Reduced Olfactory Bulb Volume Accompanies Smelling Dysfunction After Mild SARS-CoV-2 Infection: The Hamburg City Health Study COVID Program

Marvin Petersen, MDa#; Benjamin Becker, MDb#; Maximilian Schella, Carola Mayera, Felix L. Nägelea, Elina Petersen, MScc,d; Raphael Twerenbold, MDc,d,e,f; Götz Thomalla, MDa; Bastian Cheng, MDa; Christian Betz, MDb; Anna S. Hoffmann, MDb

a Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
b Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
c Population Health Research Department, University Heart and Vascular Center, Hamburg, Germany
d Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
e German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
f University Center of Cardiovascular Science, University Heart and Vascular Center, Hamburg, Germany

These authors contributed equally
Background: Despite its high prevalence, the determinants of smelling impairment in COVID-19 remain opaque. Olfactory bulb volumetry has been previously established as a promising surrogate marker of smelling function in multiple otorhinolaryngological diseases. In this work, we aimed to elucidate the correspondence between olfactory bulb volume and the clinical trajectory of COVID-19-related smelling impairment. Therefore, we conducted a large-scale magnetic resonance imaging (MRI)-based investigation of individuals recovered from mainly mild to moderate COVID-19.

Methods: Data of 233 COVID-19 convalescents from the Hamburg City Health Study COVID Program were analyzed. Upon recruitment, patients underwent cranial MR imaging and assessment of neuropsychological testing. Automated olfactory bulb volumetry was performed on T2-weighted MR imaging data. Olfactory function was assessed longitudinally after recruitment and at follow-up via a structured questionnaire. Follow-up assessment included quantitative olfactometric testing with Sniffin’ Sticks. Group comparisons of olfactory bulb volume and olfactometric scores were performed between individuals with and without smelling impairment. The associations of olfactory bulb volume and neuropsychological as well as olfactometric scores were assessed via multiple linear regression.

Results: Longitudinal assessment demonstrated a declining prevalence of olfactory dysfunction from 67.6% at acute infection, 21.0% at baseline examination (on average 8.31 ± 2.77 months post infection) and 17.5% at follow-up (21.8 ± 3.61 months post infection). Participants with post-acute olfactory dysfunction had a significantly lower olfactory bulb volume [mm³] at scan-time than normally smelling individuals (mean ± SD, baseline: 40.76 ± 13.08 vs. 46.74 ± 13.66, t=4.07, p=0.046; follow-up: 40.45 ±
12.59 vs. 46.55 ± 13.76, $f=4.50$, $p=0.036$). Olfactory bulb volume successfully predicted olfactometric scores at follow-up ($r_{sp} = 0.154$, $p = 0.025$). Performance in neuropsychological testing was not significantly associated with the olfactory bulb volume.

Conclusions: Our work demonstrates the association of smelling dysfunction and olfactory bulb integrity in a sample of individuals recovered from mainly mild to moderate COVID-19. Olfactory bulb volume was demonstrably lower in individuals with sustained smelling impairment and predicted smelling function longitudinally. Collectively, our results highlight olfactory bulb volume as a surrogate marker that may inform diagnosis and guide rehabilitation strategies in COVID-19.
Introduction

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected societies worldwide. Olfactory dysfunction is among the most common symptoms in COVID-19 with a reported prevalence of up to 85% (1–7). COVID-19 features olfactory dysfunction in varying degrees – e.g., anosmia, hyposmia or parosmia – which occur often before the onset of respiratory symptoms (3). Compared to other COVID-19-related symptoms like cough, fever or fatigue, olfactory dysfunction proved to be more predictive of SARS-CoV-2 infection (8,9). Despite its relevance, the SARS-CoV-2-related pathophysiology of olfactory dysfunction remains opaque.

There is ongoing research in the mechanisms of COVID-19-related olfactory dysfunction. Commonly, anosmia in the absence of rhinorrhea or nasal congestion is described as an early symptom which suggests other causal mechanisms than a common cold with conductive deficits causing olfactory dysfunction (3,4,10,11). SARS-CoV-2 might affect the olfactory system at different breakpoints of its trajectory ranging from disruption of sustentacular cells and olfactory sensory neurons situated in the olfactory mucosa to functional disarray of the olfactory cortex (12,13). Yet, there is only vague understanding of how these aspects relate to clinical outcomes.

Magnetic resonance imaging (MRI) provides a promising avenue to investigate the pathomechanistic substrates of olfactory dysfunction in SARS-CoV-2 infection in vivo. Previous MRI studies put emphasis on the integrity of the olfactory bulb (OB) as a structural correlate of olfactory function in general. Volume reduction of the OB accompanies olfactory loss in conditions like acute or chronic rhinosinusitis and head trauma (14). Abnormalities in psychophysical olfactory testing are demonstrably
associated with OB volume alterations in health and disease (15–17). Furthermore, the duration and degree of olfactory loss is proportional to the OB volume (18). So far, studies relating OB volumetry and olfactory function in COVID-19 rely on case reports and small sample sizes yielding heterogeneous results (13,19–23). Therefore, further investigations are warranted.

Based on previous evidence, we hypothesized that olfactory dysfunction in COVID-19 corresponds with interindividual volumetric differences of the OB. To address this hypothesis, we quantified the OB volume based on structural MRI and performed a longitudinal assessment of olfactory function in a large sample of individuals recovered from mainly mild to moderate COVID-19. As affection of the olfactory system might precede COVID-19-related neuropathology, we additionally probed for a relationship of OB alterations and neuropsychological test score results in an exploratory clinical analysis. With this work we aimed to further the understanding of the effects SARS-CoV-2 exerts on the olfactory system and thus deepen our insight in the pathophysiology underlying the clinical sequelae of COVID-19.
Methods

Study population and clinical examination

In this work we investigated data from participants of the Hamburg City Health Study (HCHS) Covid Program with available MR imaging data. A detailed description of the study design has been published separately (24). In brief, citizens of the city of Hamburg, Germany, were considered for enrollment if they met two criteria: (1) a laboratory-confirmed positive polymerase chain reaction (PCR) test for SARS-CoV-2, which was obtained between 1st March and 31st December 2020 but at least 4 months prior to study enrollment; (2) age between 45 and 74 years at the time of inclusion. An invitation was issued upon identification via the clinical information system of the University Medical Center Hamburg-Eppendorf or a response to a public call for participation. Recruited participants underwent an extended study protocol of the Hamburg City Health Study (HCHS): besides the standard HCHS work up including MR imaging and assessment of cognitive function (Trail Making Test B, Word List Recall, Animal Naming Test, Mini Mental State Exam), depressive symptoms (Patient Health Questionnaire-9) and quality of life (EQ-5D), participants were required to retrospectively report on disease severity and SARS-CoV-2-associated symptoms like smelling function via a structured questionnaire (25). The presented study was only conducted based on the post-SARS-CoV-2 cohort - i.e., the matched cohort of control subjects as described previously could not be leveraged as the required high-resolution T2-weighted MR imaging data was not available (24). To assess the trajectory of olfactory function, participants were reinvited between 15th March and 15th April 2022. Follow-up investigations comprised a structured questionnaire regarding olfactory function as well as olfactometric assessment via Sniffin’ Sticks Screening 12 test by two trained otorhinolaryngologists (B.B., A.S.H.) (26,27).
normosmia. Eventually, information about smelling impairment from structured questionnaires was available for three timepoints: (1) during the acute infection, (2) at the baseline investigation and (3) at follow-up. MR imaging and neuropsychological testing were only performed during baseline examination.

Ethics approval
Written informed consent was obtained from all participants. The study was approved by the local ethics committee of the Landesärztekammer Hamburg (State of Hamburg Chamber of Medical Practitioners, PV5131) and conducted complying with the Declaration of Helsinki.

MRI acquisition
High-resolution 3D T2-weighted images were acquired at baseline on a 3 T scanner (MAGNETOM™ Skyra, Siemens Healthineers, Erlangen, Germany) with the following sequence parameters: TR = 3200 ms, TE = 407 ms, 256 axial slices, ST = 0.94 mm, and IPR = 0.9 x 0.9 mm.

Olfactory bulb segmentation
We performed OB segmentation on high-resolution T2-weighted images leveraging a novel fully-automated deep learning-based pipeline specifically designed for OB volumetry (28). All resulting segmentations underwent visual quality assessment. Exemplary segmentation results are illustrated in *figure 1*. The summed volume of both OBs was used for further analysis.

Statistical analysis
OB volume and olfactometry scores were compared between individuals with and without questionnaire-assessed smelling impairment at different timepoints employing analyses of covariance (ANCOVA). Multiple linear regression analysis was performed for assessing the linear relationship of olfactometry scores, as well as
neuropsychiatric scores with OB volume. A further ANCOVA was performed to test whether the OB volume at baseline differed between individuals with sustained olfactory dysfunction at follow-up and those that recovered until then. The association between the time interval from positive PCR to examination was assessed via Spearman correlation. Age, sex and smoking behavior were included as covariates in ANCOVAs and linear models. Statistical computations and plotting were performed in Python 3.9.7 harnessing matplotlib (v. 3.5.1), numpy (v. 1.22.3), pandas (v. 1.4.2), pingouin (v. 0.5.1) and seaborn (v. 0.11.2) (29–33).
Results

Sample characteristics
Data from 233 HCHS Covid Program participants was available for primary analysis. Nine subjects were excluded pre-analysis: 3 since they reported to have had smelling impairment before their SARS-CoV-2 infection, 6 after visual quality assessment of OB segmentations. Thus, data from n = 224 participants were available for the final analysis. Sample characteristics are summarized in table 1. On average participants were 55.79 ± 7.25 (mean ± SD) years old, 44.2% were female and 5.4% were current smokers. 8.4% of participants were hospitalized due to COVID-19.

Longitudinal trajectory of olfactory function
The baseline examination happened on average 253.51 ± 84.46 days after the positive PCR test prompting recruitment, the follow-up at 663.51 ± 109.74 days. 143 participants were available at follow-up. 67.6% of participants described olfactory impairment during the acute phase of infection, 21.0% at the baseline examination and 17.5% at follow-up (figure 2a). Assessment of olfactory dysfunction severity via the visual analogue scale resulted in a coherent trajectory: 7.62 ± 2.76 (acute infection), 3.79 ± 1.78 (baseline), 2.96 ± 2.10 (follow-up).

Olfactometry
To assess long term olfactory outcomes, olfactometry with the Sniffin’ Sticks Screening 12 test was performed on participants at follow-up. Olfactometry scores at follow-up were 10.18 ± 1.78 (mean ± SD). Participants with self-reported olfactory dysfunction at the acute infection did not differ from normally smelling participants regarding olfactometry scores at follow-up (mean ±SD, 10.04 ± 1.97 vs. 10.46 ± 1.31, t = 1.58, p = 0.211; figure 2b). Yet, participants with olfactory dysfunction at baseline had lower olfactometric scores than normally smelling individuals (mean ±SD, 8.67 ±
2.62 vs. 10.58 ± 1.22, \(f = 32.84, p < 0.005 \) and the same applied for participants impaired at follow-up (mean ±SD, 8.40 ± 2.74 vs. 10.56 ± 1.22, \(f = 37.90, p < 0.005 \)).

Olfactory bulb volume and olfactory function

The mean OB volume was 45.53 ± 12.85 mm³. The ANCOVA of smelling-impaired and normal smelling individuals yielded no significant group difference in OB volume at acute infection (mean ±SD, 45.85 ± 12.92 vs. 45.21 ± 15.16, \(f = 0.04, p = 0.837 \); *figure 2c*). Individuals with sustained olfactory dysfunction at baseline and at follow-up had significantly lower OB volume than normally smelling subjects at that time (mean ±SD, baseline: 40.76 ± 13.08 vs. 46.74 ± 13.66, \(f = 4.07, p = 0.046 \); follow-up: 40.45 ± 12.59 vs. 46.55 ± 13.76, \(f = 4.50, p = 0.036 \)). In smelling-impaired participants lower OB volume was accompanied by a shorter time-period between a positive PCR for SARS-CoV-2, signifying the timepoint of acute SARS-CoV-2 infection, and the baseline examination (\(r_{sp} = 0.161, p = 0.016 \); *figure 2d*).

Longitudinal prediction of olfactory function

OB volume derived from MRI at baseline was significantly linearly associated with olfactometry scoring at follow-up (\(r_{sp} = 0.154, p = 0.025 \); *figure 2e*). Participants with sustained olfactory dysfunction at follow-up had lower OB volume at baseline (mean ±SD, 40.64 ± 12.83 vs. 47.58 ± 12.58, \(f = 5.86, p = 0.018 \); *figure 2f*) than those that had recovered by the time of reassessment.

Clinical analysis

To further explore potential clinical implications of our findings, correlations of OB volume and neuropsychological cognitive test scores and psychiatric test scores were performed. To summarize, no significant associations of OB volume and scores of the Trail Making Test B (\(r_{sp} = 0.014, p = 0.722 \)), Animal Naming Test (\(r_{sp} = 0.090 \),
Word List Recall Test ($r_{sp}=-0.050, \ p=0.587$), Mini Mental State Exam ($r_{sp}=-0.025, \ p=0.689$), PHQ-9 ($r_{sp}=0.098, \ p=0.404$) and EQ-5D ($r_{sp}=-0.009, \ p=0.306$) were found. Corresponding visualizations are displayed in figure 3.
Discussion

We report on an association of OB volume and olfactory dysfunction in a large sample of mainly mildly to moderately affected COVID-19 convalescents. Longitudinal assessment demonstrated sustained smelling impairment up to two years after acute infection. Participants suffering from olfactory dysfunction beyond acute infection had a significantly lower OB volume at baseline than normally smelling individuals. Moreover, OB volume was predictive for olfactometric performance in the Sniffin’ Sticks test 22 months after the acute infection as well as for the binary outcome of recovery from olfactory dysfunction at follow-up. Neuropsychological test performances were not significantly associated with OB volume. Taken together, our findings suggest that lower volume of the OB may be a promising surrogate marker of smelling impairment in COVID-19 at post-acute disease stages.

Its frequency and the concomitant effects on quality of life render olfactory dysfunction a burdensome symptom of COVID-19. Our 2-year longitudinal assessment of olfactory function provided insights about time-dependent development of these symptoms. At acute infection, the proportion of smelling impaired participants was 67.6% which is coherent with previous study reports ranging from 30% to 85% (1–6). After the acute infection, the prevalence decreased to 21% at the baseline examination (on avg. 253 days post infection) and 17.5% at follow-up (on avg. 664 days post infection; figure 2a). These findings indicate that although most former COVID-19 patients completely recover, subjective olfactory dysfunction persisted in a considerable number of individuals. To assess long term olfactory outcomes, olfactometry with the Sniffin’ Sticks Screening 12 test was performed at follow-up. Participants suffering from olfactory dysfunction beyond the acute infection, plausibly showed significantly lower olfactometry scores than normally smelling or recovering subjects (figure 2b).
Collectively, our results support previous evidence of sustained olfactory dysfunction in around 20% of patients underscoring the possible long lasting burden following a SARS-CoV-2 infection (5,34).

Olfactory dysfunction is demonstrably accompanied by lower olfactory bulb volume in many otorhinolaryngological conditions like post-infectious olfactory disorder, head trauma as well as acute and chronic rhinosinusitis (14). In line with this notion, our work showed a lower OB volume in individuals with sustained olfactory dysfunction after the acute SARS-CoV-2 infection indicating COVID-19-related OB atrophy (figure 2c). Thus, our results corroborate previous reports derived from case studies and small samples suggesting lower OB volume in SARS-CoV-2-induced olfactory dysfunction (19–22).

Previous reports have shown an inverse correlation between OB volume and the duration of symptoms in post-infectious olfactory disorder suggesting its predictive capacity (18). To further investigate this, we related the OB volume with olfactometry scores which were acquired approximately 1 year after the MRI. Notably, the OB volume successfully predicted olfactometry scores at follow-up (figure 2e). Yet, the observed correspondence was of a rather low degree, indicating that further determinants of long-term smelling impairment should be considered. Furthermore, OB volume was higher in participants in which the smelling sense fully recovered until follow-up compared to those with sustained olfactory dysfunction (figure 2f). Hence, the OB volume appears to be a predictor of recovery from olfactory impairment, i.e., potentially capturing the severity of damage SARS-CoV-2 exerts on the olfactory system. Interestingly, individuals exhibited higher OB volume the longer the time interval between the positive PCR and the MRI was (figure 2d). This might indicate that
an increasing OB volume may reflect recovery of olfactory function. However, longitudinal imaging assessment is warranted in this regard. Taken together, these findings suggest that a lower OB volume could indicate more severe disruption of the olfactory system and predict persistent olfactory dysfunction in COVID-19 patients. Therefore, the OB might serve as a promising diagnostical target for prognosis assessment and even therapeutical monitoring of olfactory dysfunction in COVID-19.

There are multiple potential mechanisms that might explain the observed link between smelling dysfunction and OB dysintegrity. In the olfactory mucosa, olfactory sensory neurons (OSN) – sensing molecular signatures as odor information – as well as supporting epithelial cells (sustentacular cells) ensure proper sense of smell. Sustentacular cells express angiotensin-converting enzyme 2 (ACE-2) and appear to be a major infection target of the virus (12,35). As they support OSN in a glial-like fashion, impairment of sustentacular cells is considered to contribute to COVID-19-related olfactory dysfunction (36). How OSN are affected by SARS-CoV-2 is controversial. Discussed mechanisms are neurotropism, affection by an impaired support system and damage caused by the immune response to the virus (12,36,37). As the OB serves as a relay for projections from the OSN, volumetric reductions might occur as an indirect effect of OSN affection. Furthermore, axonal injury and microvasculopathy have been demonstrated in the olfactory bulbs and tracts suggesting more local and direct pathology like collateral damage from immune cell responses (38). Taking the link between OB integrity and long-term olfactory function into account, OB volume might serve as an indicator of severe structural disruption of the olfactory system which corresponds with unfavorable outcomes. Nonetheless, further longitudinal neuroimaging research is warranted to support this notion.
By now, COVID-19 is recognized to cause post-acute neurological and psychiatric symptoms like executive dysfunction, fatigue, anxiety, depression and sleep impairment (39–43). Coherent with these observations, a comprehensive MRI analysis on COVID-19 convalescents from the UK Biobank has shown widespread gray matter volume reductions in areas receiving projections from the olfactory cortex (40). Due to its crucial position as a potential access point for the virus to the central nervous system, we hypothesized that affection of the OB might indicate COVID-19-related neuropathology beyond the olfactory system. Thus, we tested whether OB volume might be associated with results of neuropsychological test scores. OB volume showed no significant association with tests of cognitive function (Trail Making Test B, Word List Recall, Animal Naming Test), depressive symptoms (Patient Health Questionnaire-9, PHQ-9) and quality of life (EQ-5D). Consequently, pathology of the olfactory system might be disjunct to non-olfaction-related neuropathology in SARS-CoV-2 infection. Nonetheless, our findings might be partially attributable to the overall mild to moderate disease course captured in our sample resulting in negative results. Further investigations of determinants of neurological and psychiatric sequelae of COVID-19 are necessary.

The strengths of this work lie in its considerable sample size; high quality imaging and phenotypical data; a modern fully-automated MRI-based segmentation of the OB; olfactory assessment at different time points post infection, including quantitative olfactory testing (at follow-up) providing longitudinal information for up to 2 years. Yet, this study has some limitations. First, MRI acquisition and olfactometry with Sniffin’ sticks were performed only at single timepoints, which makes it difficult to completely address pre-infectious group differences. For instance, our results could partially be explained by individuals with lower OB volume being more susceptible to olfactory
impairment caused by SARS-CoV-2 infection. Here, evidence from future longitudinal studies is warranted. As more severely impaired individuals might be more motivated and thus more likely to participate in our study than the average population, our results could possibly be influenced by our recruitment strategy. Lastly, the different SARS-CoV-2 strains appear to differ in terms of olfactory dysfunction frequency. Our study lacks information about SARS-CoV-2 strains rendering it incapable to address inter-strain differences. However, the investigation started at an early stage of the pandemic potentially soothing the problem of different COVID-19 strains and vaccinations as confounders.
Conclusion

In this work, we performed an assessment of olfactory bulb volumetry as a neuroimaging marker of olfactory dysfunction in patients recovered from mainly mild to moderate COVID-19. By revealing an alteration of the OB in smelling impaired participants, our results highlight the relevance of the olfactory system in the overall pathophysiology of the disease. However, a connection between olfactory bulb volume and neuropsychological signs of COVID-19 could not be established. Collectively, these results demonstrate that the OB is a promising target for assessment of smelling impairment in COVID-19 potentially facilitating diagnosis and informing therapy-related decisions.
Author contributions

We describe contributions to the paper using the CRediT contributor role taxonomy.
Formal analysis: M.P.; Funding acquisition: G.T, B.C., A.S.H.; Investigation: M.P.,
Software: M.P.; Supervision: C.B., A.S.H.; Visualization: M.P.; Writing—original draft:
M.P., B.B.; Writing—review & editing: M.P., B.B., M.S., C.M., F.N., E.P., R.T., G.T.,
B.C., C.B., A.S.H.
Competing interests

The authors declare no competing interests.
Acknowledgments

The authors wish to acknowledge all participants of the Hamburg City Health Study and cooperation partners, patrons and the Deanery from the University Medical Center Hamburg—Eppendorf for supporting the Hamburg City Health Study. Special thanks applies to the staff at the Epidemiological Study Center for conducting the study. The participating institutes and departments from the University Medical Center Hamburg-Eppendorf contribute all with individual and scaled budgets to the overall funding. The Hamburg City Health Study is also supported by Amgen, AstraZeneca, Bayer, BASF, Deutsche Gesetzliche Unfallversicherung (DGUV), DIFE, the Innovative medicine initiative (IMI) under grant number No. 116074 and the Fondation Leducq under grant number 16 CVD 03., Novartis, Pfizer, Schiller, Siemens, Unilever and “Förderverein zur Förderung der HCHS e.V.”. The publication has been approved by the Steering Board of the Hamburg City Health Study.
Funding

This work was supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Project number 454012190 and Sonderforschungsbereich (SFB) 936 – 178316478 – Project C2 (M.P., C.M., G.T., and B.C.)
Data availability

Anonymized data of the analysis not published within this article will be made available on reasonable request from any qualified investigator after evaluation of the request by the Steering Board of the HCHS. Analysis code and documentation is publicly available on GitHub (https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/obseg/obseg.sh, https://github.com/csi-hamburg/CSIframe/wiki/Olfactory-bulb-segmentation and https://github.com/csi-hamburg/2022_petersen_ob_postcovid).
Materials & Correspondence

Correspondence and requests for materials should be addressed to

Dr. med. Marvin Petersen
Department of Neurology
University Medical Center Hamburg-Eppendorf
Martinistraße 52, 20246 Hamburg, Germany
+4940-7410-59094
References

The Hamburg City Health Study COVID programme. European Heart Journal. 2022 Jan 6;ehab914.

Table 1. Characteristics of Post-SARS-CoV-2 Individuals

<table>
<thead>
<tr>
<th>Demographics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean ± SD</td>
<td>55.79 ± 7.25</td>
</tr>
<tr>
<td>Female sex at birth, %</td>
<td>44.2</td>
</tr>
<tr>
<td>Education in years, mean ± SD</td>
<td>15.83 ± 2.52</td>
</tr>
<tr>
<td>Current smokers, %</td>
<td>5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVID-19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Days between first positive SARS-CoV-2 PCR test and baseline (T1), mean ± SD</td>
<td>253.15 ± 84.46</td>
</tr>
<tr>
<td>Days between first positive SARS-CoV-2 PCR test and follow-up (T2), mean ± SD</td>
<td>663.51 ± 109.74</td>
</tr>
<tr>
<td>Hospitalization, %</td>
<td>8.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Olfaction and olfactory bulb volume</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective olfactory dysfunction at acute infection, %</td>
<td>67.6</td>
</tr>
<tr>
<td>Olfactory dysfunction severity (VAS), acute infection, mean ± SD</td>
<td>7.62 ± 2.76</td>
</tr>
<tr>
<td>Subjective olfactory dysfunction, T1, %</td>
<td>21.0</td>
</tr>
<tr>
<td>Olfactory dysfunction severity (VAS), T1, mean ± SD</td>
<td>3.79 ± 1.78</td>
</tr>
<tr>
<td>Subjective olfactory impairment, T2, %</td>
<td>17.5</td>
</tr>
<tr>
<td>Olfactory dysfunction severity (VAS), T2, mean ± SD</td>
<td>2.96 ± 2.10</td>
</tr>
<tr>
<td>Olfactometry score, T2, mean ± SD</td>
<td>10.18 ± 1.78</td>
</tr>
<tr>
<td>Olfactory bulb volume in mm³, T1, mean ± SD</td>
<td>45.53 ± 12.85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuropsychological scores</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trail Making Test B, T1, mean ± SD</td>
<td>69.96 ± 24.84</td>
</tr>
<tr>
<td>Word List Recall Test, T1, mean ± SD</td>
<td>8.51 ± 1.67</td>
</tr>
<tr>
<td>Animal Naming Test, T1, mean ± SD</td>
<td>28.25 ± 6.05</td>
</tr>
<tr>
<td>Mini Mental State Exam, T1, mean ± SD</td>
<td>28.42 ± 1.24</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Patient Health Questionnaire 9, T1, mean ± SD</td>
<td>3.54 ± 3.69</td>
</tr>
<tr>
<td>EQ5D, T1, mean ± SD</td>
<td>80.74 ± 14.42</td>
</tr>
</tbody>
</table>

Abbreviations: PCR = polymerase chain reaction, post-SARS-CoV-2 = individuals who have recovered from a severe acute respiratory coronavirus type 2 infection, SD = standard deviation, T1 = at baseline, T2 = at follow-up.
Figure 1: Exemplary 3D visualization of olfactory bulb segmentation results. Volumetric visualization of the left and right olfactory bulb (highlighted) and surrounding brain areas. a) coronal, anterior-posterior; b) axial, inferior-superior; c) sagittal, right-left.
Figure 2: Association of olfactory bulb volume and olfactory function.

a) Trajectory of olfactory function along timepoints. Blue dots indicate proportion of individuals with olfactory dysfunction. Gray dots show the average impairment as operationalized by the visual analogue scale. b) Group differences of olfactometry scores at follow-up between smelling impaired and non-impaired participants at different timepoints. As found with respect to olfactory bulb volume, olfactometry scores at follow-up were significantly lower in individuals that were smelling impaired during both examination timepoints but not during the acute infection. c) Group differences of olfactory bulb volume at baseline between smelling impaired and non-impaired participants with respect to different timepoints. Olfactory bulb volume at baseline was significantly lower in individuals that were smelling impaired during both examination timepoints but not during the acute infection. d) Association of the time interval from positive PCR to examination and olfactory bulb volume. A smaller
interval was significantly associated with lower olfactory bulb volume. e) Linear associations between olfactory bulb volume and olfactometry scores. A low olfactory bulb volume at baseline was significantly associated with a lower olfactometry score at follow-up. f) Group differences of olfactory bulb volume between participants with sustained olfactory dysfunction at follow-up and those with recovered olfaction to that point. Olfactory bulb volume was significantly lower in participants with sustained olfactory dysfunction. Abbreviations: f = f-statistic indicating the effect size as provided by the analysis of covariance, p = p-value, \(r_{sp} \) = spearman correlation coefficient, PCR = polymerase chain reaction, T1 = at baseline, T2 = at follow-up.
Figure 3: Correlations of olfactory bulb volume and clinical test performances. Linear associations between olfactory bulb volume and the Trail Making Test B, Word List Recall, Animal Naming Test, Mini Mental State Exam, Patient Health Questionnaire 9 and EQ5D are shown. No significant relationships were found. Abbreviations: p = p-value, PHQ-9 = Patient Health Questionnaire 9, r_{sp} = spearman correlation coefficient, T1 = at baseline, T2 = at follow-up.