Preoperative predictors of instrumental activities of daily living disability in older adults six months after knee arthroplasty

Abstract

Objective: To investigate preoperative predictors of instrumental activities of daily living (IADL) disability in older adults six months after knee arthroplasty (KA).

Design: Prospective study.

Setting: General hospital with an orthopedic surgery department.

Participants: Two hundred twenty (N = 220) patients ≥ 65 years old with total knee arthroplasty (TKA) or unicompartmental knee arthroplasty (UKA).

Interventions: Not applicable.

Main Outcome Measure: IADL status was evaluated for six activities. Participants chose “able,” “need help,” or “unable” according to their capacity of executing these IADL activities. If they chose “need help” or “unable” for one or more items, they were defined as “disabled.” Their usual gait speed (UGS), range of motion for the knee, isometric knee extension strength (IKES), pain status, depressive symptoms, pain catastrophizing, and self-...
efficacy were evaluated as predictors. Baseline and follow-up assessments were conducted one month before and six months after KA, respectively. Logistic regression analyses with IADL status as the dependent variable were performed at follow-up. All models were adjusted using age, sex, severity of the knee deformity, operation type (TKA or UKA) and preoperative IADL status as covariates.

Results: In total, 166 patients completed the follow-up assessment, and 83 (50.0%) reported IADL disability six months after KA. Preoperative UGS, IKES on the non-operated side and self-efficacy were significantly different between those with a disability at follow-up and those who did not and were therefore included in logistic regression models as independent variables. UGS (odds ratio [OR] = 3.22, 95% confidence interval [95% CI] = 1.38–7.56, \(p = 0.007 \)) was determined as a significant independent variable.

Conclusion: The present study demonstrated the importance of evaluating preoperative gait speed to predict the presence of IADL disability in older adults six months after KA. Therefore, those with poorer preoperative mobility should be provided careful postoperative care and treatment.

Keywords: activities of daily living, disability, gait speed, knee arthroplasty, osteoarthritis
Abbreviations:

AUC, area under the curve;
BADL, basic activities of daily living;
CI, confidence interval;
GDS-15, fifteen-item Geriatric Depression Scale;
IADL, instrumental activities of daily living;
IKES, isometric knee extension strength;
KA, knee arthroplasty;
KL-score, Kellgren–Lawrence score;
KOOS-pain, pain subscale of the knee injury and osteoarthritis outcome score;
OA, osteoarthritis;
OR, odds ratio;
PCS-6, six-item short form of the pain catastrophizing scale;
POD, postoperative day;
PSEQ-4, four-item short form of the pain self-efficacy questionnaire;
ROC curve, receiver characteristic operating curve;
1. ROM, range of motion;

2. TKA, total knee arthroplasty;

3. UGS, usual gait speed;

4. UKA, unicompartmental knee arthroplasty
Introduction

Knee osteoarthritis (OA) is a prevalent chronic disease related to aging, and the number of older persons with knee OA, who experience daily life disability, is increasing globally.\(^1,2\)

Knee arthroplasty (KA), including total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA), is a well-established operative treatment for degenerative knee joint disease in patients suffering from pain and disability. However, 10–20\% of patients reportedly have subjective functional limitations after KA.\(^3-6\) Considering the increasing demand of KA for older adults, it is necessary to strengthen countermeasures against postoperative disabilities that limit activities of daily life.

For the aging population, independence in performing activities of daily living is crucial.

Basic activities of daily living (BADL) are fundamental skills required to independently care for oneself, such as toileting and dressing;\(^7\) whereas, instrumental activities of daily living (IADL) are more complex activities related to the ability to live independently, such as shopping, transportation, and performing household chores.\(^8\) Thus, IADL disability usually precedes that of the BADL.\(^9\) Various cohort studies have shown that disability in IADL can
affect all-cause mortality, the rate of cognitive functional decline, and quality of life, having a substantial impact on geriatric mental and physical health.

Several systematic reviews have described various factors, such as functional, pain and psychological statuses, as predictors of disability after KA. However, most studies defined disability as an impairment in both BADL and IADL. Considering the hierarchical relationship between IADL and BADL, determining the predictors of IADL disability in the geriatric population after KA is potentially useful for both preoperative and postoperative management. Multiple meta-analyses regarding postoperative rehabilitation revealed that most intervention periods have been set within six months after KA, meaning that disability should be addressed within a limited period. Additionally, it is desirable for patients with an elevated risk for IADL disability to be screened early, preferably before surgery.

Studies regarding IADL disability in older persons undergoing KA are few, and preoperative predictors for disability in IADL are unclear. This study investigates the preoperative predictors of IADL disability in older adults six months after KA. We hypothesized that certain motor functions and psychological factors hold a predictive power of IADL disability.
Methods

Participants

Participants who underwent unilateral TKA or UKA between May 17, 2019 and June 30, 2021 at Shonan Kamakura General Hospital were included in this study upon meeting the following inclusion criteria: (1) being ≥ 65 years of age and (2) diagnosed with knee OA based on the guidelines: a radiologic Kellgren–Lawrence score (KL-score) of ≥ 2 (definite osteophytes and narrowed joint space) and knee pain for > 3 months. Patients were excluded by the following exclusion criteria: (1) being diagnosed with post-traumatic OA; (2) rheumatoid arthritis; (3) cognitive decline (mini-mental state examination score < 23); (4) serious pathologies such as cancer, and neurological fallout that could affect the test performance such as muscle paralysis; (5) history of lower extremity operation except KA; (6) preoperative BADL disability (Barthel index < 100); and (7) intention of having a TKA or UKA on the other knee before our study’s assessment. 321 patients were selected at the beginning of the study. Eighty-six of them were excluded because of: a history of lower
extremity operation outside the knee joint region (n = 32), rheumatoid arthritis (n = 19),
revision TKA or UKA (n = 18), Barthel index <100 (n = 7), mini-mental state examination
score < 23 (n = 6), and post-traumatic knee OA (n = 4). Of the 235 patients who were invited
to take part in the current study, 15 refused, leaving 220 participants.

Study design

This was a prospective study conducted and reported using the STROBE guidelines. The
institutional review board at Tokushukai Group Ethics Committee (NO. (No.
TGE01198-024)) approved the study design, and all participants gave written informed
consent. This study was conducted in accordance with the Declaration of Helsinki. All
participants were assessed by well-trained physical therapists a month before the operation as
a baseline measurement and six months after the operation as a follow-up measurement. They
were managed by using a set clinical pathway of our institution and permitted full weight
bearing on the postoperative day (POD) 1. Patients started gait exercises with a walker-cane
on POD1 and a single cane on POD2. Ascending and descending stairs were practiced on
POD5. Patients who could walk with a single cane independently were discharged by
POD10–16 for TKA and 5–12 for UKA. Baseline characteristics such as age, sex, body mass
1 index, bilateral KL-score, Charlson comorbidity index,21 and intra-operative information were
2 obtained from clinical records and used as possible covariates.

4 Measurements

5 IADL status

6 The Lawton and Brody IADL scale8 investigated independent living skills by examining six
7 activity items (shopping, preparing food, housekeeping, using transportation, doing laundry,
8 and handling finances). Using a telephone and taking medications were excluded because
9 these activities would not be completely affected by symptoms of knee OA. Participants were
10 questioned to score their capability of performing these tasks trichotomously, with either
11 “able,” “need help,” or “unable” as choices for answers. We defined “disabled” participants as
12 those who answered “need help” or “unable” to perform one or more items; they were defined
13 as “non-disabled” otherwise, on the basis of previous studies.22, 23

15 Motor functions

16 Their usual gait speed (UGS) was measured using a 5 m timed gait test. Participants were
17 instructed to walk straight on an 11 m flat surface at their usual pace. A gait speed of 5 m was
A goniometer measured the range of motion (ROM) for knee extension and flexion, while a handheld dynamometer assessed the isometric knee extension strength (IKES) to quantify knee muscle power. ROM and IKES were measured on both the operated and unoperated knees.

Pain status

The pain was evaluated by using the pain subscale of the Japanese Knee Injury and Osteoarthritis Outcome Score (KOOS-pain). Participants were asked about their pain in various kinds of situations one week before the evaluation date. Each question was scored in the range 0–4. The normalized total score is converted to 100 points, with higher scores indicating less pain. KOOS-pain has satisfactory internal consistency (Cronbach’s alpha = 0.90) and correlates with the body pain subscale of the 36-item short form health survey (r = 0.67, p < 0.01).

Psychological factors

Depressive symptoms, pain catastrophizing, and self-efficacy were evaluated as potential psychological factors on the basis of a previous systematic review. The Japanese version of
the fifteen-item Geriatric Depression Scale (GDS-15)28 was used for the assessment of depressive symptoms. The GDS-15 has satisfactory internal consistency (Cronbach’s alpha = 0.83) and high detectability of depression (area under the curve [AUC] of the receiver operating characteristic curve [ROC curve] = 0.96).28 The participants were questioned with “yes” or “no” answer choices. The total score of 0 to 15 was assigned with higher scores indicating more depressive symptoms.

The Japanese version of the six-item short form of the Pain Catastrophizing Scale (PCS-6)29 was used for the assessment of pain catastrophizing. PCS-6 had satisfactory internal consistency (Cronbach’s alpha = 0.90)29 and correlated to pain status ($r = 0.30$, $p < 0.001$).30

Participants were required to evaluate their experience of six emotions and thoughts during pain. Each item is evaluated on a scale of 0 (“not at all”) to 4 (“all the time”). The total score of 0 to 24 was assigned with higher scores representing higher levels of catastrophe.

The Japanese version of the four-item short form of the Pain Self-Efficacy Questionnaire (PSEQ-4)31 was used for the assessment of self-efficacy. The PSEQ-4 had satisfactory internal consistency (Cronbach’s alpha = 0.90) and correlated to pain status ($r = -0.35$, $p <$
The PSEQ-4 is comprised of four questions measuring the participant’s confidence when conducting specific activities despite the pain. Each item was evaluated on a scale of 0 (“not at all confident”) to 6 (“completely confident”). The total score of 0 to 24 was assigned with higher scores representing more self-efficacy.

Statistical analysis

The participants were divided into two groups according to their IADL status six months after KA: the disabled (answered “need help” or “unable” for one or more items) and non-disabled (answered “able” for all items) groups. All preoperative baseline characteristics and measurements were compared between the two groups using the Mann–Whitney U test, chi-square, or student’s t-test. In the disabled group, the impairment of each IADL tested at follow-up was recorded. Baseline characteristics were also compared between those who were followed up and dropped out.

Measurements with $p < 0.05$ in the two comparative groups were represented nominally based on the cutoff value for determining the presence of IADL disability at six postoperative months, calculated from the ROC curve. The ideal cutoff value for balancing the sensitivity
and specificity of a test was determined as the point on the curve closest to (0, 1). Thereafter, logistic regression was used to predict the presence of IADL disability after six months of KA (dependent variable). The independent variables were included in each model separately, using nominal scales. In model 1, age, sex, KL-score of both knees and operation type (TKA or UKA) were used as covariates. In model 2, the presence of IADL disability before the operation was added to model 1. KL-score on the non-operated side for participants with a history of TKA or UKA was treated as score 0.

Additionally, participants were categorized into four subgroups based on pre- and postoperative IADL status: group 1 without IADL disability; group 2 with IADL disability before operation only; group 3 with IADL disability after operation only; and group 4 with IADL disability before and after the operation. UGS and KOOS-pain were compared pre- and postoperatively in each group to confirm the treatment effect of KA using the paired t-test. The baseline characteristics in the four subgroups were also compared using the chi-square goodness of fit test, Fisher's exact test, one-way analysis of variance followed by Tukey's test, or Kruskal–Wallis test followed by the Steel–Dwass test. All data were analyzed using R version 4.0.3. A p-value < 0.05 was used to indicate statistical significance.
In order to decide the sample size for logistic regression analysis, the

\[N = 10k/p \]

are needed; \(k \) is the number of independent variables as covariates and \(p \) is defined as a ratio of responders to non-responders at the follow-up points.\(^{33}\) We predicted that eight factors out of all the variables would be required to avoid overfitting.\(^{34}\) In a previous report (\(n = 407 \)), 60.9% of older adults with joint pain had IADL disability.\(^{22}\) Based on this study, we hypothesized that the ratio \(p \) of non-disabled to disabled was 1:1.5 and calculated the minimum number of participants required for our study as

\[10 \times \frac{8}{0.6} = 134. \]

Results

Of the 220 participants who joined the study, 166 (75.5%) completed the follow-up assessment after TKA or UKA. Fifty-four (24.5%) participants dropped out, namely due to incomplete follow-up (\(n = 21 \)), reparative surgery on the other knee within six months (\(n = 14 \)), cancelation of the operation (\(n = 9 \)), onset of other diseases not related to KA (\(n = 4 \)), periprosthetic joint infection (\(n = 3 \)), and periprosthetic fracture (\(n = 3 \)).
characteristics were not significantly different between those who were followed up and dropped out.

Of participants who were followed up, 83 (50.0%) had IADL disability six months after KA. Sixty-one (69.3%) struggled with shopping, and 47 (53.4%) struggled using transportation (Table 1). The non-disabled group was significantly younger ($p = 0.004$) with a larger percentage of women (85.5% vs 69.9%; $p = 0.03$) when compared to the IADL disabled group. The percentage of patients showing IADL disability before surgery was 20.5% and 72.3% ($p < 0.001$) in the non-disabled and disabled groups, respectively. In the IADL non-disabled group, the values of UGS, IKES on the non-operated side and PSEQ-4 were significantly higher. (Table 2)

Based on the two groups' comparison, the cutoff values of UGS, IKES on the non-operated side, and PSEQ-4 were calculated by inspecting the ROC curve to discern the presence of IADL disability at six months after KA. The optimal cutoff value was 1.0 m/sec for UGS (AUC, 0.71; 95% confidential interval [CI], 0.63–0.79), 1.0 Nm/kg for IKES on the non-operated side (AUC, 0.61; 95% CI, 0.53–0.70) and 13.0 for PSEQ-4 (AUC, 0.60; 95% CI
Table 3. (Table 3). Table 4 shows the odds ratios (ORs) of independent variables that were expressed nominally. UGS was a significant independent variable in models 1 and 2, and IKES on the non-operated side and PSEQ-4 were significant in model 1 but not in model 2.

In the baseline characteristics comparisons among subgroups, significant differences in the age and number of women were detected. Regarding KL-score on the non-operated side, there was a cell with 0 frequency, making statistical analysis impossible (Table 5). The values of KOOS-pain were significantly higher in all subgroups after operation versus before it. The values of UGS after operation were significantly higher than before, group 3 being the exception (Table 6).

Discussion

This study investigated preoperative predictors of IADL disability in older adults after six months of TKA or UKA, where half of the participants reported disabilities. Gait speed, knee muscle strength, and self-efficacy were potential predictors. However, the logistic regression
analysis adjusted for covariates showed that only gait speed was a true predictor of IADL disability, six months after KA. Thus, the results of this study partially supported our hypothesis.

Our study suggested that the cutoff value for preoperative UGS was 1.0 m/sec. The AUC needed to be at least 0.7 to be considered satisfactory. Thus, our study is significant, as the cutoff value for preoperative UGS exceeded the minimum criterion. A previous prospective study in community-dwelling older adults showed that participants with UGS below 1.0 m/sec had a sharper increase in the 2-year incidence of IADL disability than those above.

Other cohort studies involving older adults have also revealed a 1.0 m/sec cutoff value for risk prediction of health events. Considering the incidence of BADL disability, 0.8 m/sec has been suggested as a more sensible cutoff value. Therefore, considering the hierarchical relationship between IADL and BADL, our cutoff value for UGS was valid.

The predictive power of PSEQ-4 and IKES on the non-operated side was low based on the AUCs of ROC curves, something we could not wholly explain. However, previous studies showed that self-efficacy and muscle strength were predictors of decreased functional
status after KA. Thus, these factors should not be overlooked when considering disability after surgery.

George et al. have shown that the number of older adults with preoperative IADL disability improved after TKA.18 In contrast, patients with BADL disability (100 < Barthel Index) were excluded. Most participants did not have moderate to severe comorbidity preoperatively; however, the proportion of older adults in our study who presented with IADL disability before operation worsened after TKA or UKA. The aforementioned study assessed fewer IADLs and included younger participants than those in our study, which we believe could have contributed to the different results. In our participants, the main items of IADL disability were outdoor activities, such as shopping (69.3%) and using transportation (53.4%), which require gait proficiency. When comparing subgroups, only those presenting with new IADL disability after operation (group 3) failed to improve UGS after KA. In group 4, UGS significantly improved after KA despite having the lowest baseline and follow-up values of the four groups. As a result, we believe that those who have a slow preoperative gait speed, which does not increase to a certain value postoperatively, tend to present IADL disability at six months after KA, even if their pain status has improved.
Some studies have shown that preoperative functional limitation affects postoperative disability.39-41 In contrast to our study, they assessed disability using patient-reported outcome measures such as Western Ontario and McMaster University’s Osteoarthritis Index42 and Oxford Knee Score43. These tools assess subjective difficulty in various activities and situations, but specific modifiable factors affecting disability in daily life remained unclear.

The strength of our findings lies in the predictive power of preoperative gait speed as a modifiable factor for IADL disability in older adults after six months of KA. Furthermore, the specific value of UGS was suggested. A clinical practice guideline44 recommended preoperative physical therapy to improve postoperative outcome after KA; however, the specific regimen is unclear. Our results could be useful for preoperative planning and intervention. In particular, improving preoperative gait speed may enhance the IADL status.

Additionally, the systematic review by Sayah et al. revealed that functional limitations including IADL disability improved drastically in six months and gradually keep improving 2 years after TKA.45 Therefore, our study population, especially participants in group 3, could potentially improve IADL disability six months postoperatively. However, considering the relationship between IADL disability, adverse events,10, 12 and general rehabilitative
intervention periods after KA, such patients are at high risk for adverse events and require careful follow-up even beyond six months postoperatively.

Study limitations

The present study had some limitations. First, since IADL disability was treated as a categorical value, we could not determine its severity. Hence, previous cohort studies have shown that the presence of as few as one IADL disability affected all-cause mortality and the cognitive function decline rate. Second, ours was a single-center analysis; the area distribution where the participants lived was limited. Third, our study population included those with a history of KA, and we could not exclude the effect of past KA on IADL disability. However, the number of those with a history of TKA or UKA was similar between IADL disabled and IADL non-disabled groups.

Conclusion

Our study revealed the importance of evaluating UGS before a TKA or UKA as a predictor of six-month postoperative IADL disability in older adults, in addition to preoperative IADL...
status. Those with poor mobility before surgery should be carefully rehabilitated after KA.

Future studies investigating IADL disability during long-term follow-up periods are needed to further validate our findings.

Suppliers list:

a: μ-tus F-1, Anima Corporation, 3-65-1, Shimoishihara, Chofu, Tokyo, 182-0034, Japan

b: R version 4.0.3, R Foundation for Statistical Computing, Welthandelsplatz 1, 1020 Vienna, Austria
1 References

2

11. Rajan KB, Hebert LE, Scherr PA, Mendes de Leon CF, Evans DA. Disability in basic and instrumental activities of daily living is associated with faster rate of decline in cognitive

10.1093/gerona/gls208.

26. Katoh M, Yamasaki H. Comparison of Reliability of Isometric Leg Muscle Strength

Legends of tables

1. Table 1. Content of disability in IADL disabled group

2. Table 2. Baseline characteristics of the study population and comparative preoperative measurements between the IADL non-disabled and disabled groups

3. Table 3. Variable characteristics to discriminate those with or without IADL disability six months after KA

4. Table 4. ORs of independent variables in a logistic regression model with IADL disability status at six months after KA as dependent variable

5. Table 5. Demographic comparison in four subgroups

6. Table 6. Comparison of KOOS-pain and UGS between pre- and postoperative subgroups
Table 1. Content of disability in the IADL-disabled group

<table>
<thead>
<tr>
<th>Items</th>
<th>IADL disabled 6-months after operation (n=83)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparing food</td>
<td>33 (37.5)</td>
</tr>
<tr>
<td>Shopping</td>
<td>61 (69.3)</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>40 (45.5)</td>
</tr>
<tr>
<td>Doing laundry</td>
<td>6 (6.8)</td>
</tr>
<tr>
<td>Using transportation</td>
<td>47 (53.4)</td>
</tr>
<tr>
<td>Handling finances</td>
<td>15 (17.0)</td>
</tr>
</tbody>
</table>

* Number (%)
Table 2. Baseline characteristics of the study population and comparative preoperative measurements between the IADL non-disabled and disabled groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>All (n=166)</th>
<th>IADL non-disabled (n=83)</th>
<th>IADL disabled (n=83)</th>
<th>p-value</th>
<th>Effect size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age; mean±SD</td>
<td>74.9±6.5</td>
<td>73.4±6.8</td>
<td>76.3±6.2</td>
<td>0.004</td>
<td>0.22</td>
</tr>
<tr>
<td>Woman; number (%)</td>
<td>129 (77.7)</td>
<td>58 (69.9)</td>
<td>71 (85.5)</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td>Body mass Index (kg/m²); median (IQR)</td>
<td>24.4 ±3.4</td>
<td>24.1±3.0</td>
<td>24.7±3.8</td>
<td>0.2</td>
<td>0.11</td>
</tr>
<tr>
<td>Family status (living alone); number (%)</td>
<td>24 (17.5)</td>
<td>16 (19.2)</td>
<td>13 (15.7)</td>
<td>0.68</td>
<td>0.03</td>
</tr>
<tr>
<td>Charlson comorbidity index; median (IQR)</td>
<td>0 (0–0)</td>
<td>0 (0–0)</td>
<td>0 (0–0)</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td>UKA; number (%)</td>
<td>109 (65.7)</td>
<td>57 (68.7)</td>
<td>52 (62.6)</td>
<td>0.51</td>
<td>0.05</td>
</tr>
<tr>
<td>KL score on operated side</td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td>II; number (%)</td>
<td>23 (13.9)</td>
<td>16 (19.2)</td>
<td>7 (8.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III; number (%)</td>
<td>91 (54.8)</td>
<td>46 (55.4)</td>
<td>45 (54.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV; number (%)</td>
<td>52 (31.3)</td>
<td>21 (25.3)</td>
<td>31 (37.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KL score on non-operated side</td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
<td>0.11</td>
</tr>
<tr>
<td>History of TKA or UKA on non-operated side; number (%)</td>
<td>35 (21.1)</td>
<td>18 (21.7)</td>
<td>17 (20.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II; number (%)</td>
<td>51 (30.7)</td>
<td>28 (33.7)</td>
<td>23 (27.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III; number (%)</td>
<td>56 (33.7)</td>
<td>28 (33.7)</td>
<td>28 (33.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV; number (%)</td>
<td>9 (14.5)</td>
<td>9 (10.8)</td>
<td>15 (18.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IADL disabled before operation; number (%)</td>
<td>63 (46.3)</td>
<td>17 (20.5)</td>
<td>60 (72.3)</td>
<td><0.001</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Motor and knee joint function
<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>p-value</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGS (m/s); mean±SD</td>
<td>0.95 ± 0.27</td>
<td>1.05 ± 0.26</td>
<td>0.86 ± 0.24</td>
<td><0.001</td>
<td>0.39</td>
</tr>
<tr>
<td>IKES on operated side (Nm/kg); median(IQR)</td>
<td>1.01 (0.77–1.28)</td>
<td>1.03 (0.83–1.28)</td>
<td>0.99 (0.69–1.27)</td>
<td>0.26</td>
<td>0.09</td>
</tr>
<tr>
<td>IKES on non-operated side (Nm/kg); median (IQR)</td>
<td>1.27 (0.98–1.60)</td>
<td>1.31 (1.09–1.75)</td>
<td>1.21 (0.82–1.49)</td>
<td>0.01</td>
<td>0.2</td>
</tr>
<tr>
<td>Knee flexion ROM on operated side (°); median (IQR)</td>
<td>125 (115–135)</td>
<td>125 (120–135)</td>
<td>125 (110–135)</td>
<td>0.19</td>
<td>0.1</td>
</tr>
<tr>
<td>Knee flexion ROM on non-operated side (°); median (IQR)</td>
<td>130 (120–140)</td>
<td>135 (125–140)</td>
<td>130 (115–140)</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>Knee extension ROM on operated side (°); median (IQR)</td>
<td>-5 (-10 to -5)</td>
<td>-5 (-10 to -5)</td>
<td>-5 (-10 to -5)</td>
<td>0.14</td>
<td>0.12</td>
</tr>
<tr>
<td>Knee extension ROM on non-operated side (°); median (IQR)</td>
<td>-5 (-5 to 0)</td>
<td>-5 (-5 to 0)</td>
<td>-5 (-10 to 0)</td>
<td>0.053</td>
<td>0.15</td>
</tr>
<tr>
<td>Pain status</td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
<td>0.08</td>
</tr>
<tr>
<td>KOOS pain; mean±SD</td>
<td>45.4 ± 16.9</td>
<td>46.7 ± 18.7</td>
<td>44.1 ± 14.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychological status</td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>GDS-15; median (IQR)</td>
<td>3.0 (1.0–6.0)</td>
<td>3.0 (1.0–6.0)</td>
<td>3.0 (1.0–6.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS-6; median (IQR)</td>
<td>14.0 (9.0-18.0)</td>
<td>14.0 (7.0-18.0)</td>
<td>15.0 (10.0-19.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSEQ-4; median (IQR)</td>
<td>14.0 (12.0-18.0)</td>
<td>15.0 (12.5-18.5)</td>
<td>13.0 (11.0-17.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Effect size was estimated using r for continuous variables and Cramér’s V for categorical variables.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Cut off</th>
<th>AUC (95%CI)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGS (m/s)</td>
<td>1.0</td>
<td>0.71 (0.63–0.79)</td>
<td>57.8</td>
<td>79.5</td>
<td>5.32 (2.57–10.6)</td>
</tr>
<tr>
<td>IKES on the non-operated side (Nm/kg)</td>
<td>1.0</td>
<td>0.61 (0.53–0.70)</td>
<td>84.3</td>
<td>38.6</td>
<td>3.38 (1.61–7.07)</td>
</tr>
<tr>
<td>PSEQ–4 (points)</td>
<td>13</td>
<td>0.60 (0.52–0.69)</td>
<td>69.9</td>
<td>54.2</td>
<td>2.49 (1.29–4.81)</td>
</tr>
</tbody>
</table>
Table 4. ORs of independent variables in a logistic regression model with IADL disability status at six months after KA as dependent variable

<table>
<thead>
<tr>
<th></th>
<th>UGS</th>
<th>IKES non-operated side</th>
<th>PSEQ-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude OR</td>
<td>Adjusted OR</td>
<td>Crude OR</td>
<td>Adjusted OR</td>
</tr>
<tr>
<td>(95%CI)</td>
<td>(95%CI)</td>
<td>(95%CI)</td>
<td>(95%CI)</td>
</tr>
<tr>
<td>5.32</td>
<td>3.38</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>(2.67–10.6)</td>
<td>(1.61–7.07)</td>
<td>(1.29–4.81)</td>
<td></td>
</tr>
<tr>
<td>Model 1*</td>
<td>4.96†</td>
<td>2.85‡</td>
<td>2.28‡</td>
</tr>
<tr>
<td></td>
<td>(2.31–10.7)</td>
<td>(1.24–6.54)</td>
<td>(1.12–4.64)</td>
</tr>
<tr>
<td>Model 2§</td>
<td>3.22†</td>
<td>1.70</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>(1.38–7.56)</td>
<td>(0.65–4.45)</td>
<td>(0.58–2.98)</td>
</tr>
</tbody>
</table>

* Adjusted for age(years), sex, KL score on both knees and operation type (TKA or UKA)
† p<0.001
‡ p<0.05
§ Adjusted for age(years), sex, KL score on both knees, operation type (TKA or UKA) and IADL disabled before operation or not.
|| p<0.01
Table 5. Demographic comparison in four subgroups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group1* (n=66)</th>
<th>Group 2† (n=17)</th>
<th>Group 3‡ (n=23)</th>
<th>Group 4§ (n=60)</th>
<th>p-value</th>
<th>Multiple comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age; mean±SD</td>
<td>72.8±6.6</td>
<td>75.5±7.3</td>
<td>74.7±6.3</td>
<td>76.9±6.2</td>
<td>0.007</td>
<td>1 < 4</td>
</tr>
<tr>
<td>Women; number (%)</td>
<td>45 (68.2)</td>
<td>13 (76.5)</td>
<td>17 (73.9)</td>
<td>54 (90.0)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Body mass Index (kg/m²); median (IQR)</td>
<td>23.6 (22.4–26.1)</td>
<td>23.4 (21.6–25.7)</td>
<td>24.8 (22.2–26.9)</td>
<td>23.9 (22.5–26.7)</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Family status (living alone); number (%)</td>
<td>15 (22.7)</td>
<td>1 (5.9)</td>
<td>2 (8.7)</td>
<td>11 (18.3)</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Charlson comorbidity index; median (IQR)</td>
<td>0 (0–0)</td>
<td>0 (0–1)</td>
<td>0 (0–0.5)</td>
<td>0 (0–0)</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>UKA; number (%)</td>
<td>46 (76.7)</td>
<td>11 (64.7)</td>
<td>16 (69.6)</td>
<td>36 (60.0)</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>KL score on operated side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>II; number (%)</td>
<td>10 (15.2)</td>
<td>6 (35.3)</td>
<td>2 (8.7)</td>
<td>5 (8.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III; number (%)</td>
<td>39 (59.1)</td>
<td>7 (41.2)</td>
<td>11 (47.8)</td>
<td>34 (56.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV; number (%)</td>
<td>17 (25.8)</td>
<td>4 (23.5)</td>
<td>10 (43.5)</td>
<td>21 (35.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KL score on non-operated side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of TKA or UKA on non-operated side; number (%)</td>
<td>15 (22.7)</td>
<td>3 (17.6)</td>
<td>4 (17.4)</td>
<td>13 (21.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II; number (%)</td>
<td>18 (27.3)</td>
<td>10 (58.8)</td>
<td>9 (39.1)</td>
<td>14 (23.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III; number (%)</td>
<td>18 (27.3)</td>
<td>4 (23.5)</td>
<td>7 (30.4)</td>
<td>21 (35.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV; number (%)</td>
<td>18 (27.3)</td>
<td>0 (0.0)</td>
<td>3 (13.0)</td>
<td>12 (20.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* Those who did not have IADL disability before and after operation
† Those who have IADL disability only before operation
‡ Those who have IADL disability only after operation
§ Those who have IADL disability before and after operation.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1* (n=66)</th>
<th>Group 2† (n=17)</th>
<th>Group 3‡ (n=23)</th>
<th>Group 4§ (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGS (m/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline¹¹</td>
<td>1.09±0.23</td>
<td>0.87±0.24</td>
<td>0.95±0.16</td>
<td>0.81±0.26</td>
</tr>
<tr>
<td>Follow-up¹¹</td>
<td>1.17±0.19</td>
<td>1.11±0.28</td>
<td>1.02±0.26</td>
<td>0.94±0.22</td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td><0.001</td>
<td>0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Effect size⁴</td>
<td>0.33</td>
<td>0.84</td>
<td>0.29</td>
<td>0.49</td>
</tr>
<tr>
<td>KOOS pain (point)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline¹¹</td>
<td>49.4±18.9</td>
<td>36.6±14.03</td>
<td>48.4±11.1</td>
<td>42.5±15.8</td>
</tr>
<tr>
<td>Follow-up¹¹</td>
<td>82.2±12.9</td>
<td>81.7±10.7</td>
<td>74.2±12.1</td>
<td>71.3±14.6</td>
</tr>
<tr>
<td>p-value</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Effect size⁴</td>
<td>0.88</td>
<td>0.94</td>
<td>0.88</td>
<td>0.89</td>
</tr>
</tbody>
</table>

* Those who did not have IADL disability before and after operation
† Those who have IADL disability only before operation
‡ Those who have IADL disability only after operation
§ Those who have IADL disability before and after operation.
|| Values of baseline and follow-up are shown on mean±SD.
¶ Effect size was estimated using r.