DEVELOPMENT OF A COMPLEX INTERVENTION FOR DENGUE PREVENTION

Author page

Nayani Umesha Rajapaksha¹ [MBBS, MD]

Chrishantha Abeyesena² [MBBS, MD]

Aindralal Balasuriya³ [MBBS, MD]

Nimalka Pannila Hetti⁴ [MBBS, MD]

Ajith Alagiyawanna⁵ [MBBS, MD]

Suranga Manilgama⁶ [MBBS, MD]

¹Senior Registrar in Community Medicine, Health Promotion Bureau, Ministry of Health, Sri Lanka

²Senior Professor in Community Medicine, Department of Community Medicine, Faculty of Medicine, Ragama, Sri Lanka

³Associate Professor, Consultant Community Physician, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka

⁴Consultant Community Physician, National Dengue Control Unit, Ministry of Health, Sri Lanka

⁵Consultant Community Physician, Health Promotion Bureau, Ministry of Health, Sri Lanka

⁶Consultant General Physician, Teaching Hospital Kurunegala, Sri Lanka

Correspondence: Dr. R. M. Nayani Umesha Rajapaksha

E Mail: drnayani2020@gmail.com or m28048@pgim.cmb.ac.lk:

Contact No: +94778974176/+61466055563

ORCiD ID: https://orcid.org/0000-0002-4641-903X

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

DEVELOPMENT OF A COMPLEX INTERVENTION FOR DENGUE PREVENTION

Introduction
Complex interventions are widely used in public health practices in other social areas with prominent health consequences which leads to practical and methodological difficulties, which must be overcome successfully. Importantly, the Communication for Behavioural Impact (COMBI) plan is an effective method directed at enacting behaviour change to benefit health and social development which encourage precise behavioural outcomes and is effective in planning a behavioural change for dengue control.

Objective
The aim was to develop a COMBI plan to change the behaviour to prevent dengue in a major district of Sri Lanka.

Methods
The plan was developed according to World Health Organization (WHO) COMBI planning 10 steps with the scientific evidence and expert opinion. The situation analysis was conducted using mixed-methodology from January to March 2019 among the adults in a highly dengue-endemic area in Kurunegala District, Sri Lanka. The overall goal of the plan was to contribute to the reduction in morbidity and mortality from dengue disease in the Kurunegala district by improving the dengue prevention behaviours by three months in 2019.

Results
The plan was developed after finalizing Specific Behaviour Objectives (SBOs) by conducting Situational Market Analysis for Communication Keys (SMACK). The SBOs for the plan were to improve the proper waste management practices according to the ‘3R concept’ (Reduce, Reuse and Recycling) and to improve the dengue prevention practices by 30 minutes of weekly cleaning. The strategies were to conduct a community empowerment program to improve household waste management and weekly practices on dengue prevention by conducting administrative mobilization and public relationship, public advocacy, community mobilization, personal selling, advertising, and point of service promotion during follow up.

Conclusion
Developing a COMBI plan for an area after the identification of specific behavioural objectives would be feasible to implement in order to empower the community to prevent dengue in the area and improve community health services.

Keywords: Dengue, Communication for Behaviour Impact, Waste management, 3R concept
Introduction

Dengue is a vector born viral infection which is transmitted by a bite of an infected *Aedes* mosquito. It has become a major health problem in globally as well as locally. Both tropical and sub-tropical areas of the world are affected by dengue illness. Dengue fever outbreaks have been documented on every continent except Antarctica (National Dengue Control Unit, 2018). The key components of outbreak response are household and community level behavioural and social interventions. Controlling outbreak through preventing exposure, stopping transmission, and preventing infection need to be addressed by a sustainable intervention. In addition, the behavioural change interventions would be focus on the identification of actions to reduce risk community level to minimize burden, outbreak prevention measures need to be located at the community, application of combine approaches such as social mobilization, health promotion and integrating psychosocial care and mental health responses within outbreak control (Parks & Lloyd, 2004). Moreover, leadership and planning for sustainable community participation, transfer of technical knowledge and skills in planning, and take measures to ensure sustainability at each level are identified as key issues in dengue prevention. Importantly, the interventions should not be based on only the available resources but also on effectiveness for the local context (Elder & Lloyd, 2006). Therefore, behavioural, and social communication need to be ensured. It is a systematic and planned process of communication that addresses the way of information is transmitted, perceived, understood, and applied by individuals and groups in social and organizational settings. To achieve specific behavioural results linked to outbreak control objectives, different methods and strategies should be employed (WHO, 2012). Furthermore, the community based vector control programs were highly successful in educating the community about dengue prevention during past two decades (Parks & Lloyd, 2004). The basis of the social mobilization and communication approach is a seamless connection between knowledge and behaviour which addresses the costs and values of engaging in healthy behaviours, appreciates the gradual stages of behaviour change, and creates a supportive environment. The social mobilization and communication strategies for dengue prevention and control and the research that informs these strategies have been largely the pursuit of different sectors including individual social scientists, university departments, and non-governmental
organizations (NGOs). In the present, most of the countries have produced or are currently producing national guidelines on community participation, behaviour change communication, and social mobilization for dengue prevention. However, the behavioural change is identified as the major obstacle for effective implementation of services to prevention and control of dengue. Not use of social mobilization and communication effectively to convince people to adopt positive behaviours in ways that will prevent Ae. aegypti breeding in households are identified as a major draw back. Importantly, even with the increasing knowledge and awareness about dengue prevention, the many community members do not take necessary actions to get rid of the problem. Many community-based dengue control programmes focus only to improve knowledge increase awareness assuming that changing behavioural (Parks & Lloyd, 2004).

Public health complex intervention

Complex interventions are widely used in public health practices in the other social areas with prominent health consequences. It is built up from several components, which may act both independently and interdependently. Thus, there are practical and methodological difficulties and those must be overcome successfully (MRC, 2000; Craig et. al., 2019). According to the revised framework of developing complex public health intervention (2008) and revised guideline for reporting the development and evaluation of complex interventions in healthcare (CReDECI 2), main three stages can be identified in the development of complex intervention (Mohler et. al, 2015; Craig et. al. , 2008; Craig et. al. , 2019). For better development of an intervention, clear methods, outcomes, and activities, which bring about change with a coherent theoretical basis, are required. Moreover, systematically used theory to develop the intervention, fully description of the intervention will help to implement properly for the purposes of the evaluation. Importantly, the developed intervention needs to be replicated by others and the existing evidence collated in a systematic review is a great advantage of the development. In addition, the intervention needs to be effective and cost effective, and it can be implemented in different research setting are the other main concerns of the process of development it scientifically. Therefore, it is likely to be widely implementable if the results are favourable. If there are any unclear areas, further development work is needed before beginning with the evaluation (Craig et. al., 2008;
Craig et. al., 2019). There are two phases in the development of an intervention including ‘Theoretical Phase’ (Identifying the evidence base and appropriate theory) and ‘Modelling Phase’. Identifying the evidence to develop the intervention phase included a literature review to gather relevant information to find out the effective intervention packages for dengue prevention. The modelling phase consists of modelling process and outcomes assessment. According to the literature search, key components of outbreak response are household and community level behavioural and social interventions, which are aiming at controlling outbreak through preventing exposure and stopping transmission and preventing infection. Importantly, the behavioural interventions would be focused on identifying key risk reduction actions at the household and community level to minimize negative health consequences. Moreover, application of multiple approaches is essential to be included to achieve the success to ensure community-located outbreak prevention through achieving specific behavioural results (WHO, 2012).

The effectiveness of an intervention is measured by assessing outcomes. According to a systematic review on intervention to prevent dengue on cluster randomized trials (CRTs) which were published between 2002 and 2016 revealed that community mobilization programmes are effective interventions in reducing Aedes aegypti entomological indices (Alvarado-Castro, et. al, 2013). However, there were lack of combined programmes with other control activities which enhance the effectiveness of dengue control programmes (Heintze, Velasco Garrido & Kroeger, 2007). Notably, multi-stakeholder partnership leads to achieve successful outcomes of the interventions. Furthermore, the importance of incorporating health education and capacity building for the development of the programmes to prevent communicable disease is highlighted (Aya Pastrana, et. al, 2020). Therefore, there is a need to empower the community through multi-stakeholder participation to achieve sustainable solution for dengue prevention and all steps to be taken to minimize the dengue burden by changing behaviour of the community members. Importantly, systematic development of a complex intervention with minimum risk of bias is currently needed and it needs to be culturally and geographically adopted. The feasibility and efficiency need to be assessed prior to evaluate the effectiveness.
Planning an intervention using Communication for Behavioural Impact (COMBI)

The COMBI is defined as a methodological process which blends strategically a variety of communication interventions intended to engage individuals and families in adopting healthy behaviour and maintaining those behaviour. It uses a managerial view to plan social mobilization and communication for behavioural impact on public health. Furthermore, the managerial insight to planning social mobilization and COMBI for dengue prevention will help to improve the knowledge on application of the basic steps. It leads to develop a behaviourally focused effective social mobilization and communication plan. It is a different approach which ensures the community mobilization, communication, and community participation into a single cohesive approach focused on behavior to improve individual well-being which is an ideal tool for dengue prevention (ADB & WHO, 2013). The importance of social mobilization for prevention and control of DF and DHF has gathered pace in recent years by the internationally. The TDR Scientific Working Group on Dengue in the year 2000 has highlighted the need of the behaviours related to management of the larval habitats of the main dengue vector and treatment-seeking behaviours and the communication strategies to achieve sustainable behavioural impact. The planning, implementation, and monitoring of variety of communication actions by the COMBI will help to intended to engage individuals in considering recommended healthy behaviours and to encourage the adoption and maintenance of those behaviours in a structure and strategic manner (Parks & Lloyd, 2004). Furthermore, WHO guide book on COMBI planning offers a comprehensive and innovative managerial insight to planning social mobilization and communication for behavioural impact which is intended for programme managers in integrating interventions to effectively manage dengue. It was assumed that this COMBI guide would contribute to the development and support of local initiatives by demonstrating a breadth of international experiences (Renganathan et. al, 2003). There are three main elements on developing a COMBI based intervention including planning, implementation, and monitoring. Importantly, COMBI aims Specific Behavioural Objectives (SBOs) and focuses on the implementation and maintenance of the behaviour through monitoring of communities. Moreover, it aims to have greater behavioural impact with ensuring cost-effectiveness, attract more funding, and motivate people for purpose of behavior change leading to dengue outbreak.
prevention (WHO, 2018). Importantly, primary prevention is the most effective measure in effective dengue management. To reduce the dengue transmission, an intensive COMBI programme would be implemented concurrently with vector control activities in order to empower the community. The current dengue prevention strategies are more reactive than anticipatory. To ensure sustainable dengue prevention, the COMBI plans would address the various at-risk populations and it needs to adopt culturally (WHO, 2009). It helps to achieve the public health objectives and it is an effective method of planning a behavioral change for dengue control (Parks & Lloyd, 2004).

Justification

Complex interventions have several dimensions of complexity. It may be to do with the range of possible outcomes, or their variability in the target population, rather than with the number of elements in the intervention package itself. It follows that there is no sharp boundary between simple and complex interventions (Craig et. al.; 2019). The interventions have been developed according to different models and planning processes. There is lack of studies with scientifically developed intervention packages for dengue prevention. Out of the methodologically developed interventions, a community based behavioural changed intervention was developed with the objective of adopting behaviours among householders for the reduction of *Aedes* mosquito breeding habitats to achieve dengue prevention in Colombo Municipal area. The key steps in planning COMBI strategies were followed in order to develop the intervention. Importantly, this methodology was effectively integrated with health education, communication, community mobilization and consumer communication techniques which are direct towards specific and precise behavioural outcomes in health. In this backdrop, to prevent the occurrence of dengue outbreaks, the behaviour of the community needs to be changed. Thus, the development of an intervention and evaluate the effectiveness of the developed behavioural change intervention for the prevention of dengue is a timely need. Importantly, the results of this study would enable responsible authorities to strengthen control strategies to improve dengue prevention activities and it will generate a greater interest to develop capacities for dengue management and would enable them to take action to minimize the impact due to disease burden. The aim was to develop a complex
intervention package to change the behaviour of the householders for dengue prevention in Kurunegala district (a major district), Sri Lanka.

Methods

The complex intervention process of the study was formulated according to 2008 guide and modified with the revised framework of ‘Developing and Evaluating Complex Interventions: New Guidance’ (Craig et al., 2008). This framework provides a guideline for using a stepped approach which separates different elements and using the probable active component in developing the intervention. The development of the intervention package was formulated according to the two phases including ‘Theoretical phase’ and ‘Modelling phase’ (Craig et al., 2008; Möhler, Köpke & Meyer, 2015; Craig et al., 2019).

Theoretical phase

This is the phase to identify evidence base and appropriate theory to gather relevant information to find out the effective intervention packages for dengue prevention. Thus, the facts for the theoretical phase were identified from various sources, including existing evidence (literature review), expert opinion, community need assessment, and past practice of the principal investigator being a district disaster coordinator.

Modelling Phase:

The modelling phase consists of modelling process and outcomes assessment. The model of the present study was conducted using the Communication for Behavioural Impact (COMBI) theory to empower the community to change the behaviour to ensure sustainable dengue control in the highly endemic area in the Kurunegala district, Sri Lanka. The WHO 10 key steps in planning COMBI strategies were followed in order to develop the present intervention package (Parks & Lloyd, 2004; WHO, UNICEF, & FAO, 2012; HEB, 2017). Accordingly, a Situational Market Analysis for Communication Keys (SMACK) was conducted to identify the Specific Behavioural Objectives (SBOs) for the plan. The SBOs were finalized using the results of the of the situation analysis which was conducted using mixed
methodological approach. Thereafter, the intervention package was finalized by modified Delphi method with expert opinion from specialists in public health from National Dengue Control Unit (NDCU), Health Promotion Bureau (HPB), Epidemiology Unit, Provincial level, general medicine and consensus of the grass root level experts in Sri Lanka. Importantly, the expert opinion was taken to finalize the COMBI plan from a senior communication advisor of the international COMBI institute. The developed plan was presented to the panel of expert and finalized the SBOs, strategies, activities for implementation of the intervention and evaluation of the intervention. The team of management prepared the scheduling, budget plan with the guidance of an economist, mobilization for resources and activity planning for the implementation of the developed intervention.
Results

Figure 1: Conceptual Framework of the Development of the Intervention
The process of the development of the intervention package

Theoretical phase

There are different types of behaviuoral theories for health education, health promotion and behaviour change. Of them, Health Belief Model (HBM) (Lennon, 2005; Thompson & Caltabiano, 2013), Seven Doors Model for Behaviour Change (Robinson, 2006; Robinson, 2007), the Community Capacity Building Model for Sustainable Dengue Problem Solution (CCB-SDPS) (Suwanbamrung et. al. 2008; Suwanbamrung, et. al, 2009; Suwanbamrung et. al., 2010; Suwanbamrung, 2012) and Communication for Behavioural Impact (COMBI) planning (Parks & Lloyd, 2004; WHO et al.,2012; THE COMBI INSTITUTE, 2018-2019) were the widely used behavioural changed models for dengue prevention. After considering the effectiveness of the already conducted studies, planning abilities, implementation, and feasibility issues with the consensus of the expert panel, this intervention was formulated by using the COMBI theory. The COMBI based planning process is an effective method directed at enacting behavior change to benefit health and social development which encourage precise behavioral outcomes (Parks & Lloyd, 2004; WHO et al.,2012; HEB, 2017; THE COMBI INSTITUTE, 2018-2019). Furthermore, the COMBI approach is successfully demonstrated that correct problem identification synergized with community engagement can potentially reduce Aedes proliferation and dengue morbidity in Malaysia and Sri Lanka (Rozhan et. al., 2006; Wijesundara, 2009). Furthermore, COMBI based interventions are under implementing for dengue prevention programmes in some countries (THE COMBI INSTITUTE, 2018-2019). According to the literature review, the components of effective intervention packages were building partnership with multi-stakeholders; waste management at households; improving garbage collection; organization; entomological risk surveillance; capacity building at grass root level; stakeholder meetings and formulation of local steering committee; community working group formation and ensuring intra-sectoral coordination. The major factors associated with sustainable prevention of dengue are adequate knowledge of dengue and dengue prevention, positive attitudes towards the dengue prevention, adequate dengue prevention practices among the community members, adequate health seeking behaviour and high-risk perception on dengue, adequate dengue prevention behaviours, adequate community capacity for sustainable dengue
prevention and adequate management of wet containers to prevent vector proliferation. The identified
theories and components were used to develop the appropriate model. According to the studies,
knowledge, attitudes, practices, health-seeking behaviours, and community capacity are the major
factors influencing the behaviour change. Therefore, those were considered as the main components for
behaviour change to achieve a sustainable dengue prevention in the highly endemic area in the district.

The Modeling Phase

According to the ‘planning social mobilization and communication for dengue fever prevention and
control: A STEP-BY-STEP guide’, planning, implementation, and monitoring-evaluation are the three
programmatic phases of COMBI. The content and the method of presentation was decided at the
development stage after designing a proper COMBI plan.

The COMBI based intervention package [Supplementary I]

The overall goal of the developed plan was to decrease the morbidity and mortality due to dengue illness
by improving the dengue prevention behaviours among the householders in highly endemic MOH
division in Kurunegala district, Sri Lanka. Main strategies were to conduct a community empowerment
program to improve household waste management and weekly practices on dengue prevention by
conducting ‘the administrative mobilization and public relationship; public advocacy; community
mobilization; personal selling; advertising and promotion; and point of service promotion during follow
up’. Formulation of a training manual of ‘COMBI based community empowering for sustainable
dengue control’ for field officers, conducting consultative meetings with health and non-health
stakeholders to assess the need for dengue prevention in the area and discussion of preparation of an
‘action plan for dengue management for the healthcare institutions’ among head of the institutions in
the healthcare institutions during the discussion were the activity areas under the ‘administrative
mobilization and public relationship’. The public advocacy was planned to establish by conducting
advocacy programmes to motivate the officials of local government authority of the area to grant the
support for waste management, religious leaders, and the community leaders. Moreover, the community
mobilization was planned to ensure by identifying volunteer leader group for the sustainability of the
dengue prevention and training the leader group to conduct training on trainer’s program. Furthermore,
selecting non-leader group and leader groups among the community, conducting training workshops for non-leader community participant with interactive discussion, conducting weekly for four weeks following up using a ‘weekly follow up record’ were planned to use as the activities for the personal and promotion. Main aim of the training workshops was to train dengue field team and community members for the proper waste management to prevent vector breeding places, promote composting, home-gardening using the compost, importance of weekly practice for dengue prevention by allocating at least 30 minute per week, early health seeking behaviours, and improve early notification by the experienced resource persons in the field. Other aims were to motivate them, improve knowledge, attitudes, practices, encourage early health seeking behaviours, and improve early notification to change the behaviour of the participants towards the prevention of dengue from the highest endemic area in the district. Branding the theme was planned to distribute among the participants of the workshops [Figure 2].

Figure 2. Branding of the Theme of the Behaviour Change Programme for the COMBI Based Intervention
Two-days’ workshop for one cluster (25-30 participants) were planned to conduct. Day one, session one is a motivation and the awareness on dengue prevention, which was planned to conduct by the district Health Promotion Officer (HPO). Educational presentation on awareness on dengue and consequences of dengue disease, identification of dengue vectors and vector control strategies and the importance of at least 30 minutes’ premises inspection per week, waste management according to 3R concept, and interactive lecture on composting and organic farming were conducted during the session.

Session II is a skill improvement session including two sub-components. Demonstration of composting, organic farming and interactive discussion session using an information guide with the participants and a session including constructive discussion with having feedback of peers and trainer through analyzing the problems of the workshop for the participants were planned to conduct as the component of session two. Day-two also has two sessions. A household inspection and entomology survey are planned to conduct by trained entomological assistants. Under the session II, practical demonstration of composting and ‘Shramadhan’ campaign lead by the community leader group and community base small group discussion at the households to identify the practical problems and the theoretical problems were planned to conduct. As the activities for ‘point of service promotion’, weekly for four weeks following up using weekly premises inspection card, one to one communication on strengths and weaknesses of their current practices, stick the health messages on dengue control by the field team at visible places in the households and interpersonal communication with householders supported by information dissemination new handbills (IEC material) which were developed by the NDCU and the HPB on dengue prevention to educate other family members specially school going children were planned (NDCU, 2019). To evaluate the developed plan, planned to conduct a baseline and post-interventional KAP studies, community capacity assessment, and entomological surveys. The management team of the COMBI based intervention consisted of the former disaster management coordinator of the district and specialists in public health. The technical advisory group was consisted of specialist in public health at NDCU, HPB, Epidemiology Unit of Sri-Lanka, specialist in general medicine, provincial public health team, two medical officers who have undergone training on COMBI
planning by WHO. It was developed with the collaboration of Regional Director of Health Services (RDHS) of Kurunegala, district health promotion officers, provincial vector control officer and grass root level officials. The collaborating agencies were Ministry of Health, Sri Lanka, district disaster management centre, agriculture department and district secretariat, Kurunegala. The expert opinion was taken from an international senior communication advisor of COMBI institute. The progress was planned to monitor by the principal investigator with the research team. After conducting the community empowerment program according to their needs, the respondent who agreed to participate in the intervention were planned to follow up weekly for one month by the principal investigator and the research team following the implementation sessions. The follow up is mainly focused on personal selling and supplemented by the counselling after assessing their compliance. The desired behavioural objectives are planned to repeat weekly for four weeks, and post-intervention evaluation is planned to carry out after three months of completion of the intervention program. The monitoring and evaluation plan was developed according to the activity plan. A pilot study was planned to conduct to assess the feasibility issues and outcomes of interest including improvement of knowledge, attitudes, vector control practices, dengue prevention behaviour and community capacity. Entomological surveys were planned to carry out during pre and post interventional period to assess the impact on vector densities. The behavioural impact was planned to assess by observations of management of waste according to 3R concept, outdoor, indoor water containers, water storages and roof gutter at the household level during the implementation of the finalized plan. After piloting the developed intervention package, a cluster randomized trial was planned to conduct to assess the effectiveness of the developed COMBI based complex intervention package.

Discussion

The complex intervention of the present study was formulated according to the revised framework of complex intervention development. The ‘Development of the Intervention, Piloting, and Evaluation of the effectiveness’ were the three stages which represented the main three key elements of the complex intervention development and evaluation process. The planning of the intervention package was
formulated using WHO’s 10 steps of COMBI planning method. The internal validity is decided by the level of bias including selection bias and information bias such as validity of the study instruments. All possible measures were taken to minimize the errors and improve the quality of the intervention and implementation. Before designing the COMBI plan to improve the efficiency of the study through the guidance of a panel of experts using individual consultation and the Delphi technique. The use of the Delphi technique instead of face-to-face consultative meetings had the advantage of not requiring the experts to take time off their schedules to contribute to the study. It allowed the experts to respond at any time convenient to them and to contact any source of information if needed. Further, this process facilitated the independence of forming opinion and perspectives as it prevented the manipulation of opinion by influential individuals, which could happen in a face-to-face consultative meeting (Hsu & Sandford, 2007). In the process of development of the intervention plan, there was a quantitative study to finalize the SBOs. For that, judgement validated tools were used to assess the current situation marketing analysis as a major step in the COMBI planning process. The generalizability of an intervention package depends on the effectiveness and validity of models, theories, methods use for development process. In the present study, after considering the effectiveness of the already conducted studies, planning abilities, implementation, and feasibility issues with the consensus of the expert panel, COMBI planning was identified for the development of the interventional package. Importantly, the COMBI theory was used to plan the process of community empowerment program, because it is a proven effective method for behavior changes for dengue control and widely utilizing planning process in different countries such as Malaysia, Guatemala, Lao People’s Democratic Republic, Nicaragua, Cuba, El Salvador, Honduras, Panama and Philippine, Costa Rica, Colombia, Dominican Republic, Indonesia, and Myanmar (COMBI INSTITUTE, 2018-2019). Moreover, the process of assessing current situation market analysis also performed by mixed methodology with representative samples. Therefore, the generalizability of the intervention to high endemic areas could be done with adaptation to setting. Importantly, the use of the complex intervention is in different fields including in public health practice, social policy such as education, transport and housing that have important health consequences. There are several interacting components in the complex interventions and there is no
sharp boundary between simple and complex interventions (Craig, et. al, 2019). Moreover, the investigators need to be aware of the relevant theory prior to develop an intervention (Albarracin et. al, 2005). Furthermore, the rationale for a complex intervention is to develop a theoretical understanding of the likely process of change, by drawing on existing evidence and theory, supplemented, if necessary, by new primary research, qualitative approach with the stakeholders or the targeted population (Craig, et. al, 2019). In addition, there may be lots of competing or partly overlapping theories (Noar & Zimmerman, 2005). However, the research team need expertise opinion on relevant disciplines to find the most appropriate theory (Craig, et. al, 2019). As the complex interventions have several dimensions of complexity, it may be to do with the range of possible outcomes, or their variability in the target population, rather than with the number of elements in the intervention package itself. It follows that there is no sharp boundary between simple and complex interventions (Craig et. al.; 2019). The interventions have been developed according to different models and planning processes. There is lack of studies with scientifically developed intervention packages for dengue prevention. Out of the methodologically developed interventions, a community based behavioural changed intervention was developed with the objective of adopting behaviours among householders for the reduction of Aedes mosquito breeding habitats to achieve dengue prevention in Colombo Municipal area in 2009. The key steps in planning COMBI strategies were followed in order to develop the intervention. Importantly, quantitative, and qualitative data were utilized to develop that intervention package. The data was reviewed by a panel of expert and the reviewed data was subjected to a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis. The final results were utilized to identify the SBO’s for the study setting. The results revealed that, the COMBI based intervention was able to empower the community for the sustainable dengue control activities. Notably, the author suggested that in cooperation of similar programs for prevention of dengue through behavioural change to the public health system of Sri Lanka seems feasible and cost effective (Wijesundara, 2009). Moreover, a community-based dengue prevention and control process enables key stakeholders in the community to actively prevent and control their dengue problem (Suwanbamrung, 2012). Therefore, the present study was based on COMBI method after conducting situation marketing analysis by quantitative evaluation and FGD
among volunteers in the community, healthcare workers and non-health sector stakeholders. Importantly, the studies in the Dominican Republic (Leontisini et al., 2004), Colombia (Luna et al., 2004), Hulu Langat (Rozhan, 2006) and Thailand (Suwanbamrung, 2012) revealed that the interpersonal communication is an effective way to achieve greater success of a community-based programme. Therefore, the present study aimed to empower the community by developing a sustainable dengue control process at the grass root level with the involvement of multi-stakeholders. Importantly, the dengue problem can be solved by conducting the community-based dengue prevention process with active participation of key stakeholders in the community (WHO, 1999). However, most of the interventional packages were not developed according to a scientific method. Moreover, sustainability of a community-based dengue prevention and control comprise activities depends on the degree of eliminate larval breeding sources, control adult mosquitoes, apply personal protection, introduce dengue symptom detection, and outbreak prevention (WHO, 1999). According to literature survey, there are gaps in behaviour change in inspection of premises, managing vector breeding places, health seeking behaviours, waste management and early notification (Parks & Lloyd, 2004). In Sri Lanka also there is a clear need to address above areas especially waste management and vector control (Wijesundara, 2009). Importantly, the specificity of the intervention messages of the present study was waste management according to 3R concept aiming source reduction from both outdoor and indoor vector breeding places. It was able to empower the community members to identify breeding sites in both indoor and outdoor and removing them were not that difficult or not labour intensive or less costly than managing dengue cases. Such specific messages have been used to achieve successful behavioural outcomes in the interventions in Malaysia, Colombia, Sri Lanka, Philippine and Myanmar (Espino et al., 2012; Luna et al., 2004; Rozhan et al., 2006; Wai et al., 2012; Wijesundara, 2009). Moreover, the importance of vector control for the control and elimination of vector-borne diseases are identified as a current need to achieve more effective and sustainable vector control in many studies (Abeyewickreme et al., 2012; Tissera et al., 2016; Liyanage et al., 2019; Wilson et al., 2020). Importantly, solid waste management is a growing challenge to many countries. Improper waste management serve as the breeding places for many vectors resulting in proliferation of vector-borne diseases (Tohit, Hassan, Rus
If adequate waste management practices become a behaviour, it leads to prevent vector borne diseases such as dengue (Parks & Lloyd, 2004). Moreover, the presence of solid waste around households, such as cans, car parts, bottles, old and used tyres, plastic materials, broken clay, glass vessels and coconut shells, created outdoor breeding sites for Aedes mosquitoes and represented in our ecosystem the most productive container types. Maintaining solid waste for a long time often more than seven days supports the breeding of Aedes aegypti (Alpana & Haja, 2001) and increases the transmission of dengue. If the frequency of collection and disposal of solid waste increases, it should theoretically control Aedes breeding and, thus, reduce dengue transmission. The COMBI approach is successfully demonstrated that correct problem identification synergized with community engagement can potentially reduce Aedes proliferation and dengue morbidity in Malaysia and Sri Lanka (Rozhan et. al., 2006; Wijesundara, 2009). Out of the COMBI based interventions, Malaysia used integrated marketing communication techniques to inoculate this behavioral change to target group. Therefore, the COMBI approach is successful with correct problem identification and community engagement (Rozhan et. al, 2006). Moreover, Wijesundara planned the intervention according to COMBI with two Specific Behavioural Objective (SBO) including 30 minutes’ inspection on Sunday and improve the proper waste management practices and Rozhan and others have identified the SBOs as management of water containers twice weekly and scrub any containers found to contain larvae. Furthermore, a study was carried out in Malaysia using by mixed methodology including in-depth interview and a FGD with quantitative design. The knowledge, attitudes and practices were influenced by the interventional programme during its implementation weeks (Azmawati, Aniza, & Ali, 2013). However, the outcome evaluations at the end of the study revealed that COMBI programme failed to achieve the desired behavioral impact of the programme. The multi-stakeholder collaboration is one of the suggested solutions to overcome the problems of the programme, because there was lack of human resources and funding. Furthermore, they suggested to improve the health sector participation for the awareness of the community to prevent dengue (Azmawati, Aniza, & Ali, 2013). Therefore, for the development of the present intervention package, the multi-stakeholder participation was ensured. Similar to the present study, community empowerment programs were conducted in Cuba (Vanlerberghe et.al, 2009; Castro...
et. al, 2015) and Myanmar (Wai et.al, 2012). Moreover, Behaviour change intervention package was developed to manage household water container in Philippine, 2012. The intervention package was based on the Health Belief model and process approaches model for behaviour change. After three months of the following up period, they could not achieve significant behavioural outcome (Espino et. al., 2012). According to the intervention study in Gampaha, which consisted of building partnerships of local stakeholders, waste management at household level, and the promotion of composting biodegradable household waste, raising awareness on the importance of solid waste management in dengue control and improving garbage collection with the assistance of local government authorities.

As the implementation of the intervention, compost bins with 150 liters, and three bags for separation of solid waste were made available to households free of charge. However, there was no statistically significant reduction of the entomological indices in the post-intervention than pre-intervention during the period of evaluation, they recommended that the coordination of local authorities along with increased household responsibility for targeted vector interventions is vital for effective and sustained dengue control (Abeyewickreme et al. 2012). Therefore, the coordination between different stakeholders were ensured during the development of the present study. Furthermore, the household water container management was targeted with a HBM behavioural change framework by Espino and others. The processes were based on setting up an intervention aimed at mobilizing households to regularly inspect water containers as a strategy to reduce vector breeding sites of Aedes sp. and operating within a devolved vector-borne disease control programme. There was a positive influence from community perceptions of dengue and the benefits of disease control was anticipated during the period of intervention. However, they believed that the HBM by itself is not sufficient and that other factors such as social and political environment are needed to explain community responses to new dengue vector control interventions (Espino et al. 2012). Therefore, the present study was developed using new communication strategy with multi-stakeholder participation. Furthermore, according to the cluster randomized trial to assess the effectiveness of an integrated community based environmental management strategy with routine strategy to control the vector of dengue in Cuba revealed that community-based programs with routine programs could reduce Aedes infestation (Vanlerberghe et al.,
Moreover, a study was conducted to test the effectiveness of a community empowerment strategy intervened with the routine dengue vector control programme in Cuba in 2004, revealed that the importance of the community-based strategies. The intervention included organizational management, entomological risk surveillance, capacity building and community work for vector control. The community empowerment strategy increased community involvement and added effectiveness to routine A. aegypti control (Castro et al. 2012). The efficacy of community-controlled partnership-driven interventions was found to be superior to the vertical approach in terms of sustainability and community empowerment. Moreover, the study in Panadura in Sri Lanka, revealed that the vector control interventions had a significant impact on vector densities (BI) and on dengue incidence. This study revealed that rigorous vector control programs lead to reduce the disease and economic burden of dengue in endemic settings (Liyanage et. al, 2019). When considering the intervention packages in the studies, there was lack of scientific evidence of development process. Therefore, to develop the present intervention package, the evidence from most of the effective intervention packages were utilized. Not only that, but the identified gaps of the failed intervention were also considered to have better outcome of interests. Therefore, the present intervention package can be considered as scientifically developed intervention.

Conclusion and Recommendations

The complex intervention package was formulated using WHO’s 10 steps of COMBI planning method. The finalized SBOs for the present COMBI plan were to improve the proper waste management practices according to 3R method (Reduce, Reuse and Re-cycling) and improve the regular weekly dengue prevention practices by allocating at least one day and practice 30 minutes of cleaning per a week following the post interventional three months. The community empowerment programme plan was planned to implement to achieve the desired SBOs. The major strategic areas of the activity plan were the ‘administrative mobilization and public relationship, public advocacy, community mobilization, personal selling, advertising, point of service promotion during follow up’. The COMBI based planning process would be used to bring about satisfactory control of dengue with the participation of the community in each highly endemic areas to achieve the sustainable dengue
prevention. This type of intervention can be applied to any area in the country after conducting the situation marketing analysis of the relevant area and developing area specific COMBI plan with the support of the preventive sector healthcare institutions in Sri Lanka. Moreover, future research can be conducted using the COMBI planning process in the other endemic areas in preventing dengue outbreaks in the country.

Author contributions

Conceptualization and methodology: NUR, CA, AB, NP, AA, SM; Original draft preparation: NUR; Writing: NUR; Review, editing and supervision: CA, AB, NP, AA, SM.

Footnote

Conflicts of Interest: The authors declare no conflict of interest.

Funding: This research did not receive any specific grant from funding agencies for publication.

Full paper has been submitted to the ‘Journal of Epidemiology and Community Health’. manuscript ID is jech-2022-219223.

Institutional Review Board Statement: Ethical clearance was obtained from the ERC, Faculty of Medicine, University of Colombo, Sri Lanka (EC/18/134).

Acknowledgements

- Regional Director, Deputy Regional Director of Kurunegala District, Consultant Community Physician, NWP, MOH Kurunegala and the team.
- Professor Everold Hosein (Senior Communication Advisor-Consultant, Adjunct Professor, Coordinator of COMBI July Summer Institute, Coordinator of Nagoya University/Japan, COMBI Training, President-The COMBI Institute).
References

