Manifestations Associated with Post Acute Sequelae of SARS-CoV2 Infection (PASC) Predict Diagnosis of New-Onset Psychiatric Disease: Findings from the NIH N3C and RECOVER Studies

Ben Coleman, B.S., 1,2 Elena Casiraghi, Ph.D., 3 Tiffany J Callahan, Ph.D., 4 Hannah Blau, Ph.D., 1 Lauren Chan, M.S., R.D., 5 Bryan Laraway, M.S., 6 Kevin B. Clark, Ph.D., 6,9,10 Yochai Re'em, 11 Ken R. Gersing, M.D., 12 Ken Wilkins, Ph.D., 13 Nomi Harris, 14 Giorgio Valentini, Ph.D., 3 Melissa A Haendel, Ph.D., 6 Justin Reese, Ph.D., 14,* Peter N Robinson, M.D., Ph.D.1,2,* on behalf of the N3C consortium* and the RECOVER Consortium*

1. The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
2. Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
3. AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Italy
4. Department of Biomedical Informatics, Columbia University, New York, NY, USA
5. College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
6. University of Colorado Anschutz Medical Campus, Center for Health AI, Aurora 80045, CO, USA
8. Cures Within Reach, Chicago, IL, USA
9. Campus and Domain Champions Program, National Science Foundation eXtreme Science and Engineering Discovery Environment (XSEDE), https://www.xsede.org/
11. Weill Cornell Medicine, Department of Psychiatry
12. National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland.
14. Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Acute COVID-19 infection can be followed by persistent or newly diagnosed manifestations in many different organ systems, referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Numerous studies have shown an increased risk of being diagnosed with new-onset psychiatric disease in the first 21-120 days following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of receiving a diagnosis of new-onset psychiatric disease following COVID-19.

Here, we perform a retrospective electronic health record (EHR) cohort study to evaluate whether non-psychiatric PASC-AMs can predict whether patients will receive a diagnosis of new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 65 clinical organizations which are harmonized using the Observational Medical Outcomes Partnership (OMOP) data model. Non-psychiatric PASC-AMs were recorded 21-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. OMOP codes were mapped to 178 Human Phenotype Ontology (HPO) terms that represent PASC-AMs. Logistic regression was applied to predict newly diagnosed psychiatric disease occurrence based on age, sex, race, pre-existing comorbidities, and PASC-AMs in eleven categories.

The cohort of 1,135,973 individuals with acute COVID-19 had a mean age of 40.5 years and included 56.0% females. We found a significant association for seven of the HPO categories with newly diagnosed psychiatric disease, with odds ratios highest for neurological (2.30, 2.24-2.36) and cardiovascular (1.77, 1.69-1.85) PASC-AMs. Secondary analysis revealed that the proportions of 95 of 154 individual phenotypic features differed significantly among patients diagnosed with different psychiatric diseases (anxiety, mood disorders, dementia, and psychosis). Neurological, pulmonary, gastrointestinal, endocrine, cardiovascular, constitutional, and ENT PASC-AMs are each associated with an increased risk of newly diagnosed psychiatric disease. This suggests that the total burden of PASC-AMs influences the risk of receiving a diagnosis of a new-onset psychiatric disease.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
psychiatric disease. This finding may be used to inform psychiatric screening following acute COVID-19 by identifying high-risk patients.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is responsible for over 500 million cases with 6.3 million deaths worldwide.¹ Many patients experience manifestations that persist following acute COVID-19 or with onset after the acute period, affecting various organ systems.²⁻⁵ These manifestations, when not explained by another cause, are part of the broader syndrome of Post Acute Sequelae of SARS-CoV2 Infection (PASC; colloquially referred to as Long COVID). The rate of newly diagnosed psychiatric disease has been found to be significantly increased in patients following COVID-19 infection. The most significant risk has been demonstrated for anxiety disorders, with hazard ratios ranging from 1.3-2.¹⁰ In a prior study, we found that this risk was only significant in early post-acute phase (21-120 days following COVID-19 diagnosis), reflecting a timeframe when these psychiatric sequelae are most likely to be diagnosed.⁸ A smaller study on a Japanese EHR cohort similarly showed that COVID-19 patients were more likely to receive a diagnosis of psychiatric disease 1-3 months after COVID-19 compared to controls with influenza or respiratory tract infections.¹¹ These findings have major public health ramifications, creating a need to further characterize the risk of newly diagnosed psychiatric disease following COVID-19.

One relevant question is how psychiatric sequelae relate to other manifestations of PASC. Acute COVID-19 may be characterized by neurological manifestations such as confusion, stroke, and neuromuscular disorders. Pathomechanisms include viral neuroinvasion, immune activation and inflammation within the central nervous system (CNS), and endotheliopathy associated with blood-brain barrier dysfunction, which could additionally lead to psychiatric manifestations through diverse pathophysiological mechanisms.¹²⁻¹⁴ Following acute COVID-19, some patients exhibit manifestations including fatigue, headache, difficulty concentrating, cognitive impairment, anxiety and mood disorders, and dysautonomia.¹² The pathobiology of these manifestations post-COVID remains poorly understood.¹⁵⁻¹⁷ The relationship between newly diagnosed psychiatric sequelae and other PASC manifestations has not been well characterized. One challenge in understanding the pathogenesis of the psychiatric manifestations of PASC is the fact that PASC is not a single disease; it may have distinct pathogenetic mechanisms underlying different psychiatric manifestations.¹⁸

In this study, we performed a detailed analysis of 287 PASC-associated manifestations (PASC-AMs) encoded with terms of the Human Phenotype Ontology (HPO), which is widely used to support differential diagnosis and translational research in human genetics.¹⁹,²⁰ We analyzed 1,135,937 patients for whom at least 120 days of follow-up data were available after acute COVID-19 in multicenter electronic health record (EHR) data derived from the National COVID Cohort Collaborative (N3C).²¹,²² We show a significant association between new-onset psychiatric disease and PASC-AMs from seven organ systems.

METHODS

Study Population and Data Sources

In this retrospective cohort study, we examined the association between PASC-AMs and diagnosis of new-onset psychiatric disease following acute COVID-19. We used patient data accessed through the National Institute of Health (NIH) N3C Data Enclave.²¹,²² N3C has harmonized EHRs from 65 clinical organizations in the United States. We analyzed data frozen on May 12, 2022, which comprised records for 3,937,101 COVID-19 positive patients. Data included over 6.5 billion lab results, 2.2 billion drug exposures, and 622 million procedures from 754 million healthcare encounters. Data were collected from the clinical organizations,
normalized to the Observational Medical Outcomes Partnership (OMOP) 5.3.1 vocabulary, and then de-identified and made available to participating N3C research institutions. The study was exempted by the Institutional Review Board (IRB) at the Jackson Laboratory under 45 CFR 46.101(b) (Common Rule). The N3C data transfer to NCATS is performed under a Johns Hopkins University Reliance Protocol # IRB00249128 or individual site agreements with NIH. The N3C Data Enclave is managed under the authority of the NIH; information can be found at https://ncats.nih.gov/n3c/resources.

Exposures and Outcomes
Clinical data including comorbidities, medications, and outcomes were identified using concept identifiers in the OMOP common data model. Demographics, laboratory values, COVID-19 status, and psychiatric diagnoses were collected for each patient.

Patients were included in the primary analysis if SARS-CoV-2 was detected by polymerase chain reaction (PCR) or antigen test after January 1, 2020. Patients with a history of any psychiatric disease (OMOP concept ids: 432586, 441542) prior to 21 days after COVID-19 diagnosis and patients without a medical record covering at least a year prior to and 120 days after COVID-19 diagnosis were excluded from this analysis (Figure 1).

Psychiatric outcomes are defined using the OMOP hierarchy. We selected broad concepts and all descendants for each outcome including any psychiatric disease (OMOP concept ids: 432586, 441542), anxiety disorder (OMOP concept id: 441542), mood disorder (OMOP concept id: 444100), dementia (OMOP concept id: 4182210 excluding 44782935 and 374888), and psychosis (OMOP concept id: 436073 excluding 434900). Psychiatric outcomes were considered if they were first diagnosed in the period of 21 to 120 days following COVID-19 diagnosis (Figure 2).

We used known PASC-AMs that had been previously described using 287 Human Phenotype Ontology (HPO) terms. We then mapped 176 HPO terms to 278 terms in the OMOP data model (some HPO terms mapped to multiple OMOP terms and some HPO terms had no good OMOP counterparts). We removed five HPO terms from our list of non-psychiatric PASC-AMS because they overlapped with mental health outcomes (Attention deficit hyperactivity disorder [HP:0007018], Anxiety [HP:0000739], Panic attack [HP:0025269], Depression [HP:0000716], and Phonophobia [HP:0002183]), leaving 171 non-psychiatric HPO terms mapped to 268 OMOP terms. In this way, we were able to identify when patients experienced HPO-defined PASC-AMs using OMOP-encoded patient records. We then categorized HPO terms by affected system. These categories included cardiovascular, constitutional, endocrine, ENT, eye, gastrointestinal, immunology, laboratory, neuropsychiatric, pulmonary, and skin (Supplemental Tables S1-S11). The HPO terms were recorded in the time period from 21 days after onset of acute COVID-19 up to either the occurrence of newly diagnosed psychiatric disease or 120 days (if no diagnosis of psychiatric disease was recorded) (Figure 2).

In addition to PASC-AMs, we considered the effects of patient demographics, including age, race and ethnicity, sex, smoking status, BMI, visit type (inpatient or outpatient), and length of stay (if applicable). We also considered pre-COVID comorbidities (Table 1). All comorbidities were defined as a binary variable indicating whether that patient had received the diagnosis of the comorbidity prior to COVID diagnosis. Only comorbidities present in more than 1% of the population were included in the final analysis (Table 1).
Figure 1: CONSORT-style workflow for creating the cohort. We selected all patients with a positive PCR or antigen test for COVID-19 who had records extending greater than 1 year prior to COVID-19 infection and at least 120 days after diagnosis of COVID-19. Patients with any record of psychiatric disease prior to the post-COVID phase (21 days after diagnosis) are removed. For each outcome, patients with more than one outcome (anxiety, mood disorder, dementia, psychosis) whose first psychiatric diagnosis was not the outcome of interest were excluded from the analysis. We report the number of patients included with the outcome (n) and the total number of patients.

**Statistical analysis**

Data analysis was performed using Palantir Foundry (Palantir Technologies Inc., Denver, Colorado). The analysis was structured as a directed acyclic graph of data transformations. Individual transformations were implemented as nodes consisting of SQL, Python, or R code.

To address data missingness, we applied a multiple imputation strategy and computed pooled estimates by applying Rubin’s rule.\textsuperscript{24} BMI was the most commonly missing variable (in 65% of cases). We imputed BMI 26 times with the missRanger algorithm and applied a multiple imputation estimation pipeline to derive the log odds estimates. The missRanger algorithm was chosen based on a previous study comparing different multiple imputation techniques on an N3C cohort of diabetic patients.\textsuperscript{25}

We identified all HPO-defined PASC-AMs that occurred between 21 and 120 days following COVID diagnosis. PASC-AMs that were first documented after the diagnosis of a psychiatric disease were not included in the analysis. For each patient, we counted the number of unique HPO terms in each of the eleven categories described in the preceding section.
To investigate the association of PASC manifestations and other covariates with newly diagnosed psychiatric disease, we performed logistic regression using the `glm` function in R. The predictors included age, sex, race, pre-existing comorbidities, and the counts of manifestations in each of the eleven HPO categories. Only predictors present in more than 1% of the cohort were used. A patient was said to have the outcome of a newly diagnosed psychiatric disease when it was the first diagnosis of any psychiatric disease seen in the patient’s record. We conducted separate analyses to predict the occurrence of four categories of psychiatric disease: anxiety, mood disorders, dementia, and psychosis. For studying psychiatric disease categories, all patients with multiple psychiatric diagnoses were removed from the analysis. Logistic regression was also applied to predict the diagnosis of any new psychiatric disorder regardless of category. For each regression, we recorded the estimated odds ratio, 95% confidence intervals, and corresponding p-value.

We performed a chi-squared analysis to assess the incidence of HPO terms in each category significantly associated with an outcome. For each term, a contingency table was constructed containing the counts of study participants with or without the corresponding HPO annotation and with or without the corresponding new-onset psychiatric disease. For the chi-squared analysis, we removed 3,107 patients (11.3% of those with a psychiatric diagnosis) who had more than one newly diagnosed psychiatric disease. P-values were adjusted using Bonferroni correction.

**Figure 2: Timeline for measured variables.** Every patient was considered with respect to when they were first diagnosed with COVID-19. The pre-COVID phase includes any available records of the patient prior to their COVID-19 diagnosis. Patients whose records did not include at least a year of history prior to COVID-19 diagnosis were removed from the analysis. To focus on patients with a diagnosis of new-onset psychiatric disease, we removed patients with any psychiatric diagnosis during their COVID-19 infection (the first 21 days after diagnosis) or anywhere in the pre-covid phase. Additionally, comorbidities were only considered if they were recorded in the pre-covid phase. The early post-acute phase (21-120 days after diagnosis) represents the period when most patients would have recovered from acute COVID-19 but are at the highest risk for newly diagnosed psychiatric disease. To focus on COVID-related psychiatric disease, we only considered the first occurrence of any psychiatric disease in the early post-acute phase. HPO-encoded PASC manifestations were only included if they occurred in the early post-covid phase and prior to the outcome of psychiatric disease (if any). PASC-AMs in the early post-acute phase were used to predict risk of psychiatric disease.

**Sensitivity Analyses**
Imputation was used to compensate for significant missingness of BMI data. Since BMI is associated with risk of severe COVID-19 and could therefore act as a confounder, we also performed the analysis without imputation, keeping only patients with complete data. To ascertain whether our results are consistent between
inpatients and outpatients, we separated our cohorts into those who were admitted for their COVID-19 infection and those who were not.

Many studies have investigated PASC and related manifestations. These studies have used different criteria to identify whether a manifestation is attributed to acute COVID-19 or PASC. For this study, we chose a definition that is consistent with our prior work on the psychiatric sequelae of COVID-19. To determine whether this had a large effect on our results, we repeated our regression analysis using the alternative definitions of 21 days after initial diagnosis for outpatients and 21 days after discharge for inpatients, and 14 days after diagnosis for both inpatients and outpatients.

Role of the Funding Source
The funders had no role in study design, data collection, analysis, interpretation, manuscript writing, or the decision to submit for publication. The corresponding authors had full access to all study data and had final responsibility for the decision to submit for publication.

Results
A total of 3,937,101 patients with prior COVID-19 were assessed. We restricted analysis to patients with no previous recorded psychiatric illness and at least one year of data prior to acute COVID-19 diagnosis and 120 days after. This left 1,135,973 patients in the COVID-19 cohort. We found that 2.42% of patients had newly diagnosed psychiatric disease of any kind in the early post-acute phase (21-120 days after COVID-19 diagnosis) (Table 1). We choose to use the term ‘newly diagnosed’ to highlight the potential for differences between a patient’s pathology and what is reported in EHR.

The outcomes of interest were psychiatric diagnoses: any psychiatric disease, anxiety disorder, mood disorder, dementia, and psychosis. To identify risk factors we exploited the hierarchical structure of the HPO to group into eleven categories the HPO terms describing clinical manifestations that may be observed in PASC. We refer to these manifestations as PASC-AMs to reflect the difficulty of inferring causal relationships on the basis of EHR data. The patient’s symptomatology in each category is summarized by an integer-valued variable equal to the number of distinct HPO terms recorded in that category. Constitutional and neurologic PASC-AMs were most common, occurring in 4.91% and 4.34% of patients respectively. A logistic regression was performed with these variables as well as binary variables derived from 25 pre-existing comorbidities and age, sex, and race (Figure 2). We then removed categories and variables recorded in less than 1% of the cohort.
We found that there was a significant association of each of the seven investigated HPO categories with newly diagnosed psychiatric disease, with the estimated odds ratio ranging from 1.1 to 2.28 for the seven categories (Figure 3). Similar results were found for the sensitivity analyses of stratifying inpatients and outpatients, removing patients with any BMI missingness, and varying the definition for the early post-acute phase (Supplement Tables S13-17). Of the seven HPO categories, six were significantly associated with newly diagnosed mood disorder. The strongest single association was for neurological features, with an odds ratio of 2.18 (2.09-2.27 95%CI). For newly diagnosed anxiety, six HPO categories were significantly associated, with neurological (OR: 2.14) and cardiovascular (2.06) both having an estimated odds ratio over 2 (Figure 3). The association between symptom categories varies between mood and anxiety disorders. Most notably we saw that the cardiovascular manifestations increase risk of anxiety to a greater degree than mood disorders. Conversely, endocrine manifestations increase risk for mood disorders but only show a non-significant increase in risk of anxiety. Fewer patients were available with newly diagnosed psychosis and dementia, but there was
still a significant increase in risk for patients with neurological manifestations for both outcomes, and constitutional and cardiovascular manifestations increased risk for dementia. However, patients with pulmonary manifestations were less likely to be diagnosed with dementia (Figure 3).

Figure 3: Association of Manifestations to Any Mental Disorder. Odds ratios and 95% confidence intervals for the association of features in the seven investigated HPO categories with all newly diagnosed psychiatric disease and the subcategories anxiety disorder, mood disorder, dementia, and psychosis. See also Supplemental Table S13 for complete results including comorbidities and demographics.

We then investigated the distribution of individual HPO terms for the seven categories described above. We compared counts of the observed HPO terms for each category among patients with a diagnosis of new-onset anxiety, mood disorder, dementia, and psychosis. Statistical significance was assessed with a chi-squared test and adjusted for multiple testing. Only patients with at least one HPO term in the category were included in this analysis. To ensure that no patient was in multiple groups, we eliminated the category of all psychiatric disease and removed patients who simultaneously presented with multiple outcomes, leaving 1,132,866 patients (Figure 4, Supplement Figure S1 and Table S18).
Figure 4: Proportion of Patients with HPO Feature by Category and Outcome. Here we examine the breakdown of individual HPO phenotypic features from symptom categories. The X-axis shows the five most prevalent HPO features from the displayed category. The Y-axis shows the proportion of patients with that feature from the set of patients with the indicated HPO feature category and outcome. All findings shown are significant.

Discussion

In this retrospective observational study on a cohort of 1,135,973 individuals following acute COVID-19 infection, we identify a significant relationship between newly diagnosed psychiatric disease and seven categories of PASC manifestations. We show that neurological manifestations of PASC are associated with a greater increase in risk for newly diagnosed psychiatric disease compared to other manifestations.

Five studies, including our own, have performed large-scale EHR analyses that show significant and consistent but modest associations between SARS-CoV-2 infection and increased rates of psychiatric disorders.\(^7,8,11,27,28\) Differences in cumulative risk between patients who had COVID-19 and those who had other respiratory tract infections persist for at least 12 months. However, the absolute risk of experiencing a psychiatric disorder decreases sharply after the first month,\(^27\) and two studies suggest the risk returns to baseline after 120 days.\(^8,11\)

We cannot determine the degree to which the observed increased risk is specifically related to PASC. Anxiety, depression, and post-traumatic stress disorder may be observed in individuals following critical illness.\(^29\) It is unclear how disease severity modulates risk of psychiatric disease. Although there is evidence that severe...
COVID-19 increases risk of newly diagnosed psychiatric diseases, a recent study showed that neuropsychiatric sequelae of severe COVID-19 infection were similar to those observed in other severe acute respiratory infections. With the exception of altered mental status, neuropsychiatric manifestations have been shown to be similar between patients with influenza and those with SARS-CoV2.

Our results extend these findings by showing that the presence of PASC-AMs in seven clinical categories are associated with increased risk of newly diagnosed psychiatric disease following COVID-19. While our study does not specifically investigate PASC, it examines individual HPO-encoded phenotypic features that would be compatible with PASC (PASC-AMs). We find the strongest association between neurological symptoms and newly diagnosed psychiatric disease. Similar associations have been previously reported for the general population.

The relationship between certain PASC-AMs and specific psychiatric outcomes may suggest there are several pathophysiologic mechanisms in PASC that could explain the heterogeneity of phenotypic presentation. Retrospective analysis of EHR data does not allow any conclusions about pathomechanisms.

Study limitations
Our dataset is derived from over 65 institutions across the country with 3,937,101 cases of COVID-19, and thus is a representative sample of the COVID-19 positive population in the United States, but inconsistent or incomplete data collection could introduce biases. N3C employs a comprehensive suite of data quality checks to mitigate this problem, but residual issues cannot be ruled out.

An important proviso in the interpretation of studies on the psychiatric manifestations of disease is the possibility of misdiagnosis of physiological abnormalities as psychiatric disease. Misdiagnosis of psychiatric disorders can occur when the symptoms are taken out of context. For instance, individual symptoms of anxiety disorders such as sweating, chills, and weakness are common and arise in many disorders. Clinical management of affected individuals, especially in the context of significant functional impairment, should involve an assessment of medical (somatic) causes of behavioral manifestations, and the diagnosis of a psychiatric disease should be made only if appropriate. Unfortunately, psychiatric misdiagnosis is common. For example, individuals with postural orthostatic tachycardia syndrome (POTS) are sometimes mistakenly diagnosed with anxiety disorders such as panic disorder because of their tachycardia.

Conclusion
Our results have important implications for predicting psychiatric sequelae of COVID-19. We have shown that the presence of PASC-AMs from seven clinical categories is each associated with an increased incidence of newly diagnosed psychiatric disease. A bidirectional association between chronic disease and increased rates of psychiatric disease and psychiatric disease being associated with a higher risk of disease occurrence, severity, or progression, has been described for chronic heart failure, chronic kidney disease, chronic hepatitis C, and cancer. The scope of the COVID-19 pandemic is enormous, and it is essential to gain a deeper understanding of the natural history of PASC-related psychiatric diseases and their differential diagnoses to optimize care for affected individuals and public health measures. Timely and accurate diagnosis of psychiatric conditions has the potential to improve the quality of life for affected individuals.

Data sharing
The data presented in this paper can be accessed upon application to the NCATS N3C Data Enclave at https://covid.cd2h.org/enclave.
Acknowledgments

The analyses described in this publication were conducted with data or tools accessed through the NCATS N3C Data Enclave covid.cd2h.org/enclave and supported by CD2H - The National COVID Cohort Collaborative (N3C) IDEa CTR Collaboration 3U24TR002306-04S2 NCATS U24 TR002306. This research was possible because of the patients whose information is included within the data from participating organizations (covid.cd2h.org/dtas) and the organizations and scientists (covid.cd2h.org/duas) who have contributed to the on-going development of this community resource.22

We gratefully acknowledge the following core contributors to N3C:

Details of contributions available at covid.cd2h.org/core-contributors

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the N3C program.

The following institutions whose data is released or pending:

Available: Advocate Health Care Network — UL1TR002389: The Institute for Translational Medicine (ITM) • Boston University Medical Campus — UL1TR001430: Boston University Clinical and Translational Science Institute • Brown University — U54GM115677: Advance Clinical Translational Research (Advance-CTR) • Carilion Clinic — UL1TR003015: iTHRIV Integrated Translational health Research Institute of Virginia • Charleston Area Medical Center — U54GM104942: West Virginia Clinical and Translational Science Institute (WVCTSI) • Children’s Hospital Colorado — UL1TR002535: Colorado Clinical and Translational Sciences Institute • Columbia University Irving Medical Center — UL1TR001873: Irving Institute for Clinical and Translational Research • Duke University — UL1TR002553: Duke Clinical and Translational Science Institute • George Washington Children’s Research Institute — UL1TR001876: Clinical and Translational Science Institute at Children’s National (CTSA-CN) • George Washington University — UL1TR001876: Clinical and Translational Science Institute at Children’s National (CTSA-CN) • Indiana University School of Medicine — UL1TR002529: Indiana Clinical and Translational Science Institute • Johns Hopkins University — UL1TR003098: Johns Hopkins Institute for Clinical and Translational Research • Loyola Medicine — Loyola
Author contributions.

Author Contributions: Dr Robinson and Dr Reese had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Coleman, Casiraghi, Haendel, Reese, Robinson

Acquisition, analysis, or interpretation of data: Coleman, Casiraghi, Callahan, Laraway, Haendel, Reese, Robinson

Drafting of the manuscript: Coleman, Casiraghi, Haendel, Reese, Robinson

Critical revision of the manuscript for important intellectual content: Coleman, Casiraghi, Blau, Chan, Davis, Clark, Seltzer, Valentini, Haendel, Reese, Robinson

Statistical analysis: Coleman, Casiraghi, Wilkins, Reese, Robinson

Obtained funding: Haendel, Robinson

Supervision: Reese, Robinson.
References


25. Casiraghi, E. et al. A Methodological Framework for the Comparative Evaluation of Multiple Imputation Methods: Multiple Imputation of Race, Ethnicity and Body Mass Index in the U.S. National COVID Cohort...


