Induction of poxviral immunity by synthetic MVA-based dual-antigen COVID-19 vaccine COH04S1

Flavia Chiuppesi*; John A. Zaia¹; Sandra Ortega Francisco; Minh Ly; Felix Wussow and Don J. Diamond*

Department of Hematology and HCT and Hematologic Malignancies Research Institute, ¹Center for Gene Therapy, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010.

*FC and DJD are co-corresponding authors

Corresponding Authors: F. Chiuppesi, fchiuppesi@coh.org; D.J. Diamond, ddiamond@coh.org.

Running title: Induction of poxviral immunity by COH04S1

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Summary

The recent outbreak of monkeypox outside its endemic boundaries has attracted global attention and prompted world leaders to reserve thousands of doses of the only approved third-generation smallpox/monkeypox vaccine Jynneos, which is based on the highly attenuated modified vaccinia Ankara (MVA) vector. Given the potential urgency to vaccinate individuals at risk in both endemic and non-endemic countries to curtail further spread of the outbreak, there is a legitimate need for substantial doses of smallpox/monkeypox vaccines. We previously developed COH04S1, a multiantigen SARS-CoV-2 vaccine candidate built on a synthetic MVA platform. COH04S1 was found to be safe and to induce SARS-CoV-2-specific immune responses in healthy adults participating in a phase 1, blinded, randomized, placebo-controlled clinical trial. Here we perform a retrospective analysis of vaccine-induced orthopoxvirus immunity in a subgroup of volunteers enrolled in the phase 1 clinical trial that were vaccinated with COH04S1 at different doses. At all dose levels, vaccination with COH04S1 resulted in robust MVA-specific binding and neutralizing antibody responses, which were sustained over six months post-vaccination. Similarly, both CD8+ and CD4+ T cells specific for MVA were induced by COH04S1 vaccination and remained durable for at least six months. Given that both arms of the immune response are thought to be involved in protection against orthopoxvirus infections, our results indicate that COH04S1 or other sMVA-based vaccines may represent valuable candidates for smallpox/monkeypox vaccination.
Introduction

The unforeseen 2022 Monkeypox outbreak outside of its endemic boundaries has worried health officials and renewed interest in testing and stockpiling of a safe and effective smallpox vaccine\(^1\). Smallpox (or *variola major*), a poxvirus with a case-fatality rate of up to 30%, was declared eradicated in 1980 after a very successful global vaccination campaign\(^2\). Monkeypox belongs to the same *orthopoxvirus* genus as smallpox and exists in two clades. The Central African clade has a high mortality rate of 10%, while infection with the West African clade results in about 1% case-fatality rate\(^3\). Monkeypox is endemic in some Central African countries, where it causes more than 1,000 cases annually\(^3\)-\(^5\). The recent worldwide outbreak with epicenter in Europe caused by the less severe West African clade has resulted in more than 16,000 cases globally (as of July 25\(^{th}\), 2022) with five reported deaths. The recently reported cases in children and healthcare workers has prompted the WHO to declare monkeypox outbreak a global health emergency.

Replication-competent vaccinia virus strains of different origin were used around the world for the smallpox vaccination campaign, which ended in 1972\(^6\). In the US, vaccinia strain Dryvax grown on calf skin formed the first-generation smallpox vaccine and was later substituted by ACAM2000, which was plaque purified from Dryvax and produced using modern cell culture technology. While ACAM2000 was highly immunogenic, it was associated with a high risk of myocarditis/pericarditis (1 in 175 naïve adults), and this risk also extended to close contacts of vaccinated subjects, posing a threat, albeit low, for children, pregnant women, and immunocompromised individuals\(^6\). For this reason, use of ACAM2000 has been licensed with a medication guide and its use restricted to designated U.S. military personnel and laboratory researchers working with certain poxviruses.

Modified vaccinia Ankara (MVA) is a highly attenuated, replication-defective orthopoxvirus that was derived from its parental strain chorioallantois vaccinia virus Ankara by over 500 passages
on chicken embryo fibroblasts7. MVA was developed as a third-generation smallpox vaccine and has been safely administered at the end of the smallpox eradication campaign to more than 120,000 individuals, including children with immunodeficiencies and HIV infected individuals6. Recently, Bavarian Nordic’s proprietary MVA strain MVA-BN has been approved by the FDA as a smallpox and monkeypox vaccine under the name of Jynneos based on a phase 3 non-inferiority trial comparing one dose of ACAM2000 with two intramuscular doses of Jynneos9 as well as nonhuman primate studies using a lethal monkeypox virus challenge10. Consequently, Jynneos has been added to the Strategic National Stockpile (SNS) as a safer alternative to ACAM2000 that could be administered to the broader population. Due to the recent monkeypox outbreak, Jynneos is now offered in some countries as a prophylactic vaccine in at-risk subjects and for ring vaccinations in possible contacts of infected individuals. Given its robust safety and immunogenicity profile, MVA has also been extensively used as a viral vector for delivery of heterologous antigens and tested as a vaccine against infectious diseases and cancer8,11-13.

We developed a fully synthetic MVA (sMVA) platform based on the genome sequence published by Antione et al.14 for reconstituting virus that is virtually identical to wild-type MVA in terms of replication properties, host cell tropism, and immunogenicity15. Using this platform, which allows rapid generation of sMVA recombinants encoding multiple transgenes, we developed COH04S1, a multiantigen sMVA-based COVID-19 vaccine encoding for Spike (S) and Nucleocapsid (N) antigens. COH04S1 has been extensively tested in small and large animal models, demonstrating robust immunogenicity and protective efficacy against SARS-CoV-2 and its variants through intramuscular and intranasal routes of vaccination15-17. Additionally, COH04S1 has been tested in a phase I, randomized, placebo-controlled clinical trial in healthy adults, showing a remarkable safety profile and resulting in the induction of robust and durable humoral and cellular responses to both vaccine antigens18,19. Currently,
COH04S1 is being evaluated in two phase 2 clinical trials in healthy adults and immunocompromised patients (NCT04639466, NCT04977024).

Given the recent approval of MVA as a vaccine to prevent smallpox and monkeypox, we evaluated whether COH04S1-vaccinated individuals, besides developing immunity to SARS-CoV-2\(^1\), also mounted orthopoxviral-specific immunity. We found that COH04S1 vaccinees developed robust orthopoxviral-specific humoral and cellular immune responses for up to six-months post vaccination, suggesting that COH04S1 could be a unique dual-agent vaccine candidate to simultaneously control the COVID-19 pandemic and the unforeseen global monkeypox outbreak.
Results

Study design to evaluate orthopoxviral immunity in COH04S1 vaccinees

We retrospectively evaluated orthopoxviral-specific humoral and cellular immune responses for up to six months after vaccination with sMVA COVID-19 vaccine candidate COH04S1 in a subgroup of 20 volunteers enrolled in a phase 1 clinical trial aimed at testing safety and immunogenicity of COH04S1 at different dose levels (DL) (NCT04639466)\(^\text{18}\). Subjects were prime-boost vaccinated with low-dose (DL1, 1x10^7 plaque forming units [pfu]), medium-dose (DL2, 1x10^8 pfu), or high-dose (DL3, 2.5x10^8 pfu) of vaccine. Of the 20 subjects vaccinated with COH04S1, 15 (5 subjects/group) received two DL1, DL2, or DL3 vaccinations 28 days apart, and 5 received two DL1 vaccinations 56 days apart with a placebo dose at day 28 (DL1/placebo/DL1). Four placebo-vaccinated subjects enrolled in the same trial were included as controls. Subjects were not required to provide their smallpox vaccination status, and poxvirus serostatus at enrollment was not evaluated. However, an exclusion criterion was any poxvirus-vaccination in the six months before enrolling in the trial. Summary of study subjects, vaccination schedule and age at enrollment is presented on Table S1.

Orthopoxviral-specific binding antibodies induced in COH04S1-vaccinated subjects

MVA-specific IgG binding antibodies in serum of COH04S1 vaccinated subjects were measured against whole MVA virions by ELISA. Low binding (O.D.<0.4 nm) at low serum dilution (1:150) was measured at baseline in most subjects (Figure S1). In contrast to all placebo control volunteers, all subjects vaccinated with COH04S1 showed an increase in MVA-specific IgG titers post-vaccination regardless of the dose vaccination regimen (Figure 1), demonstrating potent vaccine-elicited orthopoxviral-specific humoral immunity. Elevated MVA-specific IgG titers were measured following prime vaccination at all dose levels, although MVA IgG titers in DL2 and DL3 subjects tended to be higher than those in DL1 subjects, indicating a dose dependent response (Figure 1A-B). While DL1 cohorts had a seroconversion rate of 30-60%
following prime vaccination, DL2 and DL3 subjects showed 100% seroconversion after the first
dose (Figure 1C). MVA-specific IgG titers further increased in all vaccine cohorts following the
second dose resulting in similar responses in DL1 and DL2/3 subjects and 100% seroconversion in all vaccine cohorts. MVA-specific IgG titers slowly declined over five-months post vaccination in all vaccine cohorts, but they remained at elevated levels over baseline in all subjects independent of the dose immunization regimen, except for one subject in the DL1 cohort. Notably, two subjects in the DL1 and DL3 cohorts - one subject born in 1971 and one subject born in 1986 - had high IgG endpoint titers of 4,050 and 1,350 before vaccination, possibly indicating pre-existing orthopoxviral immunity (Figure S1). These two subjects showed particularly elevated MVA-IgG titers after only one vaccine dose and their MVA IgG titers remained stable over six months post vaccination. These results overall demonstrate that COH04S1-vaccinated subjects develop potent orthopoxviral-specific IgG antibody responses.

Orthopoxviral-specific neutralizing antibodies induced in COH04S1-vaccinated subjects

MVA-specific neutralizing antibody (NAb) responses were measured on epithelial cells using a high-throughput microneutralization assay. Similar to the observed MVA IgG responses in DL1-DL3 subjects, COH04S1-vaccinated subjects in all vaccine cohorts showed a strong increase in MVA-specific NAb titers, consistent with potent vaccine-induced orthopoxviral-specific immunity (Figure 2). Following prime vaccination, only a minor proportion of the DL1 subjects showed elevated MVA-specific NAb titers, whereas all DL2 and DL3 subjects showed an increase in MVA-specific NAb titers, confirming a dose-dependent vaccine effect after one dose (Figure 2A-B). While the DL1 cohorts showed a seroconversion rate of 0-60% after the first vaccination, DL2 and DL3 cohorts showed 100% seroconversion for MVA-specific NAb after the first dose (Figure 2C). All subjects of the different vaccine cohorts developed robust MVA-specific NAb titers at one month after the booster dose with NT50 titers ranging from 73 to >2,560 and a median NT50 of 303, resulting in 100% seroconversion in all vaccine cohorts. DL2 and DL3
subjects tended to have slightly higher NAb titers than DL1 vaccinated volunteers. Similar to the MVA IgG titers, MVA-specific NAb titers declined in all vaccine cohorts over five-months post-second vaccination, but they remained above baseline in most subjects, resulting in a median NT50 titer of 65 and comparable titers across vaccine groups. Only two volunteers in the DL2 and DL3 vaccine cohorts had undetectable MVA-specific NAb titers. Interestingly, the same two subjects with high baseline MVA binding IgG titers had pre-vaccination NAb titers approaching the NT50 detection limit of 20, suggesting pre-existing orthopoxvirus-specific NAb responses in these vaccinees (Figure S2). Placebo-vaccinated volunteers had consistently undetectable MVA-specific NAb throughout the observation period (Figure 2). These results demonstrate that subjects vaccinated with COH04S1 at different dose levels develop robust and durable orthopoxvirus-specific NAb responses.

Orthopoxviral-specific cellular immunity induced in COH04S1-vaccinated subjects

Orthopoxvirus-specific T cells were evaluated after the second dose by assessing co-expression of IFNγ with CD107a or CD69 activation markers on MVA-stimulated T cells using flow cytometry (Figures S3-S4). CD107a marks cells capable of cytotoxic effector functions while CD69 is an early T cell activation marker that is transiently upregulated by activated T cells. Low levels of activated CD8+ and CD4+ T cells secreting IFNγ upon MVA stimulation were measured at baseline (Figures 3A and S5). COH04S1 vaccinees showed a significant increase in CD107+ and CD69+ IFNγ-secreting CD8+ and CD4+ T cells at one month after the second dose and they maintained significantly elevated levels of activated T cells over five months post-boost (Figures 3A and S5). Similar levels of MVA-specific T cells were observed independently of dose level (Figure S5). In contrast, placebo subjects showed no or only low percentage of MVA-specific T cells (Figure S5).

Phenotypic analysis of activated MVA-specific T cell subsets revealed that both CD8+ and CD4+ T cell populations in COH04S1 vaccinees were mostly comprised of T effector memory (TEM)
cells (Figure 3B). Terminally differentiated TEM cells (TEMRA) comprised about 20% of the CD8+ T cell population and were significantly higher than TEMRA cells in the CD4+ population. Low percentages of naïve and central memory (T_CM) T cells were measured in both CD8+ and CD4+ T cell populations. Comparable percentages of activated naïve/T_CM/TEM/TEMRA T cells were measured across the different DL vaccine cohorts (Figure S6A-B). Finally, a similar phenotype distribution with predominance of TEM/TEMRA over T_CM was observed in the CD8+ and CD4+ T cell populations at one and five months post booster vaccination (Figure S6C-D). These results demonstrate that at all tested dose levels vaccination with COH04S1 induces robust and durable orthopoxvirus-specific cellular responses with a predominant effector memory phenotype.
Discussion

In this report, we demonstrate that multiantigen sMVA-based SARS-CoV-2 vaccine COH04S1 induces robust orthopoxvirus-specific immunity in a sub-group of healthy adults vaccinated twice at different dose levels during a Phase I clinical trial aimed at testing safety and immunogenicity of COH04S1 as a COVID-19 vaccine. Our findings show that COH04S1-vaccinated volunteers at all tested dose levels develop robust MVA-specific humoral and cellular responses that remain detectable for up to six months post vaccination, suggesting that COH04S1 represents a unique and clinically tested vaccine candidate to confer SARS-CoV-2 and orthopoxvirus immunity to simultaneously control the COVID-19 pandemic and the current global monkeypox outbreak.

MVA-specific binding and neutralizing antibodies developed in all volunteers after two vaccine doses resulting in 100% seroconversion. Consistent with a dose-escalation trial using a wild-type MVA (ACAM3000), we found that post-prime antibody titers were affected by the vaccine dose, with lower post-prime antibody titers in DL1 than in DL2/DL3 vaccinated subjects. However, following the second dose, COH04S1 was similarly immunogenic at all DL tested. Increased timing between vaccinations with DL1 did not affect the peak antibody response; however, it seemed to marginally increase the magnitude of the long-term response compared to volunteers vaccinated in a shorter interval, although a larger number of volunteers would be needed to bolster this conclusion. No differences across DL were observed in magnitude and phenotype of MVA-specific activated T cells indicating that the lowest dose was sufficient to induce robust and durable cellular responses. This result is concordant with maximal induction of SARS-CoV-2 S- and N-specific T cells by COH04S1 at all DL tested.

As previously observed by others, early post-vaccine T cell response to orthopoxvirus antigens was largely comprised of CD8+ T cells. Interestingly, COH04S1 induced higher MVA-specific CD8+ than CD4+ T cells, which is opposite to the previously observed SARS-CoV-2 S- and N-
specific CD8\(^+\) and CD4\(^+\) T-cells induced by COH04S1\(^{18}\), indicating that different antigens can preferentially activate different T cell subtypes even during concomitant antigen stimulation. While it has been shown that T\(_{EM}\) are the predominant CD8\(^+\) subtype and T\(_{CM}\) the predominant CD4\(^+\) T cell subtypes in SARS-CoV-2 infected or vaccinated individuals\(^{18,23,24}\), we found that MVA-specific T\(_{EM}\) cells were the predominant subtype in both CD8\(^+\) and CD4\(^+\) T cell populations of COH04S1 vaccinees. Interestingly, T\(_{EM}\) cells, but not T\(_{CM}\) cells, have been demonstrated to protect against peripheral infection with vaccinia virus\(^{25}\), highlighting an important protective role of T\(_{EM}\) cells in orthopoxviral infections. Comprehensive studies of long-term immunity to vaccinia have shown that T\(_{EM}\) cells decay with time after antigen encounter while T\(_{CM}\) cells have a greater capacity to persist \textit{in vivo}\(^{26}\). Whether the phenotype observed at six months post-vaccination in COH04S1-vaccinated subjects is maintained long-term or whether T\(_{CM}\) cells may overtake T\(_{EM}\) cells as the main MVA-specific T cell subpopulation can only be clarified in long-term studies.

Smallpox and vaccinia immunity have been shown to be stable for decades after infection or vaccination and to decline only slowly over time\(^{27,28}\). Of the two volunteers born before 1972, the year of the end of the smallpox vaccination campaign, only one had an indication of low levels pre-existing poxviral immunity. However, both volunteers responded to two COH04S1 doses with higher-than-average long-lasting humoral responses, suggesting that vaccination with COH04S1 successfully recalled low-to-undetectable vaccinia immunity acquired 50 years or more before, which resulted in more robust and durable responses than in naïve subjects. Interestingly, one DL3 subject born in 1986, and therefore not subjected to smallpox vaccination during childhood, showed low-level poxviral pre-existing humoral immunity at baseline. The same subject had a drastic increase in MVA-specific humoral response post-prime vaccination, and binding and NAb at five months post-boost were exceptionally high. It is plausible that this subject was recently inoculated with vaccinia due to work exposure risk and that a combination
of high COH04S1 dose with short time since smallpox vaccination contributed to the elevated MVA-specific responses. Importantly, this subject and the two volunteers born before 1972 developed robust SARS-CoV-2 S- and N-specific humoral and cellular responses18, suggesting that vector-specific pre-existing immunity did not prevent induction of robust immunity to the SARS-CoV-2 antigens of COH04S1.

Definition of correlates of protection against smallpox and monkeypox is complicated by the contrasting findings emerged in the past decades. Orthopoxvirus-specific NAb but not CD8+ T cells correlated with an attenuated Dryvax skin lesion or “take” at the inoculation site in one study29, and NAb were necessary and sufficient to protect monkeys against monkeypox in another study30. On the other hand, a study in mice demonstrated an important protective role of T cell immunity in the absence of an antibody response31, and patients with defects in their T cell responses are those at risk to develop severe progressive vaccinia disease when vaccinated32. Consequently, it seems likely that a complex interplay of immunological factors contributes to the establishment of immunity to orthopoxviruses and these immunological correlates may vary based on species and viral strain. Therefore, it is encouraging that COH04S1-vaccination induced a comprehensive MVA-specific immunological response in vaccinated volunteers.

Intramuscular doses of both ACAM3000 (1x107 pfu) and Jynneos (1x108 pfu) have been shown to result in a significantly attenuated response to a Dryvax “take” in human challenge studies9,29,33 Considering that COH04S1 induced comparable humoral and cellular responses post-boost at all dose levels tested, it is possible that COH04S1 would confer similar protection to wild-type MVA vaccines against challenge starting from the lowest dose tested. However, non-inferiority clinical studies with immunological endpoints9 and challenge studies in non-human primates34,35 will be necessary to determine protective efficacy of COH04S1 against smallpox and monkeypox.
Major limitation of the study is the small number of subjects included in the study. Nonetheless, achievement of seroconversion and cellular responses in all subjects post-boost independent of vaccine dose indicates that vaccination with COH04S1 induces robust MVA-specific immunity. Because of biosafety limitations, we have not used vaccinia or monkeypox viruses for assessment of vaccine immunogenicity. However, magnitude of MVA- and vaccinia-specific humoral immunity have been shown to be equivalent and vaccinia and monkeypox NAb targets to be >94% conserved, indicating high degree of antibody cross-recognition between orthopoxviruses20,29,36. Additionally, a comparison of binding and NAb titers induced by COH04S1 with titers measured in the WHO “International Standard for Anti-Smallpox Serum” 63/02437 was not possible since the product is currently not available in the NIBSC repository. Finally, to measure NAb, we utilized a high throughput neutralization assay based on the use of purified MVA intracellular mature virions, which are the main viral form liberated by cell lysis. We have not evaluated vaccine-mediated neutralization of extracellular enveloped virions although this viral form is believed to be responsible for vaccinia virus inter-host dissemination38.

Following the recent monkeypox outbreak numerous countries have rushed ordering Jynneos for their nationals in need for a total of more than 3 million doses39. Additionally, the eventuality of a mass monkeypox vaccination campaign in endemic African countries raises the issue of vaccine supply shortage and equitable distribution. Consequently, there is an urgency to replenish stockpiles around the world with safe and effective third generation smallpox/monkeypox vaccines. The finding that COH04S1 induces robust and durable orthopoxviral-specific immunity represent the fundamental preliminary result for allowing COH04S1 and other sMVA-based vaccines to be tested in non-inferiority clinical trials as vaccines against smallpox/monkeypox.
Methods

Human subjects

COH04S1 is a dual-antigen COVID-19 vaccine candidate based on a synthetic MVA platform\(^{15,16,18}\). COH04S1 immunogenicity was investigated at City of Hope (COH) as part of a clinical protocol (IRB#20447) approved by an external Institutional Review Board (Advarra IRB). This open-label and randomized, placebo controlled, phase 1 clinical study is registered (NCT04639466). Among others, exclusion criteria included age<18 or >55, previous SARS-CoV-2 infection, BMI<18 or >35, underlying health conditions, and poxvirus vaccination within a six-months period. All subjects gave informed consent at enrollment. Out of the 51 subjects who received one or two doses of COH04S1, 5 subjects were selected from each dose group, for a total of 20 subjects, based on 2 doses regimen and availability of frozen PBMCs samples. Subjects received two doses of COH04S1 at days 0 and 28. Five subjects were vaccinated with dose level (DL) 1 (1x10\(^7\) pfu), five with DL2 (1x10\(^8\) pfu), and five with DL3 (2.5x10\(^8\) pfu). Additional five subjects received DL1 at day 0, placebo at day 28, and another DL1 at day 56. Four volunteers who received placebo at days 0 and 28 were included in the study. Two subjects -one in DL1/DL1 group and one in DL2/DL2 group- were born before 1972 and therefore may have had been previously vaccinated against smallpox. Study population is described on Table S1.

MVA IgG Endpoint ELISA

MVA-specific binding antibodies were evaluated by ELISA. ELISA plates (3361, Corning) were coated overnight at 4°C with 1\(\mu\)g/mL of MVA expressing Venus fluorescent marker (MVA-Venus)\(^{13}\) in PBS pH 7.4. Plates were washed 5X with wash buffer (0.1% Tween-20/PBS), then blocked with 250 µl/well of assay buffer (0.5% casein/154mM NaCl/10mM Tris-HCl/0.1% Tween-20 [pH 7.6]/8% Normal goat serum) for 2 hours 37°C. After washing, 3-fold diluted heat-
inactivated serum in blocking buffer was added to the plates starting from a dilution of 1:150. Plates were wrapped in foil and incubated 2 hours at 37°C. Plates were washed and 1:3,000 dilution of anti-human IgG HRP secondary antibody (BioRad 204005) in assay buffer was added for 1 hour at room temperature. Plates were washed and developed with 1 Step TMB-Ultra (Thermo Fisher 34029). After 2-4 minutes the reaction was stopped with 1M H₂SO₄ and 450nm absorbance was immediately quantified on FilterMax F3 (Molecular Devices). Endpoint titers were calculated as the highest dilution to have an absorbance >0.100 nm. Seroconversion was defined as a three or more times increase in baseline titer.

MVA neutralization assay

ARPE-19 cells were seeded in 96-well plates (1.5×10⁴ cells/well). The following day, 2-fold serial dilutions of serum starting from 1:10 were incubated for 2 hours with MVA-Venus (multiplicity of infection [MOI]=2). The serum–virus mixture was added to the cells in duplicate wells and incubated for 24 hours. After the 24 hours incubation period, the cells were imaged using Leica DMi8 inverted microscope. Pictures from each well were processed using Image-Pro Premier (v9.2; Media Cybernetics) and fluorescent cells corresponding to infection events were counted. The neutralization titer for each dilution was calculated as follows: NTₜₐₚ = [1−(fluorescent cells with immune sera/fluorescent cells without immune sera)] × 100. The titers that gave 50% neutralization (NT50) were calculated by determining the linear slope of the graph plotting NT versus serum dilution by using the next higher and lower NT using Office Excel (v2019). Seroconversion was defined as an increase of two or more times the baseline titer.

Quantification of vaccine-induced MVA specific T cells

Peripheral blood mononuclear cells (PBMC) were isolated from fresh blood using Ficoll and counted using Luna-FL cell counter (Logos Biosystems). Frozen PBMCs were thawed, counted and 1×10⁶ PBMCs were stimulated with MVA-Venus (MOI=1) for 24 hours in a total volume of
200 µl of RPMI media with 5% of human serum in a 96 wells plate. Unstimulated cells and PHA (20 µg/ml) were used as negative and positive controls, respectively. Anti-CD107a-APC, Golgi Plug (Brefeldin A) and Golgi Stop (Monesin) were added 4 hours before staining. Cells were washed with PBS and stained 15 min at room temperature with Live and dead near IR, anti-CD3-FITC, anti-CD4-BV421, anti-CD8-BV605, anti-CD69-PE, anti-CCR7-PE/Dazzle 594 and anti-CD45-PerCP. After washing, cells were permeabilized with Fix/Perm (BD) for 20 minutes at 4°C. Cells were washed with Perm/Wash (BD) and intracellular stained with anti-IFN-γ-PECy7 for 30 minutes at 4°C, washed and resuspend in FACS buffer until acquisition. Cells were acquired in Attune NxT cytometer (Thermofisher) and data was analyzed with Flow Jo X software following the gating strategy described in Figure S3. Only one out of five DL3 volunteers had available PBMCs samples for the analysis.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8.3.0. Differences in humoral responses across groups were compared using Kruskal-Wallis test followed by Dunn’s multiple comparison test. T cell percentages at different time-points were compared using two-tailed Wilcoxon rank test. Differences in T cell subsets were evaluated using 2-way ANOVA followed by Sidak’s multiple comparison test.
Contributors

Study conceptualization: FC, FW, DJD. Study design: FC, FW. Immunological analysis: FC, SOF, ML. Manuscript writing: FC, FW, DJD. Clinical PI: JAZ. All authors contributed to and approved the final version of this manuscript.
Declaration of interests

While unknown whether publication of this report will aid in receiving grants and contracts, it is possible that this publication will be of benefit to City of Hope (COH). COH had no role in the conceptualization, design, data collection, analysis, decision to publish, or preparation of the manuscript. DJD and FW are co-inventors on a patent application covering the design and construction of the synthetic MVA platform (PCT/US2021/016247). DJD, FW, and FC are co-inventors on a patent application covering the development of a COVID-19 vaccine (PCT/US2021/032821). DJD is a consultant for GeoVax. All other authors declare no competing interests. GeoVax Labs Inc. has taken a worldwide exclusive license for COH04S1 under the name of GEO-CM04S1.
We support data sharing of the individual de-identified participant data that underlie the results reported in this article. Study protocols can be shared upon request by the corresponding author.
Acknowledgements

The Authors would like to thank all the participants who volunteered in the study and all the investigators and study site personnel who assisted in the clinical trial completion. Funding was provided by the Carol Moss Foundation, donors Julie and Roger Baskes, Judd Malkin, Michael Sweig, and the City of Hope Integrated Drug Development Venture program. We acknowledge and thank Christoph Pittius and Yuriy Shostak (Research Business Development, City of Hope) for excellent project management. We thank Christina Ulloa (Department of Hematology & HCT, City of Hope) for excellent support of investigators and meeting coordination.
References

Figure 1. MVA-specific binding IgG in COH04S1 vaccinees. A-B. Binding antibodies. MVA-specific IgG titers were measured by ELISA in subjects before vaccination, post-prime vaccination, and at one and five months post-booster vaccination with COH04S1 at dose-level (DL) 1 (DL1/DL1 and DL1/placebo/DL1), DL2 (DL2/DL2), and DL3 (DL3/DL3). Subjects who received placebo vaccination were used as negative controls. Black triangles in B indicate time point of vaccination in DL1/DL1, DL2/DL2, and DL3/DL3 groups. Purple triangles indicate time of DL1 vaccinations in DL1/placebo/DL1 group. Red asterisks indicate subjects in DL1/DL1 and DL2/DL2 cohorts that were born before 1972. Black asterisk indicates the DL3 subject born in 1986 with suspected orthopoxvirus pre-existing immunity. Kruskal-Wallis test followed by Dunn’s multiple comparison test was used in A (*=p<0.05, **=p<0.01). C. Seroconversion rate. Shown is the percentage of seroconverted volunteers with MVA-specific NAb titers ≥3-fold above baseline at different time points post-vaccination with COH04S1.
Figure 2. MVA-specific neutralizing response in COH04S1 vaccinees. A-B. Neutralizing antibodies (NAb). MVA-specific NAb titers preventing 50% infection (NT50) were measured with a high-throughput neutralization assay. NAb were measured before vaccination, post-prime vaccination, and at one and five months post-booster vaccinations with COH04S1 at dose-level (DL) 1 (DL1/DL1 and DL1/placebo/DL1), DL2 (DL2/DL2), and DL3 (DL3/DL3). Subjects who received placebo vaccination were used as negative controls. Black triangles in B indicate time of vaccinations in DL1/DL1, DL2/DL2, and DL3/DL3 groups. Purple triangles indicate time of DL1 vaccinations in DL1/placebo/DL1 group. Red asterisks indicate subjects in DL1/DL1 and DL2/DL2 cohorts that were born <1972. Black asterisk indicates the DL3 subject born in 1986 with suspected orthopoxvirus pre-existing immunity. Kruskal-Wallis test followed by Dunn’s multiple comparison test was used in A (*=p<0.05, **=p<0.01). C. Seroconversion rate. Shown is the percentage of seroconverted volunteers with MVA-specific NAb titers above baseline at different time points post-vaccination with COH04S1.
Figure 3. MVA-specific T cell response in COH04S1 vaccinees. A. IFNγ⁺/CD107⁺ and IFNγ⁺/CD69⁺ CD8⁺ and CD4⁺ T cell percentages were measured by cytofluorimetry in PBMC samples at baseline, and at one and five months post-booster vaccinations with COH04S1 at all dose levels. Activated T cell percentages at one and five months (mo) post-boost were compared to baseline levels using two-tailed Wilcoxon signed-rank test. B. Phenotypic analysis of antigen-specific T lymphocytes was performed using samples collected one month post-
second dose. Shown are percentages of naïve, central memory (T_{CM}), effector memory (T_{EM}),
and terminally differentiated effector memory (T_{EMRA}) T cells measured in IFN\(\gamma^+\)/CD69+ CD8+
and CD4+ T cell populations. 2-way ANOVA followed by Sidak's multiple comparison test was
used to compare groups. P values are indicated in the figure. In A-B box plots extend from the
25th to the 75th percentiles, median values are shown as a line, whiskers extend from minimum
to maximum values.