Targeted Identification of Serum Biomarkers for Facioscapulohumeral Muscular Dystrophy Using Immunoassay Proteomics

Amy E. Campbella, Jamshid Arjomandb, Oliver D. Kingc, Rabi Tawild, and Sujatha Jagannathana,e,*

aDepartment of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
bFSHD Society, Randolph, MA 02368, USA.
cDepartment of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
dDepartment of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
eRNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

*Correspondence to: Sujatha Jagannathan, University of Colorado, 12801 E. 17th Avenue, Room 10101, Aurora, CO 80045, USA. Tel.: +1 303 724 3309; E-mail: sujatha.jagannathan@cuanschutz.edu.

Running title: FSHD serum biomarkers
ABSTRACT

Background: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by misexpression of the double homeobox 4 (DUX4) embryonic transcription factor in skeletal muscle. Identifying quantitative and minimally invasive FSHD biomarkers to report on DUX4 activity will significantly accelerate therapeutic development.

Objective: The goal of this study was to analyze secreted proteins induced by DUX4 in order to identify potential blood-based molecular FSHD biomarkers.

Methods: We used high-throughput, multiplex immunoassays from Olink Proteomics to measure the level of several hundred proteins, including several DUX4-induced genes, in a cellular myoblast model of FSHD, in FSHD patient-derived myotube cell cultures, and in serum from individuals with FSHD.

Results: Placental alkaline phosphatase (ALPP) levels correlated with DUX4 expression in both cell-based FSHD systems but did not distinguish FSHD patient serum from healthy controls.

Conclusions: ALPP, as measured with the Olink Proteomics platform, is not a promising FSHD serum biomarker candidate but could be utilized to evaluate DUX4 activity in discovery research efforts.

Keywords: DUX4, facioscapulohumeral muscular dystrophy, FSHD, biomarkers, proteomics
INTRODUCTION

Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy with no disease-modifying or curative treatment options [1]. FSHD is caused by misexpression of the double homeobox 4 (DUX4) gene in skeletal muscle following epigenetic de-repression of the D4Z4 macrosatellite repeat array on chromosome 4q35 due to D4Z4 array contraction (type 1) or mutations in genes encoding D4Z4 chromatin modifiers (type 2) [2-5]. Sustained misexpression of DUX4, a transcription factor important for early embryonic development, is toxic [6-9]. Toxicity is thought to be caused by the dysregulation of genes and proteins involved in germline and stem cell development, myogenesis, innate immunity, and several other important cellular functions, though exactly how downstream molecular changes lead to pathology is not fully understood [10, 11]. In individuals with FSHD, DUX4-induced cell death leads to skeletal muscle fiber degeneration and replacement with fatty, fibrous tissue resulting in progressive muscle weakness and disabling physical limitations. Skeletal muscle atrophy typically first affects the face, shoulders, and arms, and then descends into the trunk and lower extremities.

As our understanding of FSHD pathophysiology has deepened, therapeutic efforts to prevent or delay FSHD disease progression have evolved from attempts to generally improve muscle function to approaches that specifically modulate DUX4 itself and the pathways that underlie DUX4 toxicity [12, 13]. With targeted therapies beginning to enter clinical trials [14, 15] it is essential to have robust tools with which to assess their effectiveness. Biomarkers are one such tool. Because many of the proposed disease-modifying therapies for FSHD selectively target DUX4, biomarkers designed to report on DUX4 level and/or activity are of critical importance in clinical development. Indeed, biomarker identification and validation has been a major goal of recent FSHD clinical trial workshops [16, 17]. To date, several studies have examined DUX4 target gene expression as a proxy for DUX4 activity from invasive muscle biopsies guided by MRI imaging [18-20]. However, circulating blood-based molecular biomarkers are of particular
interest as they have the potential to provide rapid, objective, minimally invasive, and quantitative measurements that can be assayed repeatedly over time using typically inexpensive methods, in contrast to tissue biomarkers that require repeated muscle biopsies. A circulating biomarker may also allow physiological changes to be detected at a time when functional differences may not yet be measurable. Additionally, since all skeletal muscles are exposed to the circulation, muscle-derived serum or plasma proteins have the potential to reflect average disease burden throughout the body [21], “smoothing out” the local spatial variability in DUX4 expression observed with needle biopsies. However, since only a small fraction of muscles may present with active DUX4 expression at any one time in FSHD, a useful circulating biomarker may require a highly sensitive assay and little to no background contribution from healthy muscle and non-muscle tissue.

Unfortunately, there are limited data exploring peripheral blood biomarkers in FSHD and no independently validated circulating markers that can be used as predictive or prognostic tools. A study using whole transcriptome analysis to interrogate blood RNA expression profiles did not find any gene expression differences between individuals with FSHD and healthy controls that were significant after multiple hypothesis correction [22]. Studies using serum or plasma from FSHD patients and controls have identified proteins related to non-specific muscle damage [21, 23], immunity mediators [24-28], and miRNAs [26, 29, 30] as enriched in the disease context, but none were FSHD-specific and therefore might not reflect active DUX4-mediated disease processes. Although the proteomic panels used in prior studies in some cases incidentally included DUX4 targets, no studies to date have by design measured serum protein levels of DUX4 targets – despite the fact that quantifying DUX4 target expression in muscle is the only validated way to detect and track DUX4 activity [18, 19, 31]. While prior shotgun proteomics studies of FSHD serum [24, 26] could in principle have detected alterations in levels of DUX4 targets, more sensitive targeted assays may offer improved power to do so.
Here, we performed a targeted study of three DUX4-regulated serum biomarkers in FSHD using a commercial Proximity Extension Assay proteomics technology from Olink Proteomics with the goal of identifying markers warranting further investigation. We found that levels of placental alkaline phosphatase (ALPP) correlated with DUX4 expression in a cellular myoblast model of FSHD and in FSHD patient-derived myotube cell cultures, and were modulated by small molecule DUX4 inhibitors. However, ALPP levels did not correspond to FSHD disease status or severity in human serum samples. Therefore, ALPP, as measured by this platform, does not appear to be a promising FSHD serum biomarker candidate but does have utility as a tool to evaluate DUX4 activity in discovery research.
MATERIALS AND METHODS

Cell culture

MB135 (Control-A), 54-1 (Control-B), MB073 (FSHD-A, FSHD type 1), 54-2 (FSHD-B, FSHD type 1), MB200 (FSHD-C, FSHD type 2), and MB135-iDUX4 immortalized human myoblasts were a gift from Dr. Stephen Tapscott and originated from the FSHD Research Center at the University of Rochester Medical Center. MB135-iDUX4 cells have been described previously [32]. All cell lines were authenticated by karyotype analysis and determined to be free of mycoplasma by PCR screening. Cell line characteristics are provided in Supplementary Table 1. Myoblasts were maintained in Ham’s F-10 Nutrient Mix (Gibco) supplemented with 20% Fetal Bovine Serum (Gibco), 10 ng/mL recombinant human basic fibroblast growth factor (Promega), and 1 μM dexamethasone (Sigma-Aldrich). MB135-iDUX4 myoblasts were additionally maintained in 2 μg/mL puromycin dihydrochloride (VWR). Induction of the DUX4 transgene was achieved by culturing cells in 1 μg/mL doxycycline hyclate (Sigma-Aldrich). Differentiation of myoblasts into myotubes was achieved by switching the fully confluent myoblast monolayer into Dulbecco’s Modified Eagle Medium (Gibco) containing 1% horse serum (Gibco) and Insulin-Transferrin-Selenium (Gibco). All cells were incubated at 37 °C with 5% CO₂.

Human serum

All serum samples (n = 20 healthy controls and n = 20 FSHD patients) were obtained following informed, written consent through the FSHD Research Center at the University of Rochester Medical Center under a local IRB-approved protocol and were deidentified. Donor characteristics are described in Supplementary Table 2.

Preparation of cell lysates and supernatants for Olink Proteomics analysis

Myoblasts were seeded at a density of 2.5x10⁵ cells/well (MB135, 54-1, MB073, 54-2, MB200) or 1.5x10⁵ cells/well (MB135-iDUX4) on 12-well plates. Twenty-four hours prior to harvest, cells...
were washed three times with PBS and serum-free media was added. After 24 hours in serum-free media, supernatant and cell lysate were harvested as follows. The supernatant was removed, centrifuged for 5 minutes at 300 rcf to pellet any cell debris, transferred to a microcentrifuge tube, snap frozen with liquid nitrogen, and stored at -80 °C. Fifty microliters of ice-cold 1X RIPA Lysis Buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate) supplemented with cOmplete Mini EDTA-free Protease Inhibitor Tablets (Roche) was added to each well, lysate was collected with a cell scraper, transferred to a microcentrifuge tube, incubated on ice for 15 minutes, sonicated with a Bioruptor (Diagenode) for 5 minutes on low (30 seconds on, 30 seconds off) to aid lysis, centrifuged for 5 minutes at 16,000 rcf at 4 °C, transferred to a new microcentrifuge tube, quantified using the BCA Protein Assay Kit (Pierce), snap frozen with liquid nitrogen, and stored at -80 °C. Samples were shipped on dry ice to Olink Proteomics.

Olink Proteomics assay

Olink Proteomics conducted targeted, high-throughput, multiplex immunoassays of protein levels using the provided cell lysates, supernatants, and serum. Samples were run on the Target 96 Development (v.3511) and/or Target 96 Oncology III (v.4001) panels – panels that were selected because they included several DUX4 targets. The assay readout of normalized protein expression values (NPX) [33] – log2-scaled scores with additional Inter-Plate Control normalization – was obtained from Olink Proteomics for downstream analysis.

siRNA transfections

Silencer Select siRNAs were obtained from Thermo Fisher Scientific and transfected into MB135-iDUX4 myoblasts 36 hours prior to doxycycline induction using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) according to the manufacturer’s instructions. The siRNAs used in this study are listed below:
siCTRL: Silencer Select Negative Control No. 1 siRNA

siDUX4: CCUACACCUUCAGACUCUATT (sense), UAGAGUCUGAAGGUGUAGGCA (antisense)

RNA isolation and RT-qPCR

Total RNA was extracted from whole cells using TRIzol Reagent (Invitrogen) following the manufacturer’s instructions. Isolated RNA was treated with DNase I (Invitrogen) and reverse transcribed into cDNA using SuperScript III Reverse Transcriptase (Invitrogen) and random hexamers (Invitrogen) according to the manufacturer’s protocol. Quantitative PCR was carried out on a CFX384 Touch Real-Time PCR Detection System (Bio-Rad) using primers specific to each gene of interest and iTaq Universal SYBR Green Supermix (Bio-Rad). The expression levels of target genes were normalized to that of the reference gene RPL27 using the delta-Ct method [34]. The primers used in this study are listed below:

CKM F: CACCCCAAGTTCGAGGAGAT
CKM R: AGCGTTGGACACGTCAAATA

DUX4 transgene F: TAGGGGAAGAGGTAGACGGC
DUX4 transgene R: CGGTTCCGGGATTCCGATAG

KHDC1L F: CACCAATGGCAAAGCAGTGG
KHDC1L R: TCAGTCTCCGGTGTACGGTG

MYOG F: GCCAGACTATCCCCTTCCTC
MYOG R: GAGGCCGCGTTATGATAAAA

RPL27 F: GCAAGAAGAAGATCGCCAAG
RPL27 R: TCCAAGGGGATATCCACAGA

ZSCAN4 F: TGGAAATCAAGTGGCAAAAA
ZSCAN4 R: CTGCATGTGGACGTGGAC
DUX4 inhibitor compounds

Formoterol (Sigma-Aldrich), JQ1 (Selleck Chemicals), and losmapimod (MedChem Express) were dissolved in DMSO at a 10 mM stock concentration and stored at -80 °C. Concentrated stocks were first diluted in DMSO to 1000-fold the final concentration, and then diluted 1000-fold into culture media before addition to cells.

Statistical analysis

Data analysis and statistical tests were performed using GraphPad Prism software (version 9.0) or in the R programming environment using ggplot2 [35], and plots were generated using the same.
RESULTS

Identification of DUX4 target genes on Olink Proteomics biomarker panels

We sought to identify candidate DUX4-induced genes for which commercial assays were readily available, with a particular interest in those with low background expression in somatic tissues (based on Genotype-Tissue Expression (GTEx) Project data, www.gtexportal.org) and those whose protein products were predicted to be secreted (based on Human Protein Atlas (HPA) secretome data [36], www.proteinatlas.org). We compared a set of 213 robust DUX4-upregulated target genes (Table S1 of [31]) to the 1,160 unique human protein targets found on 14 different Olink Proteomics Target 96 biomarker panels (Figure 1A). Three targets were present on both lists: placental alkaline phosphatase (ALPP), carbonic anhydrase 2 (CA2), and corticotropin releasing hormone binding protein (CRHBP). Of these, ALPP and CRHBP were included in the HPA secretome database and are predicted to encode signal peptides (as determined by UniProt annotation), making them excellent candidates to be secreted and have potential utility as FSHD blood-based molecular biomarkers.

ALPP distinguishes DUX4-expressing samples from controls in inducible DUX4 myoblasts

To measure the level of ALPP, CA2, and CRHBP in DUX4-expressing cells by Olink Proteomics assay we used the MB135-iDUX4 myoblast cell line, which has been engineered to inducibly express a DUX4 transgene upon addition of doxycycline [32]. MB135-iDUX4 myoblasts were left untreated or cultured with doxycycline for 12 or 24 hours. Doxycycline treatment led to robust, time-dependent DUX4 transgene induction as well as activation of DUX4 target genes such as KHDC1L (Supplementary Figure 1A). Olink Proteomics analysis was performed on cell lysate and cell supernatant samples at both time points and normalized protein expression values were reported on a log2 scale (Figure 1B). ALPP protein levels were above the limit of detection (LOD) in all cell lysate samples but increased 8.5-fold after 24 hours of doxycycline treatment. In contrast, the level of CA2 and CRHPB protein in MB135-iDUX4 cell lysate hovered
Figure 1. DUX4-induced ALPP protein is present in muscle cell supernatant. (A) Venn diagram showing the overlap between unique protein targets on the Olink Proteomics human Target 96 panels and DUX4-induced genes as classified in [31]. (B) The protein level of ALPP (right), CA2 (middle), and CRHBP (left) as measured by Olink Proteomics assay in cell lysate (top) and supernatant (bottom) harvested from MB135-iDUX4 myoblasts left untreated (-DOX) or treated with doxycycline (+DOX) to induce DUX4 transgene expression for 12 or 24 hours. (C) ALPP protein levels as measured by Olink Proteomics assay in cell lysate (top) and supernatant (bottom) from MB135-iDUX4 myoblasts treated with or without doxycycline for 24 hours following transfection with no (-), non-targeting control (siCTRL), or DUX4 (siDUX4) siRNA. Protein levels in (B) and (C) are presented as normalized log2 expression values. LOD, limit of detection.

around the LOD, with CRHBP showing no correlation to DUX4 expression and CA2 displaying only a 1.4-fold increase after treatment with doxycycline for 24 hours. The inducible promoter in this cell system does exhibit some “leakiness” (Supplementary Figure 1B) [37], possibly explaining the measurable cell lysate ALPP levels in the absence of doxycycline. In cell supernatants, CA2 and CRHBP protein levels were at or below the LOD, as were ALPP levels for samples left untreated or treated with doxycycline for 12 hours. However, after 24 hours of doxycycline treatment ALPP protein in cell supernatant was above the LOD and was 3.5-fold higher than the paired untreated sample. These results demonstrate that while CRHBP protein levels do not track with DUX4 expression, and CA2 levels only distinguish the highest DUX4-expressing condition from the rest in cell lysate, ALPP protein levels robustly correlate with DUX4 expression in both cell lysates and cell supernatants from MB135-iDUX4 myoblasts. Therefore, ALPP appeared to be a molecule worth pursuing further as a circulating FSHD biomarker.
To confirm that ALPP protein levels in MB135-iDUX4 cells are dependent on DUX4 expression, we knocked down the DUX4 transgene using siRNA-mediated depletion and measured ALPP protein in cell lysate and supernatant in untreated cells or after 24 hours of doxycycline via Olink Proteomics assay (Figure 1C). Confirming our previous results, myoblasts treated with doxycycline to induce DUX4 for 24 hours showed elevated ALPP levels compared to untreated cells (~20-fold in lysate, ~3-fold in supernatant) when left untransfected or transfected with a non-targeting control siRNA. Also, as before, only in supernatant were ALPP levels in untreated cells below the LOD. Importantly, in doxycycline-treated cells transfected with siRNAs targeting the DUX4 transgene, ALPP levels decreased (~4-fold in lysate, ~2.5-fold in supernatant) and in supernatant fell below the LOD. DUX4 transgene and DUX4 target gene mRNA levels decreased >65% upon treatment with DUX4 siRNAs, showing the efficacy of the knockdown (Supplementary Figure 1C). As a control to confirm that doxycycline treatment alone does not impact ALPP expression, we treated parental MB135 myoblasts with doxycycline and saw no effect on the level of ALPP, which hovered at or below the LOD, in cell lysate or supernatant (Supplementary Figure 1D). Together, these results demonstrate that ALPP protein detected in the supernatant of MB135-iDUX4 myoblasts via Olink Proteomics distinguishes DUX4-expressing samples from controls in an inducible DUX4 myoblast system.

ALPP distinguishes FSHD from control myotubes

To determine if ALPP protein could distinguish cells expressing endogenous levels of DUX4 from controls, we employed two healthy and three FSHD patient-derived myoblast cell lines that were differentiated into myotubes for 2, 4, or 6 days. DUX4 levels are known to increase over this differentiation time course [38]. ALPP levels in cell lysate and supernatant were below the LOD in both control cell lines at most time points, whereas by day 2 (in lysate) or day 6 (in supernatant) of differentiation ALPP was above the LOD in all three FSHD cell lines (Figure 2A). In supernatant, this increase occurred gradually, with one of the FSHD cell lines showing
measurable ALPP levels at day 2 of differentiation, two at day 4, and all three at day 6. The myogenic genes \textit{MYOG} and \textit{CKM} were induced over this course of differentiation in all cell lines, as expected (\textit{Supplementary Figure 2}), as was DUX4 target gene \textit{ZSCAN4} in the FSHD lines (\textbf{Figure 2B}). In conclusion, ALPP expression robustly distinguishes DUX4-expressing samples from controls in supernatants and lysates from differentiating muscle cell lines.

Interestingly, the magnitude of DUX4 target expression in each FSHD cell line correlated with the level of ALPP and with how quickly after the onset of differentiation ALPP was detected in supernatant. Most notably, supernatants have very little background and are able to distinguish 100\% of tested FSHD patient-derived cell lines 6 days post-differentiation.

\textit{Small molecule inhibitors of DUX4 suppress ALPP levels}

Several small molecules that inhibit DUX4 expression have been described, including the bromodomain inhibitor JQ1, the beta-agonist formoterol, and the p38 inhibitor losmapimod [39-41]. Losmapimod was recently tested in a phase 2 clinical trial as a therapeutic for FSHD and showed positive outcomes for secondary and clinical endpoints [15, 42]. To determine if secreted ALPP levels as measured by Olink Proteomics assay responded to DUX4 inhibition by these small molecules, we differentiated 1 control and 2 FSHD myoblast cell lines into myotubes

\textbf{Figure 2.} ALPP protein levels increase upon FSHD myoblast differentiation. (A) The normalized log2 expression level of ALPP protein as measured by Olink Proteomics assay in the cell lysate (left) and supernatant (right) of multiple control and FSHD myoblast cell lines differentiated into myotubes for 2, 4, or 6 days. (B) DUX4 target gene \textit{ZSCAN4} mRNA levels as measured by RT-qPCR in control and FSHD myoblast cell lines differentiated into myotubes for 0, 2, 4, or 6 days. LOD, limit of detection. n/a, not available.
for 5 days in the presence of two different concentrations of formoterol, JQ1, or losmapimod. ALPP expression in supernatant robustly distinguished DUX4-expressing samples from controls (Figure 3A), an observation also seen in the differentiation time course experiment described above. As expected, myogenic genes MYOG and CKM were induced upon differentiation in all cell lines, and were minimally affected by exposure to formoterol, losmapimod, or low dose JQ1; however, high dose JQ1 did significantly inhibit differentiation (Supplementary Figure 3).

Notably, both low and high doses of formoterol decreased ALPP levels in cell supernatant of both tested FSHD cell lines; in contrast, low dose JQ1 or losmapimod had little effect on ALPP levels, while high concentrations of losmapimod had a cell line-dependent effect (Figure 3A). As observed in the differentiation time course experiment above, ALPP protein levels in cell supernatant corresponded well to the level of DUX4 target mRNA expression (Figure 3B).

Figure 3. Secreted ALPP protein responds to small molecule inhibitors of DUX4 activity. (A) The normalized log2 protein level of ALPP as measured by Olink Proteomics assay in the supernatant of control and FSHD myoblast cell lines differentiated into myotubes for 5 days in the presence of one of two concentrations of the DUX4 inhibitors formoterol, JQ1, losmapimod, or DMSO carrier (-). (B) DUX4 target gene ZSCAN4 mRNA levels as measured by RT-qPCR in the samples in (A). LOD, limit of detection.
Together, these data suggest that ALPP has the potential to be a robust blood-borne FSHD biomarker.

ALPP levels do not distinguish FSHD from control serum

To measure the level of ALPP protein in blood from individuals with FSHD and healthy controls, we obtained 40 serum samples from the FSHD Research Center at the University of Rochester Medical Center. ALPP protein levels in serum from individuals with FSHD was not significantly different than levels in controls (Figure 4A), a result in contrast to our findings from the MB135-iDUX4 cellular myoblast model of FSHD and FSHD patient-derived myotube cell cultures. There was no significant correlation between serum ALPP levels and sex (Figure 4B), although females with FSHD had slightly elevated ALPP levels when compared to healthy females. There was also not a significant correlation between serum ALPP levels and age (Figure 4C), or with disease severity among those with FSHD (Figure 4D). The plot of FSHD clinical severity score (CSS) versus ALPP protein levels appears to have a V-shape, with a positive correlation ($R^2 = 0.51$) between serum ALPP levels and FSHD CSS ≥ 4 and a negative correlation ($R^2 = 0.41$) between serum ALPP levels and FSHD CSS ≤ 3. Assessing the significance of these correlations is nontrivial because the cutoff between the two CSS ranges was chosen after inspecting the plot, but a Hoeffding D-test for a not-necessarily monotonic association between ALPP levels and FSHD CSS across the entire CSS range was non-significant, with p-value
0.22. Notably, serum ALPP levels were high at baseline even in healthy controls, suggesting a circulating, non-muscle source of ALPP protein. Indeed, ALPP is present in lung, gastrointestinal tract, cervix, and placenta [43], which may confound the circulating contribution from diseased muscle. Together, these results suggest that ALPP, as measured by the Olink Proteomics platform, is not a sensitive biomarker candidate for FSHD, though it could have utility as a tool in discovery research given its sensitivity and specificity in reporting out DUX4 activity in cell-based FSHD model systems.
DISCUSSION

As potential FSHD therapies enter clinical trials, having quantitatively sensitive and rapidly responsive molecular biomarkers is critical for assessment of therapeutic approaches. Circulating biomarkers in particular provide the promise of reflecting overall disease burden in ways not possible using physical examination, tissue biopsy, or imaging methods. In this study, we used a commercial platform provided by Olink Proteomics to measure the level of nearly two hundred genes, several of which are known DUX4-induced targets, in lysate and supernatant from a cellular myoblast model of FSHD, in FSHD patient-derived myotube cell cultures, and in serum from individuals with FSHD. While the two cell-based systems revealed ALPP as a promising secreted FSHD biomarker candidate, validation studies using serum did not show a correlation between serum ALPP levels and disease state or severity and revealed high background levels of ALPP in human serum. Therefore, we conclude that ALPP, as detected by the Olink Proteomics platform, is not a good clinical FSHD biomarker despite its excellent performance in cellular systems.

Our initial examination of background tissue expression was primarily based on RNA expression levels from GTEx, which may not reflect serum protein levels. Moreover, the GTEx database does not include placenta, an organ where ALPP is expressed based on data from the HPA. Other confounding systemic non-muscle sources of ALPP may arise from the lung, gastrointestinal cells, and/or the cervix [43]. However, the Human Plasma Proteome Project (HPPP) database (www.hupo.org/plasma-proteome-project) showed little evidence for plasma ALPP expression at the time of this study, and the HPA page for ALPP says that it is not detected in plasma by mass spectrometry based on the PeptideAtlas database (build id=465). We note however that HPA now also includes Proximity Extension Assay data from plasma based on a recent study using Olink Proteomics [44], and this does show fairly high levels of ALPP among healthy controls, consistent with our observations. It may be possible that ALPP
homologs could be contributing to the observed background serum ALPP levels, as we were unable to assess the specificity of the Olink Proteomics assay for ALPP (versus, for example, ALPG) and therefore cannot dismiss the possibility that the assay may be cross-reacting with other proteins.

The prolonged, non-linear muscle degradation and highly variable clinical presentation typical of FSHD requires precise measurement of biomarker concentrations so that subtle changes in disease can be detected. The Olink Proteomics technology used in this study claims high specificity and sensitivity and could provide a powerful tool for quantifying low-abundance DUX4-induced proteins that might have been otherwise thought too variable to be useful biomarkers for disease assessment. Designing and producing custom Olink target panels housing more DUX4/FSHD-relevant proteins is an intriguing future direction.

The Olink Proteomics panels used here for analysis of ALPP, CA2, and CRHBP contained 181 other protein targets, some of which increased in expression following doxycycline induction of DUX4 in the MB135-iDUX4 myoblasts (Supplementary Table 3). Of these, VMO1, PSPN, PTP4A1, and NOV are upregulated at the mRNA level in DUX4-expressing cells [32], but were not present on our original list of 213 robust DUX4-upregulated target genes. Only PTP4A1 protein levels correlated with DUX4 expression in both MB135-iDUX4 cell lysates and cell supernatants; however, PTP4A1 did not distinguish FSHD from control myotubes, illustrating the importance of validating any findings derived from inducible DUX4 cell models with FSHD patient-derived muscle cells expressing endogenous levels of DUX4.

The decision to focus our circulating biomarker search on DUX4-induced genes was intended to ensure that any hits were clearly relevant to FSHD, but also required that the DUX4 target be secreted from muscle cells. Our time course differentiation data suggest that ALPP secretion
requires high, sustained DUX4 (and DUX4 target) expression, a prerequisite that may eliminate other candidate molecules not detectable under the conditions used here. However, our study also clearly demonstrated the utility of ALPP as a discovery tool. Measuring ALPP levels in the supernatant of DUX4-expressing cells would allow for time course experiments not possible with currently used RNA and protein analysis methods.

The data collected here highlights the differences between measuring DUX4-regulated mRNA transcripts and DUX4-regulated secreted proteins. For example, treating FSHD myotubes with the known DUX4 small molecule inhibitors formoterol, JQ1, or losmapimod successfully lowered DUX4 target gene expression, as expected. However, only formoterol reduced supernatant ALPP levels at both tested concentrations in two FSHD cell lines, while losmapimod and JQ1 displayed dose- and cell line-dependent effects. This spotlights the subtleties of timing, dosage, biomolecule type, and assay type when identifying and validating molecular biomarkers.

Overall, it is possible that multiple assessment approaches will be necessary to evaluate changes in FSHD disease burden over the course of a clinical trial. Combining information from serum biomarkers, muscle biopsy, magnetic resonance imaging, and clinical strength and activity measurements may increase our ability to assess disease progression and evaluate FSHD therapeutics.
ACKNOWLEDGEMENTS

We thank the FSHD families whose participation is critical for progress. This study was supported by the FSHD Society (S.J. and A.E.C.), the Geraldi Norton Foundation (S.J. and A.E.C.), NIH 5P50HD060848-15 Wellstone Center for FSHD (O.D.K.), and the RNA Bioscience Initiative at the University of Colorado Anschutz Medical Campus (S.J.). The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

CONFLICT OF INTEREST

J.A. is the Chief Science Officer of the FSHD Society.

AUTHOR CONTRIBUTIONS

REFERENCES

Supplementary Figure 1. MB135-iDUX4 myoblasts as a model system to uncover secreted DUX4-induced proteins. (A) Level of DUX4 and DUX4 target gene KHDC1L mRNA as measured by RT-qPCR in MB135-iDUX4 myoblasts left untreated (-DOX) or treated with doxycycline (+DOX) to induce DUX4 transgene expression for 12 or 24 hours. (B) DUX4 mRNA as measured by RT-qPCR in parental MB135 myoblasts and in MB135-iDUX4 myoblasts left untreated (-DOX) or treated with doxycycline (+DOX) for 24 hours. (C) DUX4 and DUX4 target gene ZSCAN4 mRNA levels measured by RT-qPCR in MB135-iDUX4 myoblasts treated with or without doxycycline for 24 hours following transfection with no (-), non-targeting control (siCTRL), or DUX4 (siDUX4) siRNA. (D) ALPP protein levels (log2 normalized) as measured by Olink Proteomics assay in the cell lysate and supernatant (Sup.) of parental MB135 myoblasts treated with (+DOX) or without (-DOX) doxycycline for 24 hours.
Supplementary Figure 2. Control and FSHD cell lines differentiate into myotubes. mRNA level of myogenic genes MYOG and CKM as measured by RT-qPCR in multiple control and FSHD myoblast cell lines differentiated into myotubes for 0, 2, 4, or 6 days.
Supplementary Figure 3. The impact of DUX4 inhibitor treatment on myoblast differentiation. Myogenic genes MYOG (A) and CKM (B) mRNA level as measured by RT-qPCR in control or FSHD myoblast cell lines differentiated into myotubes for 5 days in the presence of DMSO (-) or two different concentrations of the DUX4 inhibitors formoterol, JQ1, and losmapimod.
SUPPLEMENTARY TABLES

Supplementary Table 1. Myoblast cell line characteristics.

Supplementary Table 2. Serum donor characteristics.

Supplementary Table 3. Olink Proteomics normalized protein expression (NPX) values.