Title: Intracardiac echocardiography guidance for percutaneous transcatheter closure of atrial septal defects: A nationwide registry data analysis

Short title: ICE-guidance for trans-catheter ASD closure

Yasuhiro Tanabe¹, Mitsuyoshi Takahara², Shun Kohsaka³, Toshiro Shinke⁴, Itaru Takamisawa⁵, Tetsuya Amano⁶, Hideaki Kanazawa³, Tomomi Suzuki¹, Shingo Kuwata¹, Yuki Ishibashi¹, Yoshihiro J Akashi¹, Yuji Ikari⁷

1. Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
2. Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
3. Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
4. Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
5. Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan.
6. Department of Cardiology, Aichi Medical University, Nagakute, Japan.
7. Division of Cardiology, Tokai University School of Medicine, Isehara, Japan.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
* Corresponding author y-tanabe@muj.biglobe.ne.jp (YT)

The authors contributed equally to this work.
Abstract

Background

Transesophageal echocardiography (TEE) has been used for the image-guidance for percutaneous atrial septal defect (ASD) closure. However, it requires general anesthesia and has involves procedural complications. Recently, less invasive intracardiac echocardiography (ICE) guidance has been introduced.

Methods

The Japanese Structural Heart Disease (J-SHD) registry was established by the Japanese Association of Cardiovascular Intervention and Therapeutics (CVIT) to provide basic statistics on the performance of structural interventions in Japan. The percutaneous ASD closure performed between January 2015 and December 2020 were analyzed.

Results

A total of 2,859 consecutive cases undergoing percutaneous ASD closure during the study period, the treatment was performed with ICE guidance (ICE group) in 519 cases (18%), TEE guidance or TEE plus ICE guidance (TEE group) in 2,328 cases (81%). The success and complication rates were similar between the groups (99.2% vs. 98.6%, P=0.37 and 0.5% vs. 1.3%, P=0.49. However, in the TEE group, 87.5% of cases required general anesthesia, compared to 2.9% cases in the ICE group (P<0.001). On the other hand, fluoroscopic time was longer in the ICE group (19 [14-28]
min vs. 14 [9-25] min, P<0.001). albeit total procedural time was longer in the TEE group (62 [42-79] vs. 73 [48-120] min, P<0.001). Rim deficiency and larger ASD defect diameter were inversely related, whereas hospital volume was positively related to selecting ICE guidance.

Conclusions

Percutaneous transcatheter ASD closure under ICE guidance was as feasible as those under TEE guidance. Currently, ICE guidance seems to be used for less challenging cases in high-volume centers.

Introduction

An atrial septal defect (ASD) is one of the most common congenital cardiovascular anomalies. Percutaneous device closure for ASD was first described in 1974\(^1\),\(^2\) and it has now largely replaced surgical interventions because it is safe and less invasive.\(^3\) An accurate evaluation of the anatomic features of an ASD is indispensable for diagnosis, case selection and technical planning, and guidance to avoid procedural complications.\(^4\) Traditionally, transesophageal echocardiography (TEE) with general anesthesia has been recommended as imaging guidance for percutaneous ASD closure during the early procedural experience of each institution.\(^5\) TEE-related complications such as pharyngeal injury and aspiration pneumonitis are a matter of concern. More recently, intracardiac echocardiography (ICE) without general anesthesia have been introduced.\(^6\) ICE guidance can be performed continuously without deep sedation. Studies from experienced-centers
have suggested that percutaneous ASD closure under ICE guidance was reported to be safer and superior to TEE guidance for shortening the fluoroscopic and procedural time, reducing the radiation dose.7-11 Alqahtan et al reported that ICE guidance for interatrial procedures increased from 9.7% in 2003 to 50.6% in 2014.12 Singh et al also reported that ICE use has increased exponentially from 3.3% of procedures in 2001 to 55% in 2010.13 However, detailed technical information and specifics on imaging guidance was largely unclear. Moreover, the trends in selection of the imaging modality have not been clarified in current clinical settings in which both TEE and ICE are available.

The present study, based on a nationwide database, aimed 1) to elucidate the current status of imaging guidance during percutaneous transcatheter ASD closure and compared the features of ICE-guidance and of TEE-guidance, and 2) to identify factors associated with the selection of an ICE-guided strategy.

\textbf{Methods}

\textbf{Study population and collection of clinical data}

The present study analyzed the data from a national registry of structural heart disease in Japan (J-SHD) between January 2015 and December 2020. The J-SHD is a prospective, nationwide, multicenter registry of SHD, organized by the Japanese Association of Cardiovascular Intervention...
and Therapeutics (CVIT) and designed to collect clinical variables and in-hospital outcome data on consecutive patients undergoing various structural heart interventions. The association obliges interventionalists and their cardiovascular centers to register all SHD interventional procedures in the J-SHD to apply for board certification and its renewal. Therefore, all hospitals that perform SHD interventions other than specialized pediatric hospitals were mandated to participate in this registry.14, 15 The CVIT holds an annual meeting of data managers to secure appropriate data collection and performs random audits (20 institutions annually) to check the quality of abstracted data. The definitions of variables in J-SHD registries are available online from the CVIT. The study protocol and analyses of the J-SHD registry were approved by the Institutional Review Board Committee at the Network for Promotion of Clinical Studies (a nonprofit organization affiliated with Osaka University Graduate School of Medicine, Osaka, Japan). The patients provided written informed consent when they were registered in the J-SHD registry. The requirement for written informed consent for this specific analysis was waived due to the cross-sectional retrospective study design. All data were fully anonymized before we performed the present analysis. The J-SHD registry can be accessed by participating institutions and the database is not publicly available. However, all relevant data concerning this study are within the paper.

The present study extracted the data of percutaneous transcatheter ASD closures from the database. The indications and the techniques of percutaneous ASD closure were entirely left to the
discretion of the board-certified attending physicians who were well trained to be familiar with the standard technique previously described. The closure devices were selected among Amplatzer® Septal Occluder, Amplatzer® Cribriform (Abbott, Abbott Park, IL, USA), and Occlutech® Figulla Flex II (Occlutech Holding AG, Schaffhausen, Switzerland), which were approved in Japan. No information about the model of the ICE catheter or TEE probe was provided in the registry data.

Definitions

Cardiovascular risk factors were defined according to the domestic clinical guidelines. Hypertension was considered systolic blood pressure \(\geq 140 \) mm Hg, diastolic blood pressure \(\geq 90 \) mm Hg, or treatment with antihypertensive medications. Dyslipidemia was defined as fasting triglyceride levels \(\geq 150 \) mg/dL, fasting high-density lipoprotein (HDL) cholesterol levels \(<40 \) mg/dL, fasting low-density lipoprotein (LDL) cholesterol levels calculated from the Friedewald equation \(\geq 140 \) mg/dL, non-HDL cholesterol levels \(\geq 170 \) mg/dL, or treatment with antihyperlipidemic medication. Diabetes mellitus was defined as fasting glucose levels \(\geq 126 \) mg/dL, non-fasting glucose levels \(\geq 200 \) mg/dL, hemoglobin A1c levels \(\geq 6.5\% \), or treatment with antidiabetic medications. Smoking was defined as any history of smoking within the past years. Chronic kidney disease was defined as the presence of proteinuria, serum creatinine levels \(\geq 1.3 \) mg/dL, or estimated glomerular filtration rate \(\leq 60 \) ml/min/1.73 m\(^2\). End-stage renal disease on
dialysis included both hemodialysis and peritoneal dialysis. Coronary artery disease was defined as a history of myocardial infarction or revascularization for a stenotic coronary artery lesion, whereas cerebrovascular disease was defined as a history of cerebral infarction or hemorrhage with neurological symptoms sustained for ≥24 hours. Rim length, defined as the distance between the ASD and surrounding structures, <5 mm was considered rim deficiency.

The annual case volumes of an institution were defined as the number of percutaneous transcatheter ASD closures conducted during the year prior at the institution. For example, the institutional volume of ASD closure on April 1, 2020, was the number of ASD closures conducted at the institution between April 1, 2019 and March 31, 2020.

Statistical analyses

The data are presented as medians (interquartile ranges) for continuous variables and as frequencies (percentages) for categorical variables unless otherwise indicated. A P value <0.05 was considered significant; 95% confidence intervals (CIs) are reported where appropriate. The annual change of procedural strategies was examined by the chi-squared test. The between-group difference of clinical profiles was crudely tested using the Mann-Whitney U test for continuous variables and the chi-squared test for discrete variables.

The association of baseline characteristics with the selection of an ICE-guided strategy was
investigated using a generalized linear mixed effect with a logit-link function in which the inter-institution and inter-subject variabilities were included as random effects. A model in which each variable of interest was separately entered as the fixed effects (labeled “univariate model”) was developed first. Note that the univariate model was adjusted for inter-institution and inter-subject variabilities, different from the aforementioned crude between-group comparison using the Mann-Whitney U test and the chi-squared test. A multivariate model in which the variables with a P value <0.05 in the univariate model were included as the fixed effects was subsequently developed.

During the analysis, missing data were addressed by list-wise deletion. All statistical analyses were performed using R version 4.1.1 (R Development Core Team, Vienna, Austria).

Results

Study population

Between 2015 and 2020, 2,859 cases with percutaneous transcatheter ASD closure were registered in J-SHD. Of the 2,859 cases, 519 cases were treated under the ICE-guided strategy, 1,428 cases were treated with TEE, and 900 cases were treated with both. The data on the procedural strategy were not identified in the remaining 12 cases.

Temporal trends of imaging guidance for percutaneous ASD closure

Temporal trends of imaging guidance for percutaneous ASD closure are shown in Fig 1. The proportion of ICE guidance was approximately 20%, which did not show a clear temporal increase.
or decrease. To elucidate the status of ICE guidance, the procedures under only ICE guidance (ICE group, N=519) were compared to the procedures using TEE that consisted of only TEE guidance and of both TEE and ICE (TEE group, N=2328).

Fig 1. Temporal trends in imaging guidance for percutaneous ASD closure. Temporal trends in imaging guidance for percutaneous ASD closure are shown. The proportion of ICE guidance is approximately 20%, and it does not show a clear temporal trend. ASD, atrial septal defect. ICE, intracardiac echocardiography. TEE, transesophageal echocardiography.

Patients’ characteristics

There were no differences in sex, age, and the prevalence of diabetes mellitus, hypertension, chronic respiratory insufficiency, dyslipidemia, renal insufficiency, end-stage renal disease on dialysis, coronary artery disease, or cerebrovascular disease, but the proportion of smokers was higher in the TEE group than in the ICE group (4.8% vs. 9.5%, P=0.001). (Table 1). The hemodynamic and anatomic characteristics of ASDs are shown in Table 2. The Qp/Qs ratio was lower in the ICE group than in the TEE group (1.80 (1.50 – 2.30) vs. 2.00 (1.60 – 2.50), P<0.001). The proportion of cases with rim deficiencies was lower in the ICE group than in the TEE group (P < 0.001), though the cases with some kinds of rim deficiency was relatively high, 67.1% in the ICE group. Both the short axis and long axis diameters of the ASDs were smaller in the ICE group than in the TEE group (11 (8-15) mm vs. 12 (9-16) mm, P = 0.004, and 15 (11-19) mm vs. 16 (12-
The hospital volume of transcatheter ASD closure was significantly higher in the ICE group than in the TEE group (32 (24-40)/year vs. 23 (16-36)/year, \(P < 0.001\)) (Table 2). The proportions of ICE guidance by quintiles of the hospital volume are shown in Fig 2. The proportions of ICE guidance were significantly higher in Q2, Q3, Q4, and Q5 than in Q1 (\(P=0.021, 0.002, 0.008,\) and 0.015, respectively).

Table 1. Patients’ characteristics

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>ICE</th>
<th>TEE</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 2859)</td>
<td>(n = 519)</td>
<td>(n = 2328)</td>
<td></td>
</tr>
<tr>
<td>Male, n(%)</td>
<td>1064 (37.2%)</td>
<td>185 (35.6%)</td>
<td>873 (37.5%)</td>
<td>0.46</td>
</tr>
<tr>
<td>Age</td>
<td>58 (40 - 70)</td>
<td>59 (41 - 70)</td>
<td>58 (40 - 70)</td>
<td>0.29</td>
</tr>
<tr>
<td>Diabetes mellitus, n(%)</td>
<td>237 (8.3%)</td>
<td>37 (7.1%)</td>
<td>197 (8.5%)</td>
<td>0.36</td>
</tr>
<tr>
<td>Hypertension, n(%)</td>
<td>759 (26.5%)</td>
<td>145 (27.9%)</td>
<td>609 (26.2%)</td>
<td>0.44</td>
</tr>
<tr>
<td>Chronic respiratory failure, n(%)</td>
<td>40 (1.4%)</td>
<td>7 (1.3%)</td>
<td>32 (1.4%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Dyslipidemia, n(%)</td>
<td>366 (12.8%)</td>
<td>62 (11.9%)</td>
<td>302 (13.0%)</td>
<td>0.58</td>
</tr>
<tr>
<td>Smoking, n(%)</td>
<td>249 (8.7%)</td>
<td>25 (4.8%)</td>
<td>220 (9.5%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Chronic kidney disease, n(%)</td>
<td>155 (5.4%)</td>
<td>23 (4.4%)</td>
<td>131 (5.6%)</td>
<td>0.33</td>
</tr>
<tr>
<td>End-stage renal disease, n(%)</td>
<td>22 (0.8%)</td>
<td>3 (0.6%)</td>
<td>18 (0.8%)</td>
<td>0.85</td>
</tr>
<tr>
<td>Coronary artery disease, n(%)</td>
<td>131 (4.6%)</td>
<td>18 (3.5%)</td>
<td>113 (4.9%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Cerebrovascular disease, n(%)</td>
<td>195 (6.8%)</td>
<td>45 (8.7%)</td>
<td>148 (6.4%)</td>
<td>0.072</td>
</tr>
</tbody>
</table>

ICE, intracardiac echocardiography. TEE, transesophageal echocardiography.

Table 2. Characteristics of target ASDs and hospital procedure volume

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>ICE</th>
<th>TEE</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

medRxiv preprint doi: https://doi.org/10.1101/2022.07.22.22277921; this version posted July 25, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
<table>
<thead>
<tr>
<th></th>
<th>(n = 2859)</th>
<th>(n = 519)</th>
<th>(n = 2328)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qp/Qs ratio</td>
<td>2.00 (1.60 - 2.50)</td>
<td>1.80 (1.50 - 2.30)</td>
<td>2.00 (1.60 - 2.50)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-axis diameter (mm)</td>
<td>12 (8 - 15)</td>
<td>11 (8 - 15)</td>
<td>12 (9 - 16)</td>
<td>0.004</td>
</tr>
<tr>
<td>Long-axis diameter (mm)</td>
<td>16 (12 - 21)</td>
<td>15 (11 - 19)</td>
<td>16 (12 - 21)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Rim deficiency, n(%)</td>
<td></td>
<td></td>
<td></td>
<td>< 0.001</td>
</tr>
<tr>
<td>Aortic</td>
<td>1560 (69.4%)</td>
<td>193 (56.3%)</td>
<td>1361 (71.7%)</td>
<td></td>
</tr>
<tr>
<td>Coronary Sinus</td>
<td>36 (1.6%)</td>
<td>4 (1.2%)</td>
<td>32 (1.7%)</td>
<td></td>
</tr>
<tr>
<td>IVC</td>
<td>51 (2.3%)</td>
<td>8 (2.3%)</td>
<td>43 (2.3%)</td>
<td></td>
</tr>
<tr>
<td>Mitral</td>
<td>6 (0.3%)</td>
<td>2 (0.6%)</td>
<td>4 (0.2%)</td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td>74 (3.3%)</td>
<td>12 (3.5%)</td>
<td>62 (3.3%)</td>
<td></td>
</tr>
<tr>
<td>SVC</td>
<td>51 (2.3%)</td>
<td>11 (3.2%)</td>
<td>39 (2.1%)</td>
<td></td>
</tr>
<tr>
<td>no deficiency</td>
<td>471 (20.9%)</td>
<td>113 (32.9%)</td>
<td>357 (18.8%)</td>
<td></td>
</tr>
<tr>
<td>Hospital Volume (/year)</td>
<td>25 (17 - 37)</td>
<td>32 (24 - 40)</td>
<td>23 (16 - 36)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Fig 2. Proportion of ICE guidance by quintile of the hospital volume. The proportion of ICE guidance is significantly higher in Q2, Q3, Q4, and Q5 than in Q1 (P=0.021, 0.002, 0.008, and 0.015, respectively). ICE, intracardiac echocardiography.

Procedural features and clinical outcomes (Table 3)

Of all cases, 87.5% of cases in the TEE group required general anesthesia, whereas only 2.9% of cases in the ICE group were performed under general anesthesia (P < 0.001). The fluoroscopic time was longer in the ICE group than in the TEE group (19 (14-28) min vs. 14 (9-25) min, P <
Conversely, the procedural time was shorter in the ICE group than in the TEE group (62 (42-79) min vs. 73 (48-120) min, P < 0.001). Concerning device selection, approximately half of the patients were treated with an Amplatzer Septal Occluder, the remaining patients were treated with Occlutech® Figulla Flex, and only a small number of those were treated with an Amplatzer Cribriform. The use of the Occlutech® Figulla Flex II was slightly lower in the ICE group than in the TEE group (45.9% vs. 53.3%, P = 0.004). The rate of successful device deployment was similar between the ICE group and the TEE group (99.2% vs. 98.6%, P=0.37). The rates of complications were similar and low in both groups (0.5% vs. 1.3%, P=0.49), and procedural mortality was 0% in both groups.

Table 3. Procedural features and clinical outcomes.

<table>
<thead>
<tr>
<th></th>
<th>ICE (n = 519)</th>
<th>TEE (n = 2328)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General anesthesia, n(%)</td>
<td>15 (2.9%)</td>
<td>2036 (87.5%)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Procedural time (min)</td>
<td>62 (42 - 79)</td>
<td>73 (48 - 120)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fluoroscopic time (min)</td>
<td>19 (14 - 28)</td>
<td>14 (9 - 25)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Implanted device</td>
<td></td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>Amplatzer Septal Occluder</td>
<td>242 (50.5%)</td>
<td>946 (44.7%)</td>
<td></td>
</tr>
<tr>
<td>Amplatzer Cribriform</td>
<td>17 (3.5%)</td>
<td>42 (2.0%)</td>
<td></td>
</tr>
<tr>
<td>Occlutech Figulla Flex II</td>
<td>220 (45.9%)</td>
<td>1127 (53.3%)</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>40 (7.7%)</td>
<td>213 (9.1%)</td>
<td>0.34</td>
</tr>
<tr>
<td>Number of devices*</td>
<td></td>
<td></td>
<td>0.093</td>
</tr>
<tr>
<td>0</td>
<td>0 (0.0%)</td>
<td>7 (0.8%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>213 (100.0%)</td>
<td>892 (97.8%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 (0.0%)</td>
<td>13 (1.4%)</td>
<td>0.46</td>
</tr>
<tr>
<td>Procedural success</td>
<td>515 (99.2%)</td>
<td>2296 (98.6%)</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Periprocedural complications 1 (0.5%) 12 (1.3%) 0.49
In-hospital death, n(%) 0 (0.0%) 2 (0.2%) 1
Procedural death, n(%) 0 (0.0%) 0 (0.0%) 1
Major bleeding, n(%) 0 (0.0%) 1 (0.1%) 1
Emergent cardiovascular surgery, n(%) 0 (0.0%) 1 (0.1%) 1
Device malapposition, n(%) 1 (0.5%) 8 (0.9%) 0.86
Cerebral infarction, n(%) 0 (0.0%) 1 (0.1%) 1

*The data of number of the implanted device was available since 2019.

ICE, intracardiac echocardiography. TEE, transesophageal echocardiography.

Clinical parameters associated with the selection of ICE guidance

(Table 4)

Table 4 shows the results of the univariate and multivariate analyses of the clinical parameters and selection of ICE guidance. Of the significant parameters on univariate analysis, rim deficiency and longer ASD diameter were inversely related, whereas hospital volume had a positive relationship to the selection of ICE guidance that was significant after multivariate analysis.

Table 4. Associations between clinical parameters and selection of ICE guidance.

<table>
<thead>
<tr>
<th></th>
<th>Univariate model</th>
<th>Multivariate model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR [95% CI] (P value)</td>
<td>OR [95% CI] (P value)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1.80 [1.08 to 2.99] (P=0.023)</td>
<td>1.11 [0.54 to 2.27] (P=0.77)</td>
</tr>
<tr>
<td>Qp/Qs ratio</td>
<td>0.56 [0.45 to 0.68] (P<0.001)</td>
<td>0.76 [0.54 to 1.07] (P=0.12)</td>
</tr>
<tr>
<td>Rim deficiency (vs. no deficiency)</td>
<td>0.48 [0.33 to 0.70] (P<0.001)</td>
<td>0.59 [0.38 to 0.93] (P=0.022)</td>
</tr>
<tr>
<td>Long axis diameter</td>
<td>0.93 [0.91 to 0.95] (P<0.001)</td>
<td>0.95 [0.91 to 0.98] (P=0.003)</td>
</tr>
</tbody>
</table>
Hospital Volume (per doubling of volume)
2.44 [1.31 to 4.53] (P=0.005)
2.14 [1.04 to 4.41] (P=0.039)

ICE, intracardiac echocardiography.

Discussion

This is the first study to evaluate the status of intra-procedural imaging guidance for percutaneous transcatheter ASD closure in a large cohort that analyzed not only the patients’ characteristics, but also the anatomic and hemodynamic features of ASDs. The results can be summarized as follows. The proportion of ICE guidance was approximately 20% in Japan. In more complex cases with a larger shunt and rim deficiencies, TEE guidance was preferred, but 67.1% of cases treated with ICE guidance had some kinds of rim deficiencies. The clinical outcomes were similar between the groups. Most of the ICE guidance cases did not require general anesthesia. The fluoroscopic time was longer in the ICE group than in the TEE group, whereas the procedural time was shorter in the ICE group than in the TEE group. Finally, ICE guidance procedures were performed mainly in experienced hospitals.

Traditionally, percutaneous ASD closure has been performed under TEE. ICE was first used for imaging guidance of percutaneous interatrial closure in 2001, and it has now spread widely to other interventions, such as catheter ablation, transcatheter aortic valve implantation, mitral valve repair, and left atrial appendage closure. The advantage of ICE guidance is its less invasiveness than TEE guidance, since it can be performed continuously without general
anesthesia or deep sedation. As previously described, several studies have suggested that percutaneous ASD closure under ICE guidance is safer and might be superior to TEE guidance in terms of shortening the fluoroscopic and procedural times, reducing the radiation dose \(^7, 9-11\) without increasing ICE-related complications such as access site bleeding and cardiac injury. The present study showed that the procedural time of ICE guidance was shorter, but fluoroscopic time was longer in ICE guidance than in TEE guidance, which was similar to the study results of Shimizu et al, reporting their experience at their institution in Japan.\(^8\) This might suggest that Japanese physicians perform careful maneuvers using the ICE catheter to prevent cardiovascular injury, leading to longer fluoroscopy time. In the present study, ICE guidance was used in only 20% of cases, and the remaining cases were performed under TEE guidance or TEE in addition to ICE. Two large-scale studies in the United States reported that 37.7% to 50.6% cases of interatrial communication were closed under ICE guidance recently.\(^12, 13\) The reasons for the lower rate in the present study compared to the earlier conducted studies were assumed to be as follows. The earlier conducted studies included not only ASD but also PFO, which was simpler and easier to treat with ICE than ASD, leading to an increase in the usage rate. In addition, Japanese medical insurance usually covered the costs of both ICE and TEE in a procedure. Therefore, Japanese physicians did not hesitate to use TEE in addition to ICE when they felt uncertain with ICE-alone guidance, resulting in a
decrease in the rate of ICE-alone guidance procedures. In fact, the rate of ICE plus TEE guidance
in addition to ICE alone guidance reached about 50%, which was similar to ICE guidance in the
previous studies.

Finally, the present study showed that more complex cases tended to be treated with
TEE guidance, whereas two-thirds of cases treated with ICE guidance had some kinds of rim
deficiencies. The present study also demonstrated that ICE guidance was mostly performed in
experienced hospitals, which might suggest that such facilities take up the challenge to treat
relatively complex cases with ICE guidance. To effectively use ICE for interventional
procedures, a learning curve is needed.7,20,21 Similar to the results of the present study, ICE
guidance was used more frequently in teaching hospitals in the United States.12 Although ICE
guidance has an advantage for percutaneous ASD closure, the present study suggests the
importance of experience and education for physicians to increase the usage of ICE in clinical
practice.

\textbf{Study Limitations}

The present study has limitations inherent to any large registry study. The fact that the diagnoses
and treatment were at the discretion of each institution and clinicians may have given rise to
various biases, though the clinicians were trained and familiar with the standard procedures of
CVIT. The rates of procedural complications were extremely low, which suggests that mild cases
of complications that the physicians did not need to report may have been overlooked. Moreover, no information was available about arrhythmias in this registry. A propensity score-matched comparison between ICE and TEE guidance was not performed due to the small number of cases in the ICE group. Acknowledging these limitations, the present study has important strengths, including the large sample size, indicating the current status of ICE guidance for percutaneous ASD closure.

Conclusions

Percutaneous transcatheter ASD closure under ICE guidance was found to be as feasible as that under TEE guidance. ICE guidance has a major advantage over TEE guidance because it can be performed without general anesthesia. So far, ICE guidance has mainly been provided in experienced hospitals, such as those with a large number of cases. It has been suggested that experience and education of physicians are important to increase the use of ICE in clinical practice.

Acknowledgements

The authors appreciate the contribution of all the investigators, clinical coordinators and institutions involved in the J-SHD registry. The contribution of all the investigators, clinical coordinators, and institutions involved in the J-SHD and the J-PCI registry (full list of institutions provided in [http://www.cvit.jp/registry/research_longterm_prognosis.html)).
Funding information

This work was supported by the Japanese Association of Cardiovascular Intervention and Therapeutics (CVIT; Japan), the Grants in-Aid for Scientifc Research from the Japan Society for the Promotion of Science (KAKENHI; No. 16KK0186, 16H05215 and 17K09493).

Conflicts of interest

The authors declare that they have no conflict of interest.
References

echocardiography is superior to conventional monitoring for guiding device closure of interatrial communications. Circulation. 2003;107:795-797. doi:10.1161/01.cir.0000057547.00909.1c.

Figure 1
Figure 2

The bar chart shows the proportion of ICE guidance across different hospital volume categories. The hospital volume is categorized into five quartiles (Q1 to Q5) based on the number of procedures per year.

- **Q1 (1 - 15)**: The proportion of ICE guidance is mixed, with a small gray section indicating a significant portion (P=0.021).
- **Q2 (16 - 21)**: Similar to Q1, with a small gray section (P=0.008).
- **Q3 (22 - 28)**: The gray section is slightly larger than in Q1 and Q2, indicating a marginally higher proportion (P=0.015).
- **Q4 (29 - 39)**: The gray section is the largest, indicating a significantly higher proportion of ICE guidance (P=0.002).
- **Q5 (40 - 79)**: The gray section is also large, showing a high proportion of ICE guidance (P=0.002).

The gray sections represent the proportion of procedures performed with ICE guidance, while the white sections represent the proportion without ICE guidance.