Causal associations of education, lifestyle behaviors, and cardiometabolic traits with epigenetic age acceleration: a Mendelian randomization study

Lijie Kong,1,2* Chaojie Ye,1,2* Yiyi Wang,1,2 Jie Zheng,3 Shuangyuan Wang,1,2 Hong Lin,1,2 Zhiyun Zhao,1,2 Mian Li,1,2 Yu Xu,1,2 Jieli Lu,1,2 Yuhong Chen,1,2 Min Xu,1,2 Weiqing Wang,1,2 Guang Ning,1,2 Yufang Bi,1,2 Tiange Wang1,2

* Lijie Kong and Chaojie Ye contributed equally as first authors.

Author Affiliations:

1 Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;

2 Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;

3 MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom.

Correspondence:

Tiange Wang, MD, PhD. Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rujin 2nd

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Road, Shanghai, China. E-mail: wtg@live.cn. Phone number: 86-021-64370045.
Abstract

Background: GrimAge acceleration (GrimAgeAccel) and PhenoAge acceleration (PhenoAgeAccel) are DNA methylation-based markers of accelerated biological aging, standing out in predicting mortality and age-related cardiometabolic morbidities. Whether and to what extent modifiable risk factors are likely to influence GrimAgeAccel and PhenoAgeAccel, if causally established, could shed light on contributors to aging process and intervention targets for preventing age-related diseases and improving healthy longevity.

Methods: We performed two-sample univariable and multivariable Mendelian randomization (MR) to investigate the causal associations of 18 common modifiable socioeconomic, lifestyle, and cardiometabolic factors with GrimAgeAccel and PhenoAgeAccel. We extracted independent genetic variants strongly associated with the 18 modifiable factors from the largest available genome-wide association studies (GWASs) of European ancestry, ensuring minimum sample overlap with the genetic variants for GrimAgeAccel and PhenoAgeAccel. Summary-level data for GrimAgeAccel and PhenoAgeAccel were derived from a GWAS of 34,710 European participants. We used the inverse-variance weighted method as the main analysis, and the weighted median, MR-Egger, and MR pleiotropy residual sum and outlier methods as sensitivity analyses.

Results: Eleven and eight factors were causally associated with GrimAgeAccel and PhenoAgeAccel, respectively. Smoking initiation was the strongest risk factor (β [SE]: 1.299 [0.107] years) for GrimAgeAccel, followed by higher alcohol intake, higher waist circumference, daytime napping, higher body fat percentage, higher BMI, higher C-reactive protein, higher triglycerides, childhood obesity, and type 2 diabetes; whereas education was the strongest protective factor (β [SE] per 1-SD
increase in years of schooling: -1.143 [0.121] years). Higher waist circumference (β [SE]: 0.850 [0.269] years) and education (β [SE]: -0.718 [0.151] years) were the leading causal risk and protective factors for PhenoAgeAccel, respectively. Sensitivity analyses strengthened the robustness of these causal associations, and the multivariable MR analyses demonstrated independent direct effects of the strongest risk and protective factors on GrimAgeAccel and PhenoAgeAccel, respectively.

Conclusion: Our findings provide novel quantitative evidence on modifiable causal risk factors for epigenetic aging, and hints at underlying contributors and intervention targets to the aging process.

Keywords: Epigenetic age acceleration; Education; Lifestyle behaviors; Cardiometabolic traits; Mendelian randomization.
Introduction

Aging involves the gradual accumulation of a decline in multiple biological functions over time, leading to increased risks of developing age-related diseases and mortality [1,2]. Although chronological aging is uniform and unchangeable, the rate of biological aging is variable and modifiable depending on individual genetics, environmental exposures, and health-related behaviors [3]. Of several potential types of biological age predictors (e.g., epigenetic clock, leukocyte telomere length, and transcriptomic predictors), the epigenetic clock that composed of DNA methylation at multiple cytosine-phosphate-guanine (CpG) sites is currently the best one, as it correlates well with age and predicts mortality across populations [4]. The epigenetic age acceleration is the difference between chronological age and epigenetic age, and represents accelerated biological aging [5]. The second-generation epigenetic age acceleration indicators, namely GrimAge acceleration (GrimAgeAccel) and PhenoAge acceleration (PhenoAgeAccel), have been evolved to incorporate aging-related traits, and stand out in terms of predicting mortality and age-related cardiometabolic morbidities [6-9].

Limited observational evidence has suggested that certain socioeconomic, lifestyle behaviors, and cardiometabolic traits may be related to GrimAgeAccel and PhenoAgeAccel [6,7,10,11]. Whether and to what extent modifiable risk factors influence GrimAgeAccel and PhenoAgeAccel, if causally established, could shed light on potential contributors to aging process and elucidate promising targets for preventing age-related diseases and improving healthy longevity. [12,13]. Thus far, such causal evidence is scarce.

To fill this knowledge gap, we applied Mendelian randomization (MR) to evaluate the causal associations of 18 common modifiable socioeconomic, lifestyle
and cardiometabolic factors with GrimAgeAccel and PhenoAgeAccel. The MR method uses genetic variants as instrumental variables (IVs) to infer causality among correlated traits. Since genetic variants are randomly allocated at conception, the MR study is less susceptible to confounding and reverse causality than conventional observational studies [14]. We conducted both univariable and multivariable MR analyses to discern if modifiable factors have independent direct causal effects on GrimAgeAccel and PhenoAgeAccel.

Methods

Study design

This MR study design is presented in Figure 1. We performed two-sample univariable and multivariable MR strictly following the STROBE-MR guidelines (Supplementary Table 1) [15]. To obtain unbiased estimates of the causal effects, the MR analysis should adhere to three fundamental assumptions [16]: first, the IVs are truly associated with the exposures; second, the IVs are independent of confounders of the relationship between exposures and outcomes (GrimAgeAccel and PhenoAgeAccel); third, the IVs influence the outcomes only through the exposures, but not any direct or indirect pathways. All data used in this MR study are publicly available. Ethical approval and informed consent had been obtained in all original studies.

Selection rationale and data sources of genetic instruments

We selected 18 common modifiable factors including educational attainment, lifestyle behaviors (smoking initiation, alcohol intake, coffee consumption, daytime napping, sleep duration, and moderate-to vigorous physical activity [MVPA]), and
cardiometabolic traits (body mass index [BMI], waist circumference, body fat percentage [BF%], childhood obesity, type 2 diabetes, low-density lipoprotein [LDL] cholesterol, high-density lipoprotein [HDL] cholesterol, triglycerides, systolic blood pressure [SBP], diastolic blood pressure [DBP], and C-reactive protein [CRP]).

Definitions of the 18 modifiable factors are shown in Supplementary Table 2. We extracted genetic variants for each of the modifiable factors from the largest available genome-wide association studies (GWASs) of European ancestry [17-29], ensuring minimum sample overlap with the genetic variants for GrimAgeAccel and PhenoAgeAccel (Table 1). We included single nucleotide polymorphisms (SNPs) robustly associated with the 18 modifiable factors at the genome-wide significance (P <5×10−8). To select independent genetic variants, a stringent condition (linkage disequilibrium threshold of r2 <0.01) was set to minimize the influence of linkage disequilibrium which may bias the results of randomized allele allocation. Where SNPs for the exposures were not available in the GWAS summary statistics of GrimAgeAccel or PhenoAgeAccel, we used proxies of SNPs with r2 >0.8 as substitutes, by using the LDproxy search on the online platform LDlink (https://ldlink.nci.nih.gov/) [30].

Data source for epigenetic age acceleration

The genetic associations with GrimAgeAccel and PhenoAgeAccel were extracted from a recent GWAS meta-analysis (summary statistics available at https://datashare.is.ed.ac.uk/handle/10283/3645), which included 34,710 European participants from 28 cohorts [31]. GrimAgeAccel and PhenoAgeAccel are two-generation epigenetic age acceleration indicators, expressing the biological aging rate in years, of which GrimAgeAccel is more strongly associated with mortality than
PhenoAgeAccel [11]. Detailed definitions of GrimAgeAccel and PhenoAgeAccel and data preparation in GWAS are shown in Supplementary Table 2.

Statistical analyses

In the main analysis, we used the inverse-variance weighted (IVW) method to determine MR causal estimates (β coefficients with standard errors [SEs]) for associations of each modifiable factor with GrimAgeAccel and PhenoAgeAccel. The IVW combined the Wald ratio estimates of every single SNP in the set of IVs into one causal estimate using the random-effects meta-analysis approach [32]. To evaluate the robustness of the IVW estimates under different assumptions and to detect possible pleiotropy, we performed three sensitivity analyses, including the MR weighted median, the MR Egger, and the MR pleiotropy residual sum and outlier (MR-PRESSO) methods. The weighted median method selected the median MR estimate as the causal estimate, and provided a consistent causal estimate if over 50% of the weight in the analysis was derived from valid IVs [33]. The MR Egger method which allowed the intercept to be freely estimated as an indicator of pleiotropy was used to identify and adjust for the potential directional pleiotropic bias, but has limited precision [34]. The MR-PRESSO method was applied to detect and correct for any outlier SNP reflecting likely horizontal pleiotropic biases for MR causal estimates [35]. We evaluated the heterogeneity for the IVW estimates using the Cochran’s Q test [36], and identified the horizontal pleiotropy based on the p-value for the intercept in the MR-Egger model [34]. A false discovery rate (FDR) method was used to correct results for multiple testing, and FDR q-values were provided. In this study, strong causal evidence was defined as an association supported by the main analysis (FDR q-value <0.05) and at least one sensitivity analysis. Suggestive causal evidence
was defined as a suggest association with $P < 0.05$ and FDR q value ≥ 0.05 in the main analysis. Null causal evidence was defined as no statistically significant association revealed from the main analysis ($P \geq 0.05$).

We further conducted multivariable MR (MVMR) analyses to assess whether the causal effects of the strongest protective factor and risk factor on GrimAgeAccel and PhenoAgeAccel were independent of other exposure factors [37]. Taking into account the effect size and significance of causal associations, we selected exposure factors with β coefficients >0.5 and $P < 0.05$ in the main analysis as covariates in the adjustment models.

The two-sample MR analyses were conducted with the R packages ‘TwoSampleMR’ and ‘MRPRESSO’ in R software (version 4.0.3). FDR q-values were estimated using the R package ‘fdrtool’.

Results

MR results for associations between 18 modifiable factors and GrimAgeAccel

Ten out of the 18 risk factors showed strong associations with increased GrimAgeAccel after FDR adjustment for multiple comparisons (Table 2). Smoking initiation was the strongest risk factor (β [SE]: 1.299 [0.107] years) for GrimAgeAccel, followed by higher alcohol intake (β [SE] per 1-SD increase: 0.899 [0.361] years), higher waist circumference (β [SE] per 1-SD increase: 0.815 [0.184] years), daytime napping (β [SE]: 0.805 [0.355] years), higher BF% (β [SE] per 1-SD increase: 0.748 [0.120] years), higher BMI (β [SE] per 1-SD increase: 0.592 [0.079] years), higher CRP (β [SE] per 1-SD increase: 0.345 [0.073] years), higher triglycerides (β [SE] per 1-SD increase: 0.249 [0.091] years), childhood obesity (β [SE]: 0.200 [0.075] years), and type 2 diabetes (β [SE]: 0.095 [0.041] years; Figure
By contrast, educational attainment in years of schooling was the only one protective factor associated with decreased GrimAgeAccel (β [SE] per 1-SD increase: -1.143 [0.121] years). There was little evidence to support a causal association of other modifiable factors with GrimAgeAccel.

Associations of the above 11 modifiable factors with GrimAgeAccel were robust across sensitivity analyses with consistent effect directions and P <0.05 in at least one sensitivity analysis. The MR-Egger intercept tests indicated potential pleiotropy for CRP (P_intercept <0.05; Supplementary Table 3). Cochran’s Q-test showed possible heterogeneity for educational attainment, alcohol intake, BMI, BF%, type 2 diabetes, LDL cholesterol, HDL cholesterol, and CRP (P_h <0.05; Supplementary Table 3).

However, with the exclusion of outlying SNPs, the MR-PRESSO analysis showed consistent results with the IVW analysis (Table 2).

MR results for associations between 18 modifiable factors and PhenoAgeAccel

Eight modifiable factors showed strong associations with PhenoAgeAccel after FDR adjustment for multiple comparisons (Table 3). Higher waist circumference was the strongest risk factor (β [SE] per 1-SD increase: 0.850 [0.269] years) for PhenoAgeAccel, followed by higher BF% (β [SE] per 1-SD increase: 0.711 [0.152] years), higher BMI (β [SE] per 1-SD increase: 0.586 [0.102] years), smoking initiation (β [SE]: 0.519 [0.142] years), higher CRP (β [SE] per 1-SD increase: 0.349 [0.095] years), childhood obesity (β [SE]: 0.229 [0.095] years), and type 2 diabetes (β [SE]: 0.125 [0.051] years). Whereas the genetically predicted higher educational attainment in years of schooling was associated with decreased PhenoAgeAccel (β [SE] per 1-SD increase: -0.718 [0.151] years; Figure 3). Suggestive causality was identified for the association between genetically predicted higher DBP and increased...
PhenoAgeAccel (β [SE] per 1-mmHg increase: 0.049 [0.024] years). No significant
association was observed with PhenoAgeAccel for the other modifiable factors.

Associations for the above eight modifiable factors were robust in sensitivity
analyses with consistent effect directions and P <0.05 in at least one sensitivity
analysis. There was no evidence of pleiotropy for these risk factors except for CRP
(P_intercept <0.05; Supplementary Table 4). Potential heterogeneity was observed for
educational attainment, smoking initiation, BMI, waist circumference, BF%, type 2
diabetes, and CRP (P_{h}<0.05). One to four outliers were detected in the MR-PRESSO
analyses; however, the associations remained consistent after removal of these
outliers (Table 3). For SBP, with excluding the outlying SNP rs62523863, the MR-
PRESSO analysis revealed a potentially positive association between genetically
predicted higher SBP and PhenoAgeAccel (β [SE] per 1-mmHg increase: 0.038
[0.016] years).

MVMR results for associations of the strongest protective and risk factors with
GrimAgeAccel and PhenoAgeAccel

In MVMR analyses, the association between educational attainment (the strongest
protective factor) and GrimAgeAccel was slightly attenuated but remained significant
with adjustment for smoking initiation, BMI, waist circumference, or BF% (Figure
4a). Likewise, the significant association between smoking initiation (the strongest
risk factor) and GrimAgeAccel was not substantially changed after adjustment for
BMI, waist circumference, or BF%. All covariates in MVMR analyses were selected
based on their considerable effects on GrimAgeAccel in terms of size (β
coefficients >0.5) and significance (P <0.05 in the main analysis).
Similarly, the associations of education (the strongest protective factor) and waist circumference (the strongest risk factor) with PhenoAgeAccel remained significant with adjustment for corresponding covariates (Figure 4b).

Discussion
This MR study delineated potential causal relationships between 18 common modifiable factors and two robust epigenetic age acceleration indicators, the GrimAgeAccel and PhenoAgeAccel. We identified strong evidence for 11 and eight factors associated with GrimAgeAccel and PhenoAgeAccel, respectively. Smoking initiation exhibited the greatest effect on increased GrimAgeAccel (1.299 years), followed by higher alcohol intake, higher waist circumference, daytime napping, higher BF%, higher BMI, higher CRP, higher triglycerides, childhood obesity, and type 2 diabetes; whereas educational attainment showed the greatest effect on decreased GrimAgeAccel (-1.143 years per 1-SD increase in years of schooling).

Higher waist circumference and educational attainment were the leading causal risk and protective factors associated with PhenoAgeAccel, respectively; BF%, BMI, smoking initiation, CRP, childhood obesity, and type 2 diabetes were also associated with increased PhenoAgeAccel. Multiple sensitivity analyses further strengthened the robustness of these causal relationships, and the MVMR analyses demonstrated the independent direct effects of the strongest risk and protective factors on GrimAgeAccel and PhenoAgeAccel. Suggestive causality was identified for the association between higher DBP and increased PhenoAgeAccel.

In this study, educational attainment was the major protective factor for both GrimAgeAccel and PhenoAgeAccel, and this causal effect was largely independent of other causal factors, such as smoking and adiposity-related traits. Educational
attainment is a strong proxy for socioeconomic status and a more upstream
determinant of health, with broad implications for a person’s life-long lifestyle
behaviors and health-promoting resources [38]. A recent study using UK Biobank
data has documented that each 1-year increase in genetically determined educational
attainment was associated with equivalently 4.2 years of age-related increases in
telomere length [39]. Telomere length and epigenetic age acceleration metrics (e.g.,
GrimAgeAccel and PhenoAgeAccel) point towards distinct mechanisms of the aging
process that are marked by telomeres and the DNA methylation-based epigenetic
clocks, both of which are independently associated with chronological age and
mortality risk [40]. Our findings, together with those of the UK Biobank, highlight the
important impact of educational attainment on biological aging rates from two
different aspects of the aging process. Therefore, public health strategies aimed at
reducing educational inequalities and improving educational attainment may slow the
biological aging rate and help reduce age-related health burdens.

This MR study identified several common lifestyle behaviors, including smoking
initiation, alcohol intake, and daytime napping, causally associated with increased
GrimAgeAccel or PhenoAgeAccel (smoking initiation only), which were consistent
with previous evidence from observational studies [6,7]. Smoking methylation proxy
is a component of the GrimAge clock [7], thus it is not surprising that smoking
initiation exhibited a large effect on increased GrimAgeAccel, and the MVMR
analysis further confirmed that the effect of smoking on GrimAgeAccel was
independent of adiposity-related traits. Similarly, genetically determined smoking has
been associated with shorter telomere length in the UK Biobank [41], and evidence
from the Danish Health Interview Survey suggested that the life expectancy of a
heavy smoker was a little more than seven years shorter than that of a never smoker
Our study also provided strong MR evidence that genetically predicted higher alcohol intake was associated with increased GrimAgeAccel. A study composed of the Hannum cohort and Family and Community Health Studies cohort found that the relationship between alcohol use and the first-generation epigenetic clocks seemed to be nonlinear [42]. However, given the dose-dependent relationship of alcohol intake with all-cause mortality and cancers [43], our findings suggest that reducing alcohol intake is necessary to decrease GrimAgeAccel and retard the overall health loss.

Previous observational studies also reported positive or negative correlations of other lifestyle behaviors such as MVPA, coffee, and sleep duration with GrimAgeAccel, PhenoAgeAccel, or mortality [11,44,45]. Nevertheless, in this study, there was little evidence supporting these associations were causal. The discrepancy between our findings and previous observations may result from bias from confounding or reverse causation or non-linear association patterns, as in the case of sleep duration and mortality [46], therefore, our null findings should be cautiously interpreted.

Interestingly, of all cardiometabolic traits (i.e., adiposity traits, type 2 diabetes, triglycerides, and CRP) which causally increased GrimAgeAccel or PhenoAgeAccel, adiposity traits were the most dominant traits. Emerging observational studies have pronounced the positive associations of BMI with GrimAgeAccel and PhenoAgeAccel [11], and a meta-analysis of 87 observational studies showed each 5-kg/m² higher BMI corresponded to about 1 year of age-related decrease in telomere length [46]. Our study further provided strong evidence for causal associations of various adiposity phenotypes, including BMI, waist circumference, BF%, and childhood obesity, with increased GrimAgeAccel and PhenoAgeAccel. In this study, type 2 diabetes, triglycerides, and CRP showed strong but modest effects (β
coefficients ≤0.5) on GrimAgeAccel or PhenoAgeAccel, which was consistent with the findings of the UK Biobank study on telomere length [39].

Our study identifies education, lifestyle behaviors, and cardiometabolic traits associated with accelerating or decelerating epigenetic aging, which brings us one step closer to understanding the potential contributors to the aging process and provides promising intervention targets for healthy aging. Given the enormous burden induced by age-related morbidity and mortality, strategies to reduce educational inequalities, promote healthy lifestyles primarily through reducing smoking, alcohol intake, and daytime napping, and improve cardiometabolic traits, specifically adiposity, type 2 diabetes, triglycerides, and CRP, to slow biological aging rate are imminent.

To our knowledge, this MR study for the first time showed causal associations of comprehensive modifiable risk factors with GrimAgeAccel and PhenoAgeAccel, the robust second-generation epigenetic age acceleration indicators. We included independent and genome-wide significant SNPs as instruments for each of the modifiable factors to ensure the first MR assumption was fulfilled. Moreover, we applied strict criteria strengthened by the FDR-corrected significance and the cross-validations by main and sensitivity analyses to draw robust causal conclusions.

Several limitations merited consideration. First, we found potential pleiotropy from the MR-Egger intercept test for CRP. However, we conducted MR-PRESSO analysis, and the association remained consistent after removal of outlying SNPs. Second, we could not rule out the possibility that the associations of certain modifiable risk factors such as alcohol intake and sleep duration with GrimAgeAccel or PhenoAgeAccel may be non-linear. Future studies with individual-level data are warranted to confirm the linear or non-linear relationships. Third, to ensure the
consistency of genetic background, this MR study was performed only in European-ancestry participants, thus the generalization of our results to other ethnic groups should be cautious.

Conclusions

This MR study provided novel quantitative evidence on the modifiable causal risk profile of 11 socioeconomic, lifestyle, and cardiometabolic factors for epigenetic age acceleration. Our findings shed light on the underlying contributors to the biological aging process and point toward potential intervention targets to slow the biological aging rate and promote healthy longevity.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF%</td>
<td>Body fat percentage</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosine-phosphate-guanine</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>GrimAgeAccel</td>
<td>GrimAge acceleration</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-wide association study</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td>IV</td>
<td>Instrumental variable</td>
</tr>
<tr>
<td>IVW</td>
<td>Inverse variance weighted</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>MVPA</td>
<td>Moderate-to vigorous physical activity</td>
</tr>
<tr>
<td>MR</td>
<td>Mendelian randomization</td>
</tr>
<tr>
<td>MVMR</td>
<td>Multivariable Mendelian randomization</td>
</tr>
<tr>
<td>PhenoAgeAccel</td>
<td>PhenoAge acceleration</td>
</tr>
<tr>
<td>PRESSO</td>
<td>Pleiotropy residual sum and outlier</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard errors</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>WM</td>
<td>Weighted median</td>
</tr>
</tbody>
</table>
Conflict-of-interest statement
The authors declare that they have no competing interests

Ethics approval and consent to participate
This study is based on publicly available summarized data. Ethical approval and informed consent had been obtained in all original studies.

Availability of data and materials
The genetic association data of the 18 modifiable factors are available in Table 1. The GWAS summary statistics for GrimAgeAccel and PhenoAgeAccel are available at https://datashare.is.ed.ac.uk/handle/10283/3645. The analytical script of the MR analyses conducted in this study is available via the GitHub repository of the “TwoSampleMR” R package (https://github.com/MRCIEU/TwoSampleMR/).

Funding
This work was supported by the grants from the National Natural Science Foundation of China (82022011, 81970706, 81730023, 82088102, 81970728, 81941017), the Chinese Academy of Medical Sciences (2018PT32017, 2019PT330006), the “Shanghai Municipal Education Commission–Gaofeng Clinical Medicine Grant Support” from Shanghai Jiao Tong University School of Medicine (20171901 Round 2), the Shanghai Shenkang Hospital Development Center (SHDC12019101, SHDC2020CR1001A, SHDC2020CR3064B), the Shanghai Jiao Tong University School of Medicine (DLY201801), and the Ruijin Hospital (2018CR002).
Authors’ contributions

LK and TW contributed to the conception and design of the study. LK and CY contributed to statistical analysis. LK contributed to drafting of the manuscript. TW guaranteed this work and take responsibility for the integrity of the data. All authors contributed to acquisition or interpretation of data, critical revision of the manuscript for important intellectual content, and final approval of the version to be published.

Acknowledgements

We gratefully acknowledge the investigators and participants of all genome-wide association studies from which we used data.
References

32. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian

2018;45(2):424-432.

2018;5(12):987-1012.

<table>
<thead>
<tr>
<th>Modifiable factor</th>
<th>PMID/ GWAS ID</th>
<th>Sample size</th>
<th>Ancestry</th>
<th>No. of SNPs</th>
<th>Unit</th>
<th>P threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioeconomic factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational attainment^17</td>
<td>30038396</td>
<td>1131881</td>
<td>European</td>
<td>751</td>
<td>1-SD increase in years of schooling</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>Lifestyle behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking initiation^18</td>
<td>30643251</td>
<td>557337 cases and 674754 controls</td>
<td>European</td>
<td>299</td>
<td>log-odds (ever smoked regularly compared to never smoked)</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>Alcohol intake^18</td>
<td>30643251</td>
<td>941280</td>
<td>European</td>
<td>80</td>
<td>1-SD increase in log-transformed alcoholic drinks/week</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>Coffee consumption^19</td>
<td>31046077</td>
<td>375833</td>
<td>European</td>
<td>12</td>
<td>1% change</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime napping^20</td>
<td>33568662</td>
<td>452633</td>
<td>European</td>
<td>115</td>
<td>1 unit increase in napping category (responses “never, sometimes or usually napping” were treated as continuous variable)</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>Sleep duration^21</td>
<td>30846698</td>
<td>446118</td>
<td>European</td>
<td>77</td>
<td>1 hour/day</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>MVPA^22</td>
<td>29899525</td>
<td>377234</td>
<td>European</td>
<td>6</td>
<td>1-SD increase in MET-minutes/week of MVPA</td>
<td>P <5×10^{-9}</td>
</tr>
<tr>
<td>Cardiometabolic trait</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiposity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI^23</td>
<td>30124842</td>
<td>681275</td>
<td>European</td>
<td>941</td>
<td>1-SD increase in body mass index</td>
<td>P <5×10^{-8}</td>
</tr>
<tr>
<td>Variable</td>
<td>No.</td>
<td>European/No.</td>
<td>SD</td>
<td>Description</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>--------------</td>
<td>----</td>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Waist circumference24</td>
<td>25673412</td>
<td>224459</td>
<td>European</td>
<td>44</td>
<td>1-SD increase in waist circumference</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>BF%</td>
<td>ukb-b-8909</td>
<td>454633</td>
<td>European</td>
<td>641</td>
<td>1-SD increase in body fat percentage</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>Childhood obesity25</td>
<td>22484627</td>
<td>5530 cases and 8318 controls</td>
<td>European</td>
<td>5</td>
<td>log-odds</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>Type 2 diabetes26</td>
<td>30297969</td>
<td>71124 cases and 824006 controls</td>
<td>European</td>
<td>232</td>
<td>log-odds</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>Lipids27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol**</td>
<td>30275531</td>
<td>> 600000</td>
<td>mix</td>
<td>145</td>
<td>1-SD increase in LDL cholesterol</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>HDL cholesterol**</td>
<td>30275531</td>
<td>> 600000</td>
<td>mix</td>
<td>222</td>
<td>1-SD increase in HDL cholesterol</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>Triglycerides**</td>
<td>30275531</td>
<td>> 600000</td>
<td>mix</td>
<td>172</td>
<td>1-SD increase in triglycerides</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>Blood pressure28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>30224653</td>
<td>>1 million</td>
<td>European</td>
<td>222</td>
<td>1 mmHg</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>DBP</td>
<td>30224653</td>
<td>>1 million</td>
<td>European</td>
<td>264</td>
<td>1 mmHg</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
<tr>
<td>CRP29</td>
<td>31900758</td>
<td>418642</td>
<td>European</td>
<td>299</td>
<td>1-SD increase in serum CRP levels</td>
<td>P <5×10<sup>-8</sup></td>
</tr>
</tbody>
</table>

*SNPs used in the present MR analysis.

bP threshold represents genome-wide significance threshold of genetic instruments.

Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; GWAS=genome-wide association study; HDL=high-density lipoprotein; IVs=instrumental variables; LDL=low-density lipoprotein; MVPA=moderate-to-vigorous physical activity; MR=Mendelian randomization; No=number; SBP=systolic blood pressure; SD=standard deviation; SNP=single nucleotide polymorphism.
<table>
<thead>
<tr>
<th>Modifiable factor</th>
<th>No. of SNP</th>
<th>IVW</th>
<th>Weighted median</th>
<th>MR-Egger</th>
<th>MR-PRESSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β (SE)</td>
<td>P value</td>
<td>q value</td>
<td>β (SE)</td>
<td>P value</td>
</tr>
<tr>
<td>Socioeconomic factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational attainment</td>
<td>751</td>
<td>-1.143 (0.121)</td>
<td>3.31E-21</td>
<td>2.98E-20</td>
<td>-1.129 (0.172)</td>
</tr>
<tr>
<td>Lifestyle behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking initiation</td>
<td>299</td>
<td>1.299 (0.107)</td>
<td>4.90E-34</td>
<td>8.82E-33</td>
<td>1.257 (0.157)</td>
</tr>
<tr>
<td>Alcohol intake</td>
<td>80</td>
<td>0.899 (0.361)</td>
<td>0.013</td>
<td>0.026</td>
<td>0.380 (0.567)</td>
</tr>
<tr>
<td>Coffee consumption</td>
<td>12</td>
<td>0.003 (0.005)</td>
<td>0.589</td>
<td>0.624</td>
<td>-0.003 (0.006)</td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime napping</td>
<td>115</td>
<td>0.805 (0.355)</td>
<td>0.023</td>
<td>0.038</td>
<td>0.524 (0.514)</td>
</tr>
<tr>
<td>Sleep duration</td>
<td>77</td>
<td>-0.301 (0.266)</td>
<td>0.257</td>
<td>0.356</td>
<td>-0.403 (0.400)</td>
</tr>
<tr>
<td>MVP</td>
<td>6</td>
<td>-0.186 (0.903)</td>
<td>0.837</td>
<td>0.837</td>
<td>-0.036 (1.198)</td>
</tr>
<tr>
<td>Cardiometabolic trait</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>941</td>
<td>0.592 (0.079)</td>
<td>9.16E-14</td>
<td>5.50E-13</td>
<td>0.490 (0.124)</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>44</td>
<td>0.815 (0.184)</td>
<td>9.26E-06</td>
<td>2.78E-05</td>
<td>0.776 (0.272)</td>
</tr>
<tr>
<td>BF%</td>
<td>641</td>
<td>0.748 (0.120)</td>
<td>4.12E-10</td>
<td>1.85E-09</td>
<td>0.740 (0.182)</td>
</tr>
<tr>
<td>Childhood obesity</td>
<td>5</td>
<td>0.200 (0.075)</td>
<td>0.007</td>
<td>0.016</td>
<td>0.142 (0.098)</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>232</td>
<td>0.095 (0.041)</td>
<td>0.020</td>
<td>0.036</td>
<td>0.084 (0.071)</td>
</tr>
<tr>
<td>Lipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>145</td>
<td>-0.004 (0.096)</td>
<td>0.327</td>
<td>0.392</td>
<td>-0.064 (0.163)</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>223</td>
<td>-0.181 (0.095)</td>
<td>0.056</td>
<td>0.084</td>
<td>-0.267 (0.138)</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>173</td>
<td>0.249 (0.091)</td>
<td>0.006</td>
<td>0.015</td>
<td>0.239 (0.144)</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>222</td>
<td>0.013 (0.012)</td>
<td>0.279</td>
<td>0.359</td>
<td>0.015 (0.018)</td>
</tr>
<tr>
<td>DBP</td>
<td>264</td>
<td>0.011 (0.019)</td>
<td>0.565</td>
<td>0.624</td>
<td>0.022 (0.027)</td>
</tr>
<tr>
<td>CRP</td>
<td>299</td>
<td>0.345 (0.073)</td>
<td>2.31E-06</td>
<td>8.32E-06</td>
<td>0.245 (0.107)</td>
</tr>
</tbody>
</table>

Table 2. MR results of the associations between 18 modifiable factors and GrimAgeAccel

GrimAgeAccel represents epigenetic-age acceleration obtained using the GrimAge clock. The q value represents the false discovery rate (FDR)-adjusted P value. β represents the associations with GrimAgeAccel of respectively: 1-SD increase in years of educational attainment; Ever smoked regularly compared to never smoked; 1-SD increase in log-transformed alcoholic drinks per week; 1%-change in coffee consumption; 1-unit increase in napping category (never, sometimes, usually); 1-hour/day increase in sleep duration; 1-SD increase in MET-minutes/week of MVP; 1-SD increase in BMI; 1-SD increase in waist circumference; 1-SD increase in BF%; 1-unit increase in log-transformed odds of childhood obesity; 1-unit increase in log-transformed odds of type 2 diabetes; 1-SD increase in LDL cholesterol; 1-SD increase in HDL cholesterol; 1-SD increase in triglycerides; 1-mmHg increase in SBP; 1-mmHg increase in DBP; 1-SD increase in serum CRP levels.

Abbreviations: BF%=body fat percentage; BMI=body mass index; CRP=C-reactive protein; DBP=diastolic blood pressure; HDL=high-density lipoprotein; IVW=Inverse variance weighted; LDL=low-density lipoprotein; MVP=moderate-to vigorous physical activity; MR=Mendelian randomization; MR-PRESSO=Mendelian randomization pleiotropy residual sum and outlier; No.=number; SBP=systolic blood pressure; SD=standard deviation; SNP=single nucleotide polymorphism.
<table>
<thead>
<tr>
<th>Modifiable factor</th>
<th>No. of SNP</th>
<th>Main analysis</th>
<th>Sensitivity analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IVW</td>
<td>Weighted median</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β (SE)</td>
<td>P value</td>
</tr>
<tr>
<td>Socioeconomic factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational attainment</td>
<td>751</td>
<td>-0.718 (0.151)</td>
<td>1.83E-06</td>
</tr>
<tr>
<td>Lifestyle behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking initiation</td>
<td>299</td>
<td>0.519 (0.142)</td>
<td>2.43E-04</td>
</tr>
<tr>
<td>Alcohol intake</td>
<td>80</td>
<td>0.669 (0.441)</td>
<td>0.130</td>
</tr>
<tr>
<td>Coffee consumption</td>
<td>12</td>
<td>0.004 (0.008)</td>
<td>0.600</td>
</tr>
<tr>
<td>Sleep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daytime napping</td>
<td>115</td>
<td>0.115 (0.500)</td>
<td>0.818</td>
</tr>
<tr>
<td>Sleep duration</td>
<td>77</td>
<td>-0.472 (0.357)</td>
<td>0.187</td>
</tr>
<tr>
<td>MVPA</td>
<td>6</td>
<td>0.368 (1.138)</td>
<td>0.747</td>
</tr>
<tr>
<td>Cardiometabolic trait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiposity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>941</td>
<td>0.586 (0.102)</td>
<td>1.08E-08</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>44</td>
<td>0.850 (0.269)</td>
<td>0.002</td>
</tr>
<tr>
<td>BF%</td>
<td>641</td>
<td>0.711 (0.152)</td>
<td>2.88E-06</td>
</tr>
<tr>
<td>Childhood obesity</td>
<td>5</td>
<td>0.229 (0.095)</td>
<td>0.016</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>232</td>
<td>0.125 (0.051)</td>
<td>0.014</td>
</tr>
<tr>
<td>Lipids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>145</td>
<td>0.055 (0.123)</td>
<td>0.653</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>223</td>
<td>-0.127 (0.109)</td>
<td>0.243</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>173</td>
<td>-0.058 (0.121)</td>
<td>0.635</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>222</td>
<td>0.032 (0.016)</td>
<td>0.053</td>
</tr>
<tr>
<td>DBP</td>
<td>264</td>
<td>0.049 (0.024)</td>
<td>0.037</td>
</tr>
<tr>
<td>CRP</td>
<td>298</td>
<td>0.349 (0.095)</td>
<td>2.49E-04</td>
</tr>
</tbody>
</table>

PhenoAgeAccel represents epigenetic-age acceleration obtained using the PhenoAge clock; The q value represents the false discovery rate (FDR)-adjusted P value. β represents the associations with PhenoAgeAccel of respectively: 1-SD increase in years of educational attainment; Ever smoked regularly compared to never smoked; 1-SD increase in log-transformed alcoholic drinks per week; % change in coffee consumption; 1-unit increase in napping category (never, sometimes, usually); 1-hour/day increase in sleep duration; 1-SD increase in MET-minutes/week of MVPA; 1-SD increase in BMI; 1-SD increase in waist circumference; 1-SD increase in BF%; 1-unit increase in log-transformed odds of childhood obesity; 1-unit increase in log-transformed odds of type 2 diabetes; 1-SD increase in LDL cholesterol; 1-SD increase in HDL cholesterol; 1-SD increase in triglycerides; 1-mmHg increase in SBP; 1-mmHg increase in DBP; 1-SD increase in serum CRP levels.

Abbreviations: BF% = body fat percentage; BMI = body mass index; CRP = C-reactive protein; DBP = diastolic blood pressure; HDL = high-density lipoprotein; IVW = inverse variance weighted; LDL = low-density lipoprotein; MVPA = moderate-to-vigorous physical activity; MR = Mendelian randomization; MR-PRESSO = Mendelian randomization pleiotropy residual sum and outlier; No. = number; SBP = systolic blood pressure; SD = standard deviation; SNP = single nucleotide polymorphism.
Figure 1. Study design and assumptions of the MR analysis

Assumption 1 indicates that the genetic variants proposed as instrumental variables should be robustly associated with the exposures; assumption 2 indicates that the used instrumental variables should not be associated with potential confounders of the relationship between exposures and outcomes; and assumption 3 indicates that the selected instrumental variables should influence the outcomes only through the exposures, not via alternative pathways.

Abbreviations: GrimAgeAccel=epigenetic-age acceleration obtained using the GrimAge clock; HDL=high-density lipoprotein; LDL=low-density lipoprotein; MR=mendelian randomization; PhenoAgeAccel=epigenetic-age acceleration obtained using the PhenoAge clock; PRESSO=pleiotropy residual sum and outlier.
Figure 2. Overview of the findings on associations between 18 modifiable factors and GrimAgeAccel

The IVW method was used for the main analysis. Sensitivity analyses included the MR-PRESSO, the MR-WM, and the MR-Egger methods. All results described here can be found in Table 2.

GrimAgeAccel represents epigenetic-age acceleration obtained using the GrimAge clock. β represents the association of each modifiable factor on GrimAgeAccel. Red box indicates a strong association with p value <0.05 and FDR q value <0.05. Blue box indicates a suggestive association with p value <0.05 and FDR q value ≥0.05. Grey box indicates null association with p value ≥0.05.

Abbreviations: BF% = body fat percentage; BMI = body mass index; CRP = C-reactive protein; DBP = diastolic blood pressure; HDL = high-density lipoprotein; IVW = inverse-variance weighted; LDL = low-density lipoprotein; MR = mendelian randomization; MVPA = moderate to vigorous physical activity; PRESSO = pleiotropy residual sum and outlier; SBP = systolic blood pressure; SD = standard deviation; WM = weighted median.
Figure 3. Overview of the findings on associations between 18 modifiable factors and PhenoAgeAccel

The IVW method was used for the main analysis. Sensitivity analyses included the MR-PRESSO, the MR-WM, and the MR-Egger methods. All results described here can be found in Table 3.

PhenoAgeAccel represents epigenetic-age acceleration obtained using the PhenoAge clock; β represents the associations of each modifiable factor on PhenoAgeAccel. Red box indicates a strong association with p value <0.05 and FDR q value <0.05. Blue box indicates a suggestive association with p value <0.05 and FDR q value \geq0.05. Grey box indicates null association with p value \geq0.05.

Abbreviations: BF% = body fat percentage; BMI = body mass index; CRP = C-reactive protein; DBP = diastolic blood pressure; HDL = high-density lipoprotein; IVW = inverse-variance weighted; LDL = low-density lipoprotein; MR = mendelian randomization; MVPA = moderate to vigorous physical activity; PRESSO = pleiotropy residual sum and outlier; SBP = systolic blood pressure; SD = standard deviation; WM = weighted median.
Figure 4. Univariable and multivariable MR assessing the effects of the strongest protective factor and risk factor on GrimAgeAccel and PhenoAgeAccel

Causal estimates are β (95% CI) in years.

GrimAgeAccel represents epigenetic-age acceleration obtained using the GrimAge clock; PhenoAgeAccel represents epigenetic-age acceleration obtained using the PhenoAge clock.

Abbreviations: BF% = body fat percentage; BMI = body mass index; CI = confidence intervals; MR = mendelian randomization.

<table>
<thead>
<tr>
<th>Modifiable factor</th>
<th>β (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>-1.138 (-1.405 to -0.871)</td>
</tr>
<tr>
<td>Adjusted for smoking initiation</td>
<td>-0.752 (-1.052 to -0.452)</td>
</tr>
<tr>
<td>Adjusted for alcohol intake</td>
<td>-1.141 (-1.410 to -0.872)</td>
</tr>
<tr>
<td>Adjusted for daytime napping</td>
<td>-1.152 (-1.422 to -0.882)</td>
</tr>
<tr>
<td>Adjusted for BMI</td>
<td>-1.012 (-1.302 to -0.722)</td>
</tr>
<tr>
<td>Adjusted for waist circumference</td>
<td>-1.050 (-1.366 to -0.734)</td>
</tr>
<tr>
<td>Adjusted for BF%</td>
<td>-0.947 (-1.227 to -0.667)</td>
</tr>
<tr>
<td>Smoking initiation</td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>1.154 (0.858 to 1.450)</td>
</tr>
<tr>
<td>Adjusted for BMI</td>
<td>0.850 (0.605 to 1.095)</td>
</tr>
<tr>
<td>Adjusted for waist circumference</td>
<td>1.103 (0.787 to 1.419)</td>
</tr>
<tr>
<td>Adjusted for BF%</td>
<td>1.017 (0.754 to 1.280)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modifiable factor</th>
<th>β (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>-0.902 (-1.233 to -0.571)</td>
</tr>
<tr>
<td>Adjusted for smoking initiation</td>
<td>-0.691 (-1.069 to -0.313)</td>
</tr>
<tr>
<td>Adjusted for BMI</td>
<td>-0.807 (-1.191 to -0.423)</td>
</tr>
<tr>
<td>Adjusted for waist circumference</td>
<td>-0.794 (-1.186 to -0.402)</td>
</tr>
<tr>
<td>Adjusted for BF%</td>
<td>-0.638 (-0.993 to -0.283)</td>
</tr>
<tr>
<td>Waist circumference</td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>0.948 (0.376 to 1.520)</td>
</tr>
<tr>
<td>Adjusted for smoking initiation</td>
<td>0.768 (0.255 to 1.281)</td>
</tr>
</tbody>
</table>