Performance metrics for models designed to predict individualized treatment effect

C.C.H.M. Maas¹, D.M. Kent², M.C. Hughes², R. Dekker³, H.F. Lingsma¹, D. van Klaveren¹,²

¹Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
²Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, USA
³Econometric Institute, Erasmus University Rotterdam, Rotterdam, Netherlands

Correspondence to: C.C.H.M. Maas, Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD Rotterdam, Netherlands, c.h.m.maas@erasmusmc.nl
ABSTRACT

Objective
Measuring the performance of models designed to predict individualized treatment effect is challenging, because the outcomes of two alternative treatments are inherently unobservable in one patient. The C-for-benefit was proposed to measure discriminative ability. We aimed to propose metrics of calibration and overall performance for models predicting treatment effect.

Study Design and Setting
Similar to the previously proposed C-for-benefit, we defined the observed treatment effect as the difference between outcomes in pairs of matched patients. Thus, we redefined the E-statistics, the logistic loss and the Brier score into metrics for measuring a model’s ability to predict treatment effect. In a simulation study, the metric values of deliberately perturbed models were compared to those of the data generating model. To illustrate the performance metrics, different models predicting treatment effect were applied to the data of the Diabetes Prevention Program.

Results
As desired, performance metric values of perturbed models were consistently worse than those of the optimal model (E_{avg}-for-benefit≥0.070 versus 0.001, E_{90}-for-benefit≥0.115 versus 0.002, log-loss-for-benefit≥0.757 versus 0.733, Brier-for-benefit≥0.215 versus 0.212). Calibration, discriminative ability, and overall performance of three different models were similar in the case study.

Conclusion
The proposed metrics are useful to assess the calibration and overall performance of models predicting individualized treatment effect, accessible via (https://github.com/CHMAas/HTEPredictionMetrics).

Word count abstract: 200/200

Word count article: ~2873/3000
Keywords

- Individualized treatment effect, prediction models, logistic regression, causal forest

What is new?

Key findings

- We redefined the E-statistics, the logistic loss and the Brier score into measures of a model’s ability to predict treatment effect.
- As desired, performance metric values of perturbed models were consistently worse in simulated outcome data than those of the data generating model.

Addition to current literature

- For models designed to predict heterogeneous treatment effect, measures of calibration and overall performance were lacking.

Implication

- The proposed metrics – E-for-benefit, log-loss-for-benefit and Brier-for-benefit – are useful to assess the calibration and overall performance of models designed to predict individualized treatment effect.
MANUSCRIPT

1. Introduction

Clinicians and patients generally select the treatment that is expected to be beneficial on average for the patient population. However, the average treatment effect for a population does not accurately reflect the effect of treatment for each patient individually. Various models have been proposed for predicting heterogeneous treatment effects[1]. These models aim to predict the difference between the outcomes of two alternative treatments for each individual patient.

Usually, only one of the outcomes can be observed for a given patient, the counterfactual outcome remains unobserved. This phenomenon – known as the fundamental problem of causal inference – complicates the assessment of a model’s ability to predict individualized treatment effect. The performance of models that predict treatment effect cannot be quantified with conventional metrics evaluating risk predictions[2]. To resolve this issue, observed treatment effect can be defined as the difference between outcomes in pairs of matched patients. Recently, the C-for-benefit has been proposed for quantifying to what extent the models can discriminate between patients with low and high treatment effect[3]. However, measures of calibration – the agreement between predicted and observed treatment effect in groups of patients – and measures of overall performance – the discrepancy between predicted and observed treatment effects across individual patients – are still lacking.

For models predicting outcome risk, several metrics are available to assess calibration and overall performance, such as the E-statistic, logistic loss (i.e., cross-entropy), and Brier score[4-6]. It is easy to construct a simulation scenario, by fitting a model with all possible treatment interactions in a relatively small data sample, such that risk predictions are reasonably well calibrated (Figure 1A), while the
corresponding treatment effect predictions are poorly calibrated (Figure 1A)[7]. Apart from this graphical assessment of calibration in groups of patients with similar predicted treatment effect, no metrics are available that quantify the calibration or the overall performance of treatment effect predictions[8].

Therefore, we aimed to extend these performance metrics for risk prediction models to models that are designed to predict individualized treatment effect. We defined new metrics and illustrated their usefulness with simulated data. Subsequently, we illustrated the use of the metrics for comparing different modeling approaches for predicting the effect of lifestyle intervention for pre-diabetic patients based on data of the Diabetes Prevention Program (DPP).

2. Methods

2.1 Definition of individualized treatment effect

The potential outcomes framework defines the individualized treatment effect as the expected difference between the outcome under control treatment $Y_i(0)$ and the outcome under active treatment $Y_i(1)$, given the patient characteristics X, i.e.

$$\tau_i(x) = E[Y_i(0) - Y_i(1)|X_i = x],$$

where the potential outcomes $Y_i(W_i)$ with Y_i the outcome conditional on treatment $W_i[9]$. Here, the event associated with the outcome was assumed to be unfavorable. Thus, treatment benefit, i.e., a positive treatment effect $\tau_i(x)$, is expected when the outcome probability under control treatment is higher than the outcome probability under active treatment.
2.2 Metrics based on the matching principle

Using the matching principle, we defined observed treatment effect as the difference in outcomes between two similar patients with different treatment assignment[3]. Similarity was based on baseline patient characteristics, that is, we used matching based on the Mahalanobis distance between the patient characteristics to create pairs of similar patients with different treatment assignments[10]. With a binary outcome (say, 0 for alive and 1 for dead), four outcome combinations are possible for a pair of patients. First, treatment benefit was indicated if the treated patient lives and the untreated patient dies. Second, treatment harm was indicated if the treated patient dies and the untreated patient lives. Lastly, no effect of treatment was indicated if both the treated and untreated patient live, or if both die. Thus, the observed treatment effect takes the values 1 (benefit), 0 (no effect), and -1 (harm). Concurrently, predicted treatment effect is the difference between the predicted outcome probability of the untreated patient minus the predicted outcome probability of the treated patient (see Supplement 1 for an example). All of the following metrics use this matching principle, and are added to Figure 1C for illustration. The metrics were implemented in a publicly available R-package[11].

2.2.1 Calibration

Calibration refers to the correspondence between the predicted and observed treatment effect. The calibration-in-the-large or mean calibration was defined as the average observed treatment effect minus the average predicted treatment effect[12]. If the algorithm overestimates treatment effect, the average predicted treatment effect is higher than the observed treatment effect, resulting in a negative calibration-in-the-large value. Conversely, if treatment effect is underestimated, the calibration-in-the-
large will be positive since the average predicted treatment effect is lower than the observed treatment effect.

Calibration can also be assessed by a smoothed calibration curve obtained by a local regression of the observed treatment effects on the predicted treatment effects, with default values for the span and the degree of polynomials (Figure 1C). Similar to the E-statistic and the Integrated Calibration Index (ICI), we propose to measure calibration by the weighted average of the absolute vertical distance between this smoothed calibration curve and the diagonal line of perfect calibration, with weights determined by the empirical density function of the predicted treatment effect[4]. This quantity, which we named the E_{avg}-for-benefit, can also be calculated by the average over all patients of the absolute difference between the predicted treatment effect and the smoothed observed treatment effect according to the calibration curve. Similarly, we defined the E_{50}-for-benefit and the E_{90}-for-benefit as the median and 90th percentile of the absolute differences between the predicted treatment effect and the smoothed observed treatment effects (see Supplement 1 for an example)[4].

2.2.2 Discrimination

Discrimination refers to a model's ability to separate patients with small and large treatment effect. To measure discrimination, we used the C-for-benefit, that is, the probability that from two randomly chosen matched patient pairs with unequal observed treatment effect, the pair with greater observed treatment effect also has a larger predicted treatment effect[3]. The C-for-benefit was calculated by the number of concordant pairs divided by the number of concordant and discordant pairs. Two patient pairs are concordant if the pair with the larger observed treatment effect also
has larger predicted treatment effect. Two patient pairs are discordant if the pair with larger observed benefit has smaller predicted treatment effect. Two patient pairs are uninformative if the pairs have the same observed treatment effect.

2.2.3 Overall performance measures

We propose to measure overall performance using the multinomial versions of the Brier score and logistic loss (i.e., cross-entropy) (Supplement 2), because observed treatment effect can take three classes (benefit, no effect, harm)[5, 6]. We defined log-loss-for-benefit as the logarithmic distance between predicted and observed treatment effect of matched patient pairs and Brier-for-benefit as the average squared distance between predicted and observed treatment effect of matched patient pairs (Supplement 1). The log-loss-for-benefit and Brier-for-benefit measure overall model performance since these metrics are affected by calibration and discrimination simultaneously.

2.3 Data

To analyze the proposed metrics, we used data of the Diabetes Prevention Program (DPP). The participants of DPP were at risk to develop diabetes, which is defined as a body mass index of 24 or higher and impaired glucose metabolism[13]. The participants were randomized between 1996 and 2001 to receive 1) an intensive program of lifestyle modification lessons, 2) 850 mg of metformin twice a day and standard lifestyle recommendations, or 3) placebo twice a day and standard lifestyle recommendations. To predict the effect of the intervention on the outcome, i.e., the risk of developing diabetes, we used the patient characteristics sex, age, ethnicity, body mass index, smoking status, fasting blood sugar, triglycerides, hemoglobin, self-
reported history of hypertension, family history of diabetes, self-reported history of high blood glucose, and gestational diabetes mellitus. We imputed missing values of patient characteristics using Multivariate Imputations by Chained Equations (MICE).

2.4 Simulations

We used simulated outcome data to study if the proposed performance metrics were better for the model used for outcome generation ("optimal model") than for deliberately perturbed models. The “optimal model” was a logistic regression to model the probability of the outcome (developing diabetes) p_i based on the treatment assignment indicator W, a centered prognostic index PI, and their interaction:

$$\log \frac{p_i}{1-p_i} = W_i \cdot \beta_W + (1 - W_i) \cdot PI_i \cdot \beta_{(1-W)PI} + W_i \cdot PI_i \cdot \beta_{WPI}.$$

The prognostic index PI ($= X'\hat{\beta}_X$) was determined by regressing the outcome variable to the patient characteristics[14].

Second, we created a super population by duplicating the matched patient pairs 100 times to obtain high precision. The outcomes of the super population Y_i were simulated from a Bernoulli distribution with the outcome probabilities p_i generated by the “optimal model”.

The first suboptimal model overestimates treatment effect by multiplying the coefficient of the treatment assignment indicator (β_W) with 2 (Figure S1; S2). The second suboptimal model overestimates risk heterogeneity by multiplying the coefficient of the prognostic index for both the untreated ($\beta_{(1-W)PI}$) and treated (β_{WPI}) by 2 (Figure S1; S2). The third suboptimal model overestimates treatment effect heterogeneity by multiplying the coefficient of the prognostic index of the
untreated ($\beta_{(1-W\cdot PI)}$) by 2 and the coefficient of the prognostic index of the treated ($\beta_{W\cdot PI}$) by 0.5 (Figure S1; S2).

Fourth, we computed the performance metrics for the “optimal” and three “perturbed models” in the super population. We also visualized the performance of each of the four models with treatment effect calibration plots.

2.5 Case study

We used three different modeling approaches to predict individualized treatment effect of lifestyle intervention and metformin for patients at risk of diabetes in the DPP data set. The performance of these models was compared using the proposed metrics.

The first approach (“risk model”) uses logistic regression to explain the outcome probability $p_i = P(Y_i = 1|X_i = x, W_i = w)$ based on the treatment indicator W, the centered prognostic index PI as defined before, and their interaction:

$$\log \frac{p_i}{1-p_i} = W \cdot \beta_W + s(PI) \cdot \beta_{PI} + W \cdot s(PI) \cdot \beta_{W\cdot PI},$$

where $s(\cdot)$ represents restricted cubic splines with two degrees of freedom.

The second approach (“effect model”) uses a penalized Ridge logistic regression to explain the outcome probability p_i based on the treatment indicator W, patient characteristics X, and their interaction:

$$\log \frac{p_i}{1-p_i} = W \cdot \beta_W + X \cdot \beta_X + W \cdot X \cdot \beta_{W\cdot X} [14].$$

The third approach is a causal forest, which is similar to a random forest but maximizes heterogeneity in treatment effect rather than variation in the outcome[15]. Causal trees were built honestly by partitioning the data into two subsamples. One
subsample was used to construct the trees, and another subsample to predict the individualized treatment effect[15].

The models were trained on 70 percent of the patient data. The remaining 30 percent of the patient data, the test set, was used to calculate performance metrics with confidence intervals using 100 bootstrap samples of matched patient pairs. We used the R packages MatchIt for matching patients, mice for single imputation, stats for local regression, rms for restricted cubic splines, glmnet for Ridge penalization, and grf for causal forest[16-21].

3. Results

3.1 Patient data

Between 1996 and 2001, the DPP collected data on 3,081 participants of which 1,024 received lifestyle intervention, 1,027 receive metformin, and 1,030 receive placebo treatment (Table S1). The median age of the participants was 52 years (IQR: 42-57 years), 66.6% of the participants was female, and the median BMI value was 33 (IQR: 29-37). The proportion of patients developing diabetes was 4.8%, 7.0%, and 9.5% among participants receiving lifestyle intervention, metformin, and placebo treatment, respectively (Table S1).

3.2 Simulation study

As expected, the individualized treatment effect predictions of the optimal model were almost perfectly calibrated (calibration-in-the-large=-0.001, E_avg-for-benefit=0.001, E_{50}-for-benefit=0.001, E_{90}-for-benefit=0.002, Figure 2A). The optimal model was well able to discriminate (C-for-benefit=0.654, Figure 2A) between patients with small treatment harm (-0.023 in the quantile of patients with smallest predicted treatment
effect) and patients with substantial treatment benefit (0.385 in the quantile of patients with largest predicted treatment effect).

The first perturbed model was designed to overestimate individualized treatment effect of lifestyle intervention, which was clearly expressed graphically by the corresponding calibration curve lying below the 45-degree line, and numerically by suboptimal calibration metrics (calibration-in-the-large=−0.074, E_{avg}-for-benefit=0.074, E_{50}-for-benefit=0.065, E_{90}-for-benefit=0.115, Figure 2B). The C-for-benefit expressed a slightly poorer ability to distinguish between patients with small and large treatment effect than the optimal model (C-for-benefit=0.649 versus 0.654). The log-loss-for-benefit and Brier-for-benefit also expressed poorer overall performance than the optimal model (log-loss-for-benefit=0.757 versus 0.733, Brier-for-benefit=0.215 versus 0.212, Figure 2A; 2B).

The second perturbed model was designed to overestimate risk heterogeneity of patients receiving lifestyle intervention, which was expressed graphically by the corresponding calibration curve lying above the diagonal for low predicted treatment effect (underestimation of low treatment effect) and below the diagonal for high predicted treatment effect (overestimation of high treatment effect), and numerically by suboptimal calibration metrics (calibration-in-the-large=−0.004, E_{avg}-for-benefit=0.070, E_{50}-for-benefit=0.040, E_{90}-for-benefit=0.188, Figure 2C). The C-for-benefit expressed a slightly poorer ability to distinguish between patients with small and large treatment effect than the optimal model (C-for-benefit=0.649 versus 0.654). The log-loss-for-benefit and Brier-for-benefit also expressed poorer overall performance than the optimal model (log-loss-for-benefit=0.785 versus 0.733, Brier-for-benefit=0.224 versus 0.212, Figure 2A; 2C).
The third perturbed model was designed to overestimate treatment effect heterogeneity of patients receiving lifestyle intervention, which was expressed graphically by the corresponding calibration curve lying more extremely above the diagonal for low predicted treatment effect (underestimation of low treatment effect) and more extremely below the diagonal for high predicted treatment effect (overestimation of high treatment effect), and numerically by suboptimal calibration metrics (E_avg-for-benefit=0.123, E_{50}-for-benefit=0.117, E_{90}-for-benefit=0.229, Figure 2D). The C-for-benefit expressed a slightly poorer ability to distinguish between patients with small and large treatment effect than the optimal model (C-for-benefit=0.642 versus 0.654, Figure 2D). The log-loss-for-benefit and Brier-for-benefit also expressed poorer overall performance than the optimal model (log-loss-for-benefit=0.788 versus 0.733, Brier-for-benefit=0.222 versus 0.212, Figure 2A; 2D).

The results from the simulations using the metformin treatment arm rather than the lifestyle treatment arm were similar (Figure S3).

3.3 Case study

The differences in any of the performance measures between the risk model, the effect model, and causal forest were not significantly different from zero in the 30 percent of patients who were in the test dataset (n=617; Table S1). Numerically, most calibration metrics of the effect model were better than that of the risk model (calibration-in-the-large=0.043 versus 0.052; E_{avg}-for-benefit=0.050 versus 0.053; E_{90}-for-benefit=0.123 versus 0.141, Figure 3A; 3B). Consequently, the overall performance of the effect model was numerically better than that of the risk model (log-loss-for-benefit=0.743 versus 0.747, Figure 3A; 3B), despite the numerically
poorer discriminative ability of the effect model (C-for-benefit=0.663 versus 0.664, Figure 3A; 3B).

Central calibration metrics of the causal forest were numerically poorer than those of the risk model (E_{avg}-for-benefit=0.074 versus 0.053; E_{50}-for-benefit=0.068 versus 0.031, Figure 3A; 3C), but the causal forest resulted in less extreme miscalibration than the risk model (E_{90}-for-benefit=0.101 versus 0.140, Figure 3A; 3C). Due to less extreme miscalibration and numerically better discriminative ability (C-for-benefit=0.677 versus 0.664, Figure 3A; 3C), the overall performance of the causal forest was numerically better than that of the risk model (log-loss-for-benefit=0.738 versus 0.747, Figure 3A; 3C).

4. Discussion

We extended the E-statistics, logistic loss, and Brier score to quantify the quality of individualized treatment effect predictions. The simulation study showed that the proposed metrics may be useful for comparing models, because the metrics of the (“true”) data generating model were consistently better than those of deliberately perturbed models. The case study illustrated the use of the proposed metrics in practice and suggested a trade-off between calibration and discrimination: better calibrated models were worse at discriminating between patients with small and large treatment effects.

Similar to the previously proposed C-for-benefit, we defined observed treatment effects by the difference between outcomes in pairs of matched patients[3]. We chose to match patients based on the Mahalanobis distance between patient characteristics resulting in the same observed treatment effects for each prediction model. Alternatively, matching patients based on predicted individualized treatment
effect would result in different patient pairs and consequently different observed treatment effects for each prediction model[3].

The case study is merely an illustration of the use of the performance metrics. It is not a framework for model selection or internal validation. The use of internal validation techniques other than split sampling is recommended for quantification of the performance of a model in similar settings, but that was outside the scope of this study[22]. The proposed metrics in the training set will not be insightful when using models with penalization and honest tree building, because they will indicate by definition miscalibration in the training set (Figure S4; S5). Furthermore, the choice of the percentage of observations used for the training and test set was arbitrary.

The strength of our study is that the proposed metrics provide a solution to the currently lacking performance metrics for models predicting individualized treatment effect. Since good calibration and discrimination are both important when predicting individualized treatment effect, the log-loss-for-benefit and Brier-for-benefit may be useful to assess overall performance. Furthermore, updating strategies can be considered if our proposed calibration metrics indicate miscalibration of treatment effect predictions, which should be investigated in future research.

A limitation of this study is the limited sample size of the case study. In the simulation study, we showed that the performance metrics were able to distinguish between models for an artificially enlarged data set. In the case study however, the confidence intervals of the performance metrics were overlapping. This phenomenon is inherent to individualized treatment effect estimation. To obtain reasonable power, heterogeneous treatment effect analyses require a much larger sample size compared to when estimating an overall average treatment effect[23]. Notwithstanding this limitation, we conclude that the proposed metrics are useful to
assess the calibration and overall performance of models predicting individualized treatment effect.
References

Figure 1. Illustration of risk and benefit calibration figures with performance metrics of simulated data. We sampled (n=3,600) from a simulated trial super population (1,000,000) with 12 binary risk predictors with 6 true treatment interactions[7]. Panel A depicts observed outcome versus predicted outcome by local regression (blue line, displayed between 0 and 0.5) and quantiles of predicted outcome (black dots), with the E-statistics, and C-index. Panel B depicts the calibration for benefit in groups with confidence intervals, with the C-for-benefit. Panel C depicts observed versus predicted treatment effect by local regression (blue lane, displayed between -0.2 and 0.3) and quantiles of predicted treatment effect (black dots), with the newly proposed metrics.
Figure 2. Calibration plot of the treatment effect of simulated data from patients receiving lifestyle intervention. This Figure depicts observed versus predicted treatment effect by smoothed calibration curves (blue line) and quantiles of predicted treatment effect (black dots) of simulated data from the lifestyle intervention versus placebo treatment. Observed treatment effect was obtained by matching patients based on patient characteristics. Smoothed calibration curves were obtained by local regression of the observed treatment effect of matched patient pairs on predicted treatment effect of matched patient pairs. For prediction of treatment effect, we used a risk-based optimal model (panel A) and three perturbed models that overestimate treatment effect, risk heterogeneity, and treatment effect heterogeneity (panel B, C, D, respectively). The average treatment effect is 12.9, 20.4, 12.9 (after a correction of -0.14), and 12.9 (after a correction of 0.53), respectively.
Figure 3. Calibration plot of the treatment effect of simulated data from patients receiving lifestyle intervention. This Figure depicts observed versus predicted treatment effect by smoothed calibration curves (blue line) and quantiles of predicted treatment effect (black dots) of lifestyle intervention versus placebo treatment. Observed treatment effect was obtained by matching patients based on patient characteristics. Smoothed calibration curves were obtained by local regression of the observed treatment effect of matched patient pairs on predicted treatment effect of matched patient pairs. For prediction of treatment effect, we used: a risk modeling approach (A), a treatment effect modeling approach (B), and a causal forest (C). Confidence intervals around metric values were obtained using 100 bootstrap samples.