypes). All donors exhibited characteristics of immunosenescence, as evaluated by low frequencies of Naive CD4+ and CD8+ T cells, high frequencies of EMRA CD8+ T cells, and double-negative memory B cells. These findings in addition to the increased C-reactive protein levels are intriguing questions for the study of ACE, inflammaging, immunosenescence and perspectives for drug development or repurposing.
Introduction
Angiotensin converting enzyme (ACE/CD143) and renin are components of the renin angiotensin system (RAS) acting to produce angiotensin II. In a simplistic definition, RAS is composed by a vasoconstrictor, pro-inflammatory ACE/AngII/AT1R axis, and a vasodilating anti-inflammatory ACE2/Ang1-7/MasR axis (Figure 1). In addition to the blood pressure control, ACE and its peptide substrates affect cardiovascular and renal function, hematopoiesis, reproduction, and the immunity. [1, 2] Thus, it seems crucial that RAS presents an inflammatory and an anti-inflammatory axis for the adequate regulation of the immune response. ACE expression has been observed not only in tissues since its soluble form was found in urine, serum, seminal fluid, amniotic fluid, and cerebrospinal fluid. [3]

Figure 1. The renin angiotensin system (RAS): ACE - angiotensin converting enzyme, AT1R - Angiotensin II type 1 receptor, AT2R - Angiotensin II type 2 receptor

The expression of ACE in cells from the immune system has been reported in health and disease. Costerousse et al. observed in healthy adult donors by RT-PCR and southern blot the expression of ACE in monocytes, macrophages, and T cells but not in B cells. In addition, ACE activity was very low in monocytes whereas it was high in macrophages (monocytes driven to differentiation). T cells presented intermediary ACE activity and B cells expressed no activity. [4] In patients with type 1 diabetes (29 years, normotensive) it was observed higher ACE and lower ACE2 gene expression when compared to healthy (32 years, normotensive) controls. [5] Coppo et al. [6] found that T cells in culture expressed increased mRNA for ACE and AT1R in obese individuals with low-grade inflammation (high sensitivity C-reactive protein > 3mg/dL). ACE activity in the supernatant of T-cell culture was also increased in obese individuals with hsCRP > 3mg/dL. Moreover, RAS gene expression on T cells and levels of inflammatory cytokines in the serum were oppositely associated with serum levels of insulin. [6, 7] Ulrich et al. [8] have shown that the increased expression of ACE in monocytes was associated with kidney and cardiovascular disease progression.
suggesting that circulating leukocytes can modulate local immune response via their own RAS components. [8, 9, 10]

Considering that aging has been associated with comorbidities, low-grade of chronic inflammation and altered frequency/function of immune system cells [11, 12, 13, 14], it seems reasonable to suggest that ACE play an important role in the aging process. In hematopoietic stem progenitor cells isolated from peripheral blood, Joshi et al. [15] showed that aging is associated with decreased ACE2 and increased ACE protein expression. This imbalance suggests a bias to the detrimental pro-inflammatory axis of local RAS. Considering the scarce information about ACE expression in the phenotypes of T and B cells, we aimed to investigate ACE expression in cells from the immune system and parameters of immunosenescence in adults older than 60 years. Results herein show different levels of expression of ACE in non-lymphoid versus lymphoid cells, with the expression being higher in lymphoid cells.

Materials and Methods

The Ethics Committee of the Federal University of São Paulo - UNIFESP approved all procedures (Protocol number 10904). Blood was collected from adults aged 64-67 years old in 2015. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll–Hypaque density gradient (Amersham Biosciences, Uppsala, Sweden) and centrifugation. Viable cells were counted, adjusted for $2 \times 10^6/100 \mu L$ in 80% fetal bovine serum and 20% dimethylsulfoxide (Sigma, St. Louis, MO, USA), and frozen stored until the phenotyping. In 2021 cells were thawed, stained with monoclonal antibodies to T-cell phenotype CD4 PeCy5.5, CD8 APC Cy7, CD27 APC, CD45RA PE; B-cell phenotype CD19 PE, CD27 APC, IgD PE Cy5.5 (eBioscience, CA, USA), and ACE CD143 FITC (R&D Systems). After 30 minutes of incubation with monoclonal antibodies, in the dark and at 4°C, the cells were washed with PBS and centrifuged. Living cells (based on forward and side scatter) were acquired in the BD FACSCanto™ II using the DIVA software (Becton Dickinson, USA).

For the metabolic parameters, serum of studied individuals was previously isolated by centrifugation and frozen stored until the use. Measurement of metabolic parameters was performed in the laboratory central - Hospital São Paulo/UNIFESP.

Statistics

Data are presented as mean ± standard deviation (SD). To test the normality of data it was used the Shapiro-Wilk test. P<0.05 was considered significant.
Results

Table 1 shows that older adults are heterogeneous for some metabolic parameters such as glucose, urea, Hbglic, and C-reactive protein (CRP) and presented metabolic changes which were similar to those obtained by Carlsson et al. [16] and Helmerson-Karlqvist [17] in healthy older adults. The same study [16] found that CRP value was 2.6 with a coefficient variation of 1.4% whereas in our study, it was observed higher values of CRP in 5 out of 6 individuals. Increased CRP levels has been associated with inflammaging and our findings suggest that the studied population has changes in metabolic parameters which are likely associated with an inflammatory profile. [18]

Table 1. Metabolic parameters observed in older adults

<table>
<thead>
<tr>
<th>Metabolic parameters</th>
<th>Cholesterol mg/dL</th>
<th>LDL mg/dL</th>
<th>Triglycerides mg/dL</th>
<th>Glucose mg/dL</th>
<th>Urea mg/dL</th>
<th>Creatinine mg/dL</th>
<th>Albumin mg/dL</th>
<th>HbGlic mg/dL</th>
<th>CRP mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>137</td>
<td>152</td>
<td>80</td>
<td>30</td>
<td>0.86</td>
<td>3.8</td>
<td>5.9</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>176</td>
<td>152</td>
<td>86</td>
<td>40</td>
<td>0.73</td>
<td>4.1</td>
<td>6.2</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>96</td>
<td>130</td>
<td>137</td>
<td>28</td>
<td>0.84</td>
<td>3.2</td>
<td>7.9</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>150</td>
<td>149</td>
<td>83</td>
<td>28</td>
<td>0.68</td>
<td>4.2</td>
<td>5.5</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>186</td>
<td>163</td>
<td>89</td>
<td>29</td>
<td>0.79</td>
<td>3.8</td>
<td>5.8</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>125</td>
<td>130</td>
<td>165</td>
<td>28</td>
<td>1.01</td>
<td>3.4</td>
<td>6.0</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Mean ± SD

<table>
<thead>
<tr>
<th>Cholesterol mg/dL</th>
<th>LDL mg/dL</th>
<th>Triglycerides mg/dL</th>
<th>Glucose mg/dL</th>
<th>Urea mg/dL</th>
<th>Creatinine mg/dL</th>
<th>Albumin mg/dL</th>
<th>HbGlic mg/dL</th>
<th>CRP mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>217.3 ± 27.2</td>
<td>145</td>
<td>146</td>
<td>106.7</td>
<td>30.5</td>
<td>0.82</td>
<td>3.8</td>
<td>6.2</td>
<td>7.6</td>
</tr>
</tbody>
</table>

p >0.100 >0.100 >0.100 0.047 0.017 >0.100 >0.100 0.022 0.026

Table 2 and figures 2, 3, and 4 show that CD143 (ACE) is expressed in almost 100% of lymphocytes, whereas is is expressed in 56.9% (mean) of non-lymphocytes. CD8\(^+\) T cells presented the highest expression (98.4%), followed by CD19\(^+\) B cells (93.7%) and CD4\(^+\) T cells (90.7%). In T cells, ACE is expressed in all phenotypes (naive, central memory, effector memory, and EMRA). In B cells, naive had the highest levels of ACE expression (53.2%), followed by DN B cells (25.1%), switched (15.3%) and unswitched (6.5%) memory B cells.
Figure 2. Flow cytometry gating strategy for B cell phenotypes and CD143 expression
A) All cells and gate for lymphocyte (green) based on forward scatter (FSC-A) and side scatter (SSC-A)
B) Doublets exclusion (from the lymphocyte gate)
C) CD19+ B cells (from the doublets exclusion gate)
D) CD143+ ACE cells (from the CD19+ B cells gate)
E) B cells phenotypes and CD143+: IgM+IgD+CD27+ (naive); IgM+IgD+CD27+ (memory unswitched); IgM IgD CD27+ (memory switched); IgM+IgD CD27+ (double negative)

Figure 3. Flow cytometry gating strategy for T cell phenotypes and CD143 expression
A) All cells and gate for lymphocyte (green) based on forward scatter (FSC-A) and side scatter (SSC-A)
B) Doublets exclusion (from the lymphocyte gate)
C) CD4+ and CD8+ T cells (from the doublets exclusion gate)
D) CD143+ ACE cells (from the CD4+ and CD8+ T cells gate)
E) T cells phenotypes and CD143+: CD45RA-CD27- (naive); CD45RA+CD27+ (central memory CM); CD45RA+CD27+ (effector memory EM); CD45RA+CD27+ (terminally differentiated EMRA)

Figure 4. Flow cytometry gating strategy for non-lymphocytes and CD143 expression
A) All cells and gate for lymphocyte (P1) and non-lymphocyte based on forward scatter (FSC-A) and side scatter (SSC-A)
B) CD143+ ACE cells (from the non-lymphocyte gate)

Table 3 shows that both male and female present characteristics of senescent T cells such as low expression of Naive CD4+ and CD8+ T cells and high expression of EMRA CD8+ T cells.
Table 3. Phenotypes of CD4+ and CD8+ T cells

<table>
<thead>
<tr>
<th>T CD4+ cells</th>
<th>T CD8+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive%</td>
<td>CM%</td>
</tr>
<tr>
<td>27.6</td>
<td>55.9</td>
</tr>
<tr>
<td>43.3</td>
<td>29.1</td>
</tr>
<tr>
<td>13.4</td>
<td>55.4</td>
</tr>
<tr>
<td>12.5</td>
<td>49.8</td>
</tr>
<tr>
<td>24.8</td>
<td>55.3</td>
</tr>
<tr>
<td>32.6</td>
<td>25.4</td>
</tr>
</tbody>
</table>

Mean: 25.7 ± 11.7, p >0.100

Table 4 shows that those aging adults with lower percentages of Naive B cells also presented a higher percentage of double negative (DN) memory B cells.

Table 4. Phenotypes of CD19+ cells

<table>
<thead>
<tr>
<th>CD19+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive %</td>
</tr>
<tr>
<td>73.8</td>
</tr>
<tr>
<td>61.3</td>
</tr>
<tr>
<td>28.6</td>
</tr>
<tr>
<td>51.8</td>
</tr>
<tr>
<td>35.9</td>
</tr>
<tr>
<td>67.7</td>
</tr>
</tbody>
</table>

Mean: 53.2 ± 17.9, p >0.100
Discussion

The link between RAS and immunity has been suggested but its role is not completely clear under physiological and pathological conditions. It was shown by Barisione et al. [19] that congestive heart failure (CHF) patients expressed higher levels of CD14+CD16+ (monocytes) and ACE (CD143) than matched controls. CD14+CD16+ levels increased according to CHF disease severity and were associated with ACE (CD143) expression. [19] Coppo et al. [20] found that isolated T cells from healthy donors expressed in culture ACE, AT1R, and IFN-gamma mRNA. It was also detected ACE activity and AngII in the cell pellet confirming that immune cells present their own local RAS components. The addition of AngII to culture caused an increase in the gene expression for ACE, AT1R and IFN-gamma in addition to increased ACE activity and AngII. T lymphocytes pre stimulated by LPS followed by AngII addition to culture, expressed even higher levels of mRNA for ACE, AT1R, and IFN-gamma [20]. Mechanistically, AngII can be produced by mononuclear cells/lymphocytes and at the same time AngII induces immunologic activation on these cells. Therefore, the inflammatory axis ACE/AngII/AT1R and the counter-regulator ACE2/Ang1-7/MasR axis [21, 22] could play a role in chronic diseases, inflammaging and immunosenescence observed in older adults. Our studied population was heterogeneous for some variables but it was possible to observe changes in metabolic parameters and increased levels of C-reactive protein (CRP). This inflammatory profile [18] in addition to more than 90% of T and B cells expressing ACE in our older adults suggest a correlation between aging, inflammaging and ACE. Independent of the chronological age, inflammation (even if related to sub-clinical diseases) may be a contributor for disease progression when the balance with anti-inflammation is shifted [23]. In this context, the control of ACE/ACE2 expression could be explored as a target for the balance of exacerbated inflammatory reactions.

The phenotype of T and B lymphocytes has been used to identify the senescence in immune cells. CD4+ T cells present changes during the aging process with decrease of Naive and increase of Effector Memory phenotypes whereas CD8+ T cells show decrease in Naive and increase in effector memory (EM) and effector memory re-expressing CD45RA (EMRA). [12, 24, 25] It has been shown the reduction of Naive B cells and no change for memory unswitched and memory switched B cells. In addition, it has been observed an increase in the percentage of double negative B cells. [26, 27, 28, 29] Using these phenotypes, we found similar senescent phenotype in some of the studied aging adults. The reduction of Naive lymphocytes has been related to impaired antigen responsiveness and for B cells it is observed decrease in the production of antibodies. [30, 31] The increased percentage of double-negative memory (DN memory) B cells has been linked to autoimmune diseases. [32, 33]. We found ACE expression in more than 90% of T cells and B cells and in all phenotypes. ACE was expressed in non-lymphocytes in a range of 32.9% to 75.9%. Our findings suggest that ACE could play a role in several processes linked to aging including the generation and activation of autoimmune cells, due to the experimental evidence that inhibitors of ACE suppress the autoimmune process in a number of autoimmune diseases such as EAE, arthritis, autoimmune myocarditis. [34]

The present study is the first to compare the expression of the protein ACE among different cell types, both lymphoid (CD4+ and CD8+ T cells, B cells), and non-lymphocytes in older adults. It was also observed that even though the studied population is in the early stage of chronological aging and presented metabolic parameters compatible with healthy aging, there are signs of inflammaging (increased
CRP) and immunosenescence such as low expression of naive T and B cells in addition to the accumulation of terminally differentiated T CD8+ and B cells. The major limitation of this study is the small sample size since it would be interesting to correlate metabolic parameters/health status with ACE expression but to reach this goal it would be necessary a large sample size. In addition, we only have CRP as a marker of inflammaging and IL-6 and TNF-α would be desirable to complete our panel. Functional analysis are needed to clarify the impact of ACE expression on immune cells and whether ACE inhibitors (ACEi) and angiotensin receptor blockers (ARBs) administered to hypertensive patients affect somehow the immunity. Recently it was shown that the membrane-bound ACE2 acts as a receptor for SARS-CoV-2 but it is still under investigation the possible effects on RAS components (AngII, Ang1-7, ACE, ACE2, AT1 and Mas) and whether ACEi and ARBs interfere with the mitigation of COVID-19. [35, 36, 37, 38, 39] Considered that COVID-19 and other infectious diseases have a major impact in aged adults, mainly in those with chronic diseases (i.e. hypertension and users of ACEi or ARBs), our results bring new intriguing questions regarding the link between ACE expression in immune cells, inflammaging and immunosenesence and perspectives for drug development/repurposing.

Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments
Pedro Destro has a CNPq fellowship, CAPES PrInt UNIFESP nº 88881.310735/2018-01

References
[22] Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes-E-Silva AC. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis:

