Hands are frequently contaminated with fecal bacteria and enteric pathogens globally: A systematic review and meta-analysis

Molly E. Cantrell¹, Émile Sylvestre², Rahel Scheidegger³, Lou Curchod³, David M. Gute¹, Jeffrey K. Griffiths¹,⁴,⁵, Timothy R Julian²,⁶,⁷#, Amy J. Pickering¹,⁸#

Affiliations:
¹ Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
² Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, CH-8600, Switzerland
³ ETH Zurich, Swiss Federal Institute of Technology, Zurich, CH-8092, Switzerland
⁴ Department of Public Health and Family Medicine, Tufts Medical School, Tufts University, Boston, MA, 02111
⁵ Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111
⁶ Swiss Tropical and Public Health Institute, Basel, Switzerland
⁷ University of Basel, Basel, Switzerland
⁸ Department of Civil and Environmental Engineering, University of California, Berkeley

*Correspondence to: Tim.Julian@eawag.ch; pickering@berkeley.edu

#Authors contributed equally

Abstract

Enteric pathogen infections are a leading cause of morbidity and mortality globally, with the highest disease burden in low-income countries. Hands act as intermediaries in enteric pathogen transmission, transferring enteric pathogens between people and the environment through contact with food, water, and soil. In this study, we conducted a systematic review of prevalence and concentrations of fecal indicator microorganisms (i.e., E. coli, fecal coliform) and enteric pathogens on hands. We identified eighty studies, reporting 31,305 observations of hand contamination of people in community or household settings. The studies investigated 45 unique microorganisms, of which the most commonly reported indicators were E. coli and fecal coliforms. Hand contamination with 14 unique enteric pathogens was reported, with adenovirus
and rotavirus as the most frequent. Mean *E. coli* prevalence on hands was 40% [95% CI 18%-62%] and mean fecal coliform prevalence was 42% [95% CI 16%-69%]. Hands were more likely to be contaminated with *E. coli* in low/lower-middle-income countries (prevalence: 49% [25% - 72%]) than in upper-middle/high-income countries (6% [1% - 12%]). In low/lower-middle income countries, *E. coli* prevalence was higher in urban compared to rural settings (52% mean prevalence in urban versus 33% in rural), although substantial heterogeneity between studies limited confidence in this finding. The review also highlighted the importance of standardizing hand sampling methods, as hand rinsing was associated with greater fecal contamination compared to other sampling methods.
Introduction

Hands are an important, yet relatively understudied route of enteric pathogen transmission. Hands can facilitate direct exposure to pathogens (hand-to-mouth contacts), as well as indirect exposure through contact with drinking water, food, and fomites (Julian, 2016).

Several studies have implicated contaminated hands in child diarrheal disease risk (M. C. M. Mattioli et al., 2015; Pickering et al., 2018). A study of households in rural Bangladesh measured fecal contamination in hands, soil, water, flies, and food, and found that hands were the most strongly associated with increased subsequent risk of diarrheal illness among children under five years old (Pickering et al., 2018). In an exposure study in India, infants mouthing their own hands posed the second highest daily risk of enteric infection after soil ingestion (Vila-Guilera et al., 2021). A fecal exposure assessment model showed that children in Tanzania ingest a significantly greater amount of feces each day from hand-to-mouth contacts (0.93 mg) than from drinking water (0.098 mg) (M. C. M. Mattioli et al., 2015). Another Tanzanian study found that viral pathogens were more frequently found on hands than in drinking water (M. C. M. Mattioli et al., 2013).

The goal of this study is to determine the extent to which hands are contaminated with enteric pathogens and other fecal indicators. We further aimed to identify factors that influence the prevalence and concentrations of fecal and enteric pathogen contamination on hands, including age, gender, country income, urbanicity, climate, and hand sampling method.

Materials and Methods

We conducted a systematic review of fecal indicator microorganisms and enteric pathogen detection on hands following the PRISMA-P guidelines (see Supplemental Information for PRISMA-P Checklist and search terms). We included peer-reviewed published studies of all designs that measured fecal indicators or enteric pathogens on human hands for people in non-occupational settings, such as in households and communities. Studies were excluded for the following reasons: microorganisms measured were not enteric pathogens or fecal indicators; hands were artificially contaminated with bacteria; studies did not present primary data; studies were conducted in occupational settings such as food handling, farm, clinical, or laboratory settings; and/or dealt with food and animal contamination.
We conducted a meta-analysis to analyze the subset of studies with estimates of the prevalence rates (defined as the proportion of hands with detectable contamination) for *E. coli* and fecal coliforms. *E. coli* and fecal coliforms were chosen as the only fecal indicators or enteric pathogens with a sufficient number of studies to conduct a meta-analysis. Within the meta-analysis, we combined the prevalence rates of hand contamination using the inverse variance method to obtain a weighted average across individual studies. We modeled the mean proportion \hat{p} (the number of positive samples n_S divided by the total number of samples n), as a Bernoulli trial process. For the ith study, the variance of the estimator of \hat{p} can be approximated with a normal distribution as follows:

$$Var(\hat{p}_i) = \frac{\hat{p}_i(1 - \hat{p}_i)}{n_i}$$

Equation (1)

Using the inverse variance method, the weight for the ith study is then $w_i = 1/Var(\hat{p}_i)$. We used a double arcsine function to transform the prevalence \hat{p} to a value that is not constrained to the 0-1 range and back-transformed to \hat{p} after pooling (Barendregt et al., 2013). To calculate pooled sample prevalences, we chose an inverse variance heterogeneity (IVhet) model rather than the more conventional random-effects model. The advantage of the IVhet model is that it can maintain the individual study weights despite substantial between-study heterogeneity (Doi et al., 2015). We evaluated publication bias with Luis Furuya-Kanamori (LFK) index and Doi plots (Furuya-Kanamori et al., 2018). We performed analyses with the MetaXL add-in version 5.3 in Microsoft Excel and the *metafor* package in R (Viechtbauer, 2010).

We compared *E. coli* and fecal coliform prevalence between i) children and adults, ii) country income groups (low and lower-middle vs. upper-middle, and high-income), iii) urban and rural areas, iv) climate classifications (Köppen-Geiger), and v) types of hand sampling methods. We tested for differences between the mean pooled prevalence of two groups using a two-sample z-test allowing unequal variance. Country income levels were based on World Bank country income classifications (available via the World Bank Data Help Desk, https://datahelpdesk.worldbank.org/) for the year the study was conducted; if that information was not reported, then the year the study was published was used (see Supplemental Information for how fiscal year 2020 classifications are defined). The climate classifications were based on Köppen-Geiger Climate Classifications where zone A is tropical or equatorial, zone B is arid or dry, zone C is warm/mild temperate, zone D is continental, and zone E is polar (Society, 2019).
Results and Discussion

Fecal indicator bacteria and enteric pathogens

We identified 80 studies, which reported forty-five unique fecal indicator bacteria and enteric pathogens found on hands (n=31,305 observations). Of the 45 unique microorganisms reported, 14 were pathogens (inclusive of enteric and opportunistic pathogens) and the other 31 were fecal indicator bacteria. The most common indicators were *E. coli* (51 studies, or 65%), fecal coliforms (23 studies, or 29%), and enterococci (9 studies, or 12%, Table 1). The most commonly measured pathogens were adenovirus and rotavirus.
<table>
<thead>
<tr>
<th>Type of Indicator</th>
<th>Indicator</th>
<th>Total Number of Studies</th>
<th>Prevalence</th>
<th>Concentration</th>
<th>Mean Concentration (log_{10} CFU/hand, simple weighted average by sample size)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of Studies</td>
<td>Number of Samples</td>
<td>Percent Positive (%), average(^1)</td>
<td>Range (%)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Aerobic Plate Count(^2)</td>
<td>2</td>
<td>2</td>
<td>99</td>
<td>92</td>
<td>84 – 100</td>
</tr>
<tr>
<td></td>
<td>Any multidrug-resistant organism (MDRO+)</td>
<td>1</td>
<td>1</td>
<td>190</td>
<td>3.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bacteroidales Cow(^2)</td>
<td>2</td>
<td>2</td>
<td>1185</td>
<td>93.2</td>
<td>89.6 – 97.5</td>
</tr>
<tr>
<td></td>
<td>Bacteroidales General(^3)</td>
<td>5</td>
<td>5</td>
<td>1333</td>
<td>84 [53, 100]</td>
<td>50 – 98.5</td>
</tr>
<tr>
<td></td>
<td>Bacteroidales Human(^2)</td>
<td>5</td>
<td>5</td>
<td>1126</td>
<td>19 [12, 28]</td>
<td>3 – 32.2</td>
</tr>
<tr>
<td></td>
<td>Camplyobacter jejuni</td>
<td>1</td>
<td>1</td>
<td>70</td>
<td>11.4</td>
<td>10 – 13</td>
</tr>
</tbody>
</table>

\(^1\) For indicators with 2-3 studies, percent positive is calculated as the unweighted arithmetic mean of the percent positive values reported by the individual studies. For indicators with at least 4 studies, percent positive was calculated using the explained meta-analysis and the 95% confidence interval is reported.

\(^2\) Commonly used fecal indicator bacteria.

\(^3\) Commonly used fecal indicator bacteria and livestock indicator bacteria.
| **Clostridium perfringens** | 1 | 0 | - | - | - | 1 | 900 | 1.54 | - | (Islam et al., 2016) |
|---------------------------|---|---|---|---|---|---|----|-----|----|---|---------------------|
| **Coagulase negative Staphylococcus spp.** | 3 | 3 | 1570 | 70.2 | 45 – 97.5 | 0 | - | - | - | (Padaruth & Biranjia-Hurdoyal, 2015) (Ubheeram & Biranjia-Hurdoyal, 2017) (Vishwanath et al., 2019) |
| **Commensal flora** | 1 | 1 | 133 | 31.5 | - | 0 | - | - | - | (Kavitha et al., 2019) |
| **Diarrheagenic E. coli (DEC)** | 2 | 2 | 1006 | 6 [2, 11] | 0.3 – 19.6 | 0 | - | - | - | (Fuhrmeister et al., 2019) (M. C. Mattioli et al., 2013) |

3 Diarrheagenic *E. coli* includes Enterohemorragic *E. coli* (EHEC, stx1, stx2, eaeA), Enteroinvasive *E. coli* (EIEC, ipaH), Enteropathogenic *E. coli* (EPEC), Enterotoxigenic *E. coli* (ETEC, stb/ltib), Shiga-toxin producing *E. coli* (STEC)
<table>
<thead>
<tr>
<th>Genus/Species</th>
<th>Frequency</th>
<th>Mean</th>
<th>Median</th>
<th>Range</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteroaggregative E. coli (EAEC)</td>
<td>2</td>
<td>2</td>
<td>92</td>
<td>14.3</td>
<td>7.7–19.6</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>1</td>
<td>1</td>
<td>1200</td>
<td>0.83</td>
<td>0–1.8</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>37.5</td>
<td>20–45</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Enterococcus spp. (includes Enterococcus spp)</td>
<td>9</td>
<td>8</td>
<td>2298</td>
<td>13 [0, 71]</td>
<td>1.25–100</td>
<td>6</td>
<td>556</td>
</tr>
</tbody>
</table>

References:
- Judah et al., 2010
- Julian & Pickering, 2015
- Julian et al., 2013
- Kalter et al., 2010
- Kavitha et al., 2019
- Kim et al., 2019
- Kundu et al., 2018
- Kusuma et al., 2012
- Martínez-Bastidas et al., 2014
- Mattioli et al., 2015
- Mattioli et al., 2014
- Navab-Danesmand et al., 2018
- Ngure et al., 2013
- Otsuka et al., 2019
- Padarath & Biranjia-Hurdoa, 2015
- Pickering et al., 2018
- Pickering, Davis, et al., 2010b
- Pickering, Boehm, et al., 2010
- Pickering et al., 2011
- Pinfold, 1990
- Ram et al., 2011
- Reddi et al., 2016
- Rothstein et al., 2019
- Saboori et al., 2013
- Ubheeram & Biranjia-Hurdoa, 2017
- Vishwanath et al., 2019

(CC-BY-NC-ND 4.0 International License)
Table 1: Fecal Microbiota

<table>
<thead>
<tr>
<th>Microbiota</th>
<th>Enterococcus faecalis<sup>2</sup></th>
<th>Fecal bacteria<sup>2</sup> (defined as total of fecal coliforms and enterococci)</th>
<th>Fecal coliform<sup>2</sup></th>
<th>Fecal Streptococci<sup>2</sup></th>
<th>Klebsiella spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 133 11 - 0 - - -</td>
<td>1 1 72 31 - 1 72 2.22 1.72 – 2.58</td>
<td>23 19 6790 42 [16, 69] 6 – 100 11 3864 1.51 0.12 – 8.29</td>
<td>6 4 6477 53 [3, 99] 7 – 98 5 5454 2.58 0.16 – 4.40</td>
<td>5 5 1919 3 [0, 9] 2.5 – 33.3 1 3 4.65 4.37 – 4.93</td>
</tr>
</tbody>
</table>

(Mattioli et al., 2014)
(Pickering et al., 2011)
(Vishwanath et al., 2019)
(Kavitha et al., 2019)
(Kellogg et al., 2012)
(Boehm et al., 2016)
(Budge et al., 2019)
(Carabin et al., 2001)
(Carabin et al., 1999)
(Carrasco et al., 2008)
(Dodrill et al., 2011)
(Ekanem et al., 1983)
(Friedrich et al., 2017)
(Holaday et al., 1990)
(Huda et al., 2019)
(Islam et al., 2016)
(Julian et al., 2013)
(Kaltenhauser et al., 1996)
(Laborde et al., 1993)
(Luby et al., 2007)
(Martínez-Bastidas et al., 2010)
(Odagiri et al., 2016)
(Petersen & Bressler, 1986)
(Ram et al., 2011)
(Reddi et al., 2016)
(Schriewer et al., 2015)
(Van, Marrow, et al., 1991)
(Van, Wun, et al., 1991)
(Islam et al., 2016)
(Kaltenhauser et al., 1995)
(Kyrissou et al., 2009)
(Pickering, Davis, et al., 2010b)
(Pickering, Boehm, et al., 2010)
(Pinfold, 1990)
(Judah et al., 2010)
(Kavitha et al., 2019)
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Micrococcus spp.</td>
<td>2</td>
<td>2</td>
<td>370</td>
<td>10.2</td>
<td>2.9 – 17.5</td>
<td>0</td>
</tr>
<tr>
<td>Pathogenic E. coli</td>
<td>3</td>
<td>3</td>
<td>1036</td>
<td>33.4</td>
<td>22.1 – 41.3</td>
<td>0</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>1</td>
<td>1</td>
<td>200</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas spp.</td>
<td>2</td>
<td>2</td>
<td>1400</td>
<td>4.7</td>
<td>1.87 – 6</td>
<td>0</td>
</tr>
<tr>
<td>Resistant gram-negative bacilli (R-GNB)</td>
<td>1</td>
<td>1</td>
<td>190</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>41.6</td>
<td>33.3 – 50</td>
<td>0</td>
</tr>
<tr>
<td>Serratia spp.</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>83.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shigella spp. / EIEC</td>
<td>1</td>
<td>1</td>
<td>70</td>
<td>14.3</td>
<td>7 – 19</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>3</td>
<td>3</td>
<td>565</td>
<td>50.3</td>
<td>19 – 92</td>
<td>1</td>
</tr>
<tr>
<td>Streptococcus Faecalis</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>2</td>
<td>2</td>
<td>112</td>
<td>22.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Organism</td>
<td>Reports</td>
<td>Species</td>
<td>Infectivity</td>
<td>Virulence</td>
<td>Other</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total coliform</td>
<td>7</td>
<td>5</td>
<td>930</td>
<td>47</td>
<td>27.5 – 97.8</td>
<td>1.91</td>
</tr>
<tr>
<td>Vancomycin-resistant enterococci (VRE+)</td>
<td>1</td>
<td>1</td>
<td>190</td>
<td>0.5</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>1</td>
<td>1</td>
<td>70</td>
<td>14.3</td>
<td>12 – 16</td>
<td>0</td>
</tr>
<tr>
<td>Viruses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>4</td>
<td>4</td>
<td>491</td>
<td>11</td>
<td>4.5 – 50</td>
<td>0</td>
</tr>
<tr>
<td>CrAssphage^2</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>3</td>
<td>3</td>
<td>390</td>
<td>8.8</td>
<td>6.3 – 11.1</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis A virus</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>17</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Norovirus</td>
<td>3</td>
<td>3</td>
<td>271</td>
<td>5.3</td>
<td>0 – 10</td>
<td>0</td>
</tr>
<tr>
<td>Norovirus GII</td>
<td>1</td>
<td>1</td>
<td>914</td>
<td>3.5</td>
<td>3.1 – 4.2</td>
<td>0</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>4</td>
<td>4</td>
<td>325</td>
<td>1</td>
<td>0 – 100</td>
<td>0</td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giardia Lamblia</td>
<td>2</td>
<td>2</td>
<td>926</td>
<td>34.9</td>
<td>2.3 – 67</td>
<td>0</td>
</tr>
</tbody>
</table>

^2 CrAssphage refers to assigned numbers.
| Multicellular animal parasites | Soil-transmitted helminths\(^4\) | 2 | 2 | 466 | 8.7 | 0.87 - 16.6 | 0 | - | - | - | (Cranston et al., 2015) (Steinbaum et al., 2017) |

\(^4\) Additional papers that were not found using search criteria, but were known by authors
Prevalence of pathogen and fecal indicator contamination on hands

Of the 80 studies identified, 73 (91%) reported contamination prevalence rates for the target pathogen or indicator. The average prevalence rate across all 45 indicators was 35.7% (median: 27.0%), ranging from 0% (no detectable contamination) to 100% (detectable contamination on all study participants). *E. coli* and fecal coliform contamination on hands were common among the study populations. Overall, mean *E. coli* prevalence was 40% (range: 0 - 100%) and mean fecal coliform prevalence was 42% (range: 6 - 100%). Our findings confirm that hands are frequently contaminated with fecal bacteria, but that contamination levels are highly variable between studies. Our finding of frequent contamination of hands is supported by previous work demonstrating the role of hands in connecting sources of fecal contamination (e.g. soil, floor, drain) with opportunities for subsequent exposures (e.g. mouth, bath, handwashing) (Wang et al., 2017).

Country income

Country income was significantly correlated with hand contamination levels. Hands of people in low-income countries had significantly higher prevalence of *E. coli* and fecal coliforms than those in high-income countries. The mean [95% Confidence Interval] estimate was 49% [25% - 72%] *E. coli* prevalence in low-income versus 6% [1% - 12%] in high-income (p = 3.9x10^-4) and 71% [44% - 95%] fecal coliform prevalence in low-income versus 18% [7% - 31%] in high-income (p = 1.4x10^-4) (Figure 1, Figure S3). We noted substantial between-study heterogeneities within each subgroup, as indicated by the high I² values, which is an estimate of the proportion of observed variance attributable to study heterogeneity (low-income: I² = 100%; high-income: I² = 94%). High heterogeneity suggests hand contamination prevalence is largely study or site-specific.

The observed trend that hand contamination is generally – but not universally - more prevalent in low-income countries than high-income countries may be attributable to differences in access to water, sanitation, and hygiene, including hand washing facilities with soap and water. Access to handwashing facilities is strongly related to the sociodemographic index (SDI; a composite measure including income per capita, education, and fertility) (Brauer et al., 2020). Previous work has also demonstrated that hands are quickly re-contaminated after handwashing.
in many tropical low-income settings (within minutes), potentially due to high levels of fecal contamination on surfaces and in soils in the domestic environment (Ram et al., 2011; Pickering et al., 2011).

Figure 1. *E. coli* prevalence on hands by country income level. *E. coli* prevalence on hands by country income level. Pooled estimates for all studies and subgroups were evaluated with an inverse variance heterogeneity (IVhet) model.
Urban compared to rural areas

In low/ lower-middle income countries, *E. coli* prevalence was higher in urban areas than rural areas (52% mean prevalence in urban versus 33% in rural; p = 0.045) (Figure 2). However, there was still substantial heterogeneity between studies within rural as well as urban areas (rural: I^2 = 99.2%; urban: I^2 of 99.7%). This analysis indicates that subgrouping into urban versus rural areas does not reduce the between-study heterogeneity measured in the low/lowermiddle income group. Notably, comparisons of hand contamination between urban and rural settings could only be conducted for *E. coli* prevalence in low/ lower-middle income countries because there were no studies that measured *E. coli* in rural areas in upper-middle/high income countries and too few studies available to assess differences in fecal coliform levels (2 studies in urban, 6 studies in rural settings).

Since two of the studies represented in the *E. coli* comparison, Pickering 2010 and Ercumen 2018, are weighted higher than all other studies, we conducted a sensitivity analysis in which these studies were removed (Figure S6). The analysis results still showed a difference between urban and rural settings, but the magnitude of the difference was decreased (mean prevalence in urban areas was 61% [95% CI 33%-87%] and the mean prevalence in rural areas was 46% [95% CI 30%- 71%]).
The cause of higher levels of hand contamination in urban areas is unclear, but may be attributable to high population density combined with inadequate sanitation (Nadimpalli et al. 2020). Many studies included in this review from urban low-income settings were conducted in informal settlements in contrast to more established, wealthier urban communities (e.g. Kibera, a slum within Nairobi, Kenya is included in this dataset). Populations living in densely populated, low-income communities often share sanitation facilities. Shared sanitation facilities have been shown to be less likely to be clean than private facilities (Heijnen et al., 2015). Another potential explanation is that population density (persons per km²) is correlated with higher rates of environmental fecal contamination, as shown in Egypt where \textit{E. coli} drinking water
contamination was increased in areas with the highest population densities (Fakhr et al., 2016). Further studies are needed to investigate the role of population density gradients on fecal or pathogen hand contamination.

Adults compared to children

There were no clear differences in *E. coli* or fecal coliform prevalence between adults (16 years old and above) and children (birth to 15 years old) even when subgrouping by income level (Figures S15, S16, S19, S20). Inclusion of age as an explanatory factor within urban and rural groups in low/lower-middle income countries also did not reduce observed heterogeneity in the meta-analysis (Figures S17, S18). A potential explanation is that hand hygiene behavior between adults and children is highly correlated (Lee et al., 2015). Hand contamination is also strongly influenced by environmental contamination. Similar levels of contamination between adults and children could be a result of how difficult it is to keep hands free of fecal contamination in high-disease burden settings lacking safely managed sanitation (Pickering et al., 2011; Ram et al., 2011; Julian & Pickering, 2015). The results align with other studies that have found no difference in contamination levels with direct comparisons between adults and children (Bauza et al., 2020; Gil et al, 2014).

Climate classifications

There were no clear differences in prevalence between climate groups for *E. coli* or fecal coliforms. The only comparison that showed a significant difference (p-value of 2.11x10^{-11}) was fecal coliform prevalence in tropical areas (classification A; 82% mean prevalence [95% CI 52%-100%]) versus temperate areas (classification C; 16% mean prevalence [95% CI 9%-23%]). However, this comparison may be confounded by a strong correlation between tropical settings and low-income settings.

Gender

Although analysis by gender was intended, very few of the identified studies reported gender. Three studies reported stratified prevalence values for males and females, while 5 additional studies reported a comparison between genders. Within 7 of these studies, which all enrolled school children, 5 found that male students had higher levels of fecal indicator bacteria,
one found that females had higher levels of fecal indicator bacteria, and one found no statistical difference between genders. Potential reasons for higher rates of fecal contamination on male hands relative to female hands include differences in hygiene and/or interactions with the environment (playing sports and/or in soil) (Mbouthieu Teumta et al., 2019; Guzek et al., 2020; Another US Airport Travel Hazard - Dirty Hands, n.d.; Johnson et al., 2003).

Sampling methods

Among the 80 studies, 48 (60%) used hand rinse samples, 19 (24%) used swab samples, 12 (15%) used impressions, and 1 study (1%) did not report the method used (see SI for method details). Rinse samples had a higher mean prevalence for *E. coli* (0.51 [95% CI 0.25, 0.76]) than swab samples (0.14 [95% CI 0.00, 0.35]). Similarly, rinse samples had a higher mean prevalence for fecal coliform (0.63 [95% CI 0.29, 0.94]) than impression samples (0.27 [95% CI 0.02, 0.57]). Only the *E. coli* rinse versus swab comparison was significant (p-value = 0.026). For fecal coliform rinse versus impression the p-value was 0.102. See Figures S22 and S26 for detailed comparisons. These findings show that hand rinse sampling may be more sensitive at recovering fecal indicator bacteria from hands than swabs and possibly impression plates, in line with prior research from both studies identified in this review as well as what has been reported for hand microbiome studies (Nagel Gravning et al., 2021; Zhang et al., 2012). Standardization of sampling methods could improve the sensitivity of studies and facilitate the identification and assessment of risk factors for hand contamination.

Conclusion

Frequent fecal contamination and many pathogens, including enteric and opportunistic pathogens, are found on hands globally. Hand contamination was highest in low/lower-middle income countries where diarrheal and enteric infections are also the most prevalent. Given the role of hands in transferring fecal microbes between people and the environment, hands could be viewed as sentinel indicators of human exposure to enteric pathogens. Nevertheless, as this review shows, few studies have measured enteric pathogens on hands. Developing and implementing standardized methods to detect pathogens on hands would improve our understanding of the role of hands in human exposure to protozoan, bacteria, and viral pathogens, and provide opportunities for cross-study comparisons, including meta-analyses.
References

Environment in Dhaka, Bangladesh. Environmental Science & Technology, 50(9), 4642–4649. https://doi.org/10.1021/acs.est.5b06282

Household Environment in Rural Bangladesh. The American Journal of Tropical Medicine and Hygiene, 100(3), 717–726. https://doi.org/10.4269/ajtmh.16-0996

https://doi.org/10.4269/ajtmh.15-0555

Kim, S., Brown, A. C., Murphy, J., Oremo, J., Owuor, M., Ouda, R., Person, B., & Quick, R. (2019). Evaluation of the impact of antimicrobial hand towels on hand contamination with

Mattioli, M. C. M., Davis, J., Mrisho, M., & Boehm, A. B. (2015). Quantification of Human Norovirus GII on Hands of Mothers with Children under the Age of Five Years in Bagamoyo,
Tanzania. The American Journal of Tropical Medicine and Hygiene, 93(3), 478–484.
https://doi.org/10.4269/ajtmh.14-0778

The American Journal of Tropical Medicine and Hygiene, 82(2), 270–278.
https://doi.org/10.4269/ajtmh.2010.09-0220

https://doi.org/10.1021/es903524m

https://doi.org/10.1021/es903524m

https://doi.org/10.1111/j.1365-3156.2010.02677.x

