Impact of non-pharmaceutical interventions targeted at the COVID-19 pandemic on influenza cases in the UK Armed Forces

George Otienoab, Ngwa Niba Rawlingsac*

aDefence Medical Academy, Defence Medical Services (DMS) Whittington, UK
bLeeds Beckett University, Leeds LS1 3HE, UK
cThe Collaboration for Research Excellence in Africa (CORE Africa), Douala Cameroon

Corresponding author's email: n.rawlings@coreafrica.org

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives: The stringent adherence to non-pharmaceutical interventions (NPIs) such as lockdowns, social distancing and use of face covering was seen during the COVID-19 pandemic in different settings worldwide including the United Kingdom Armed Forces (UKAF). This study assessed the impact of non-pharmaceutical interventions targeted at the COVID-19 pandemic on influenza reported cases in the UKAF.

Methods: A longitudinal study design was used, and secondary data obtained from the UKAF Defence Medical Information Capability Programme was analysed retrospectively. Data on influenza cases pre COVID-19 and during the COVID-19 pandemic were compared. The data was entered into IBM SPSS version 27 and analysis included both descriptive and inferential statistics with a statistically significant p-value of <0.05.

Results: The influenza seasons pre COVID-19 pandemic (2017-18, 2018-19 and 2019-20 – N = 8 for each season) were associated with larger number of flu cases, M = 526.00 (SD = 343.860), M = 393.25 (SD = 248.529) and M = 563.50 (SD = 309.591) respectively. By comparison, the influenza season during the COVID-19 pandemic (2020-21 – N = 8) was associated with a numerically smaller number of influenza cases, M = 95.38 (SD = 70.561). An independent samples t-test was performed to test the hypothesis that influenza cases pre COVID-19 and during the COVID-19 pandemic were associated with statistically significant different means. Levene’s F test showed heterogeneity of variance when the influenza cases were compared. The independent sample t-test was associated with a statistically significant effect with a large effect size as shown by the Cohen’s d estimates.

Conclusions: The results indicate that the total number of Influenza cases reported within UKAF after the onset of the COVID-19 pandemic was significantly lower than the number of cases reported in influenza seasons pre COVID-19 pandemic. Further research will be useful in exploring how individual NPI impacts influenza activity in the UKAF to support the recommendation of effective NPI combinations.

Keywords: Influenza, COVID-19, non-pharmaceutical interventions, UK Armed Forces.
1. Introduction

Influenza is an acute respiratory infection caused by the influenza virus, with severe implications among high-risk groups such as children, the elderly, pregnant women, health workers and those with serious medical conditions [1,2]. Like COVID-19 [3,4], influenza is predominantly transmitted from person to person through respiratory droplets when people talk, sneeze or cough [2,5,6]; however, the risk of transmission is increased in places where people stay near each other for prolonged periods such as schools, hospitals, and military barracks. It is estimated that there are over 1 billion cases of influenza annually, with an estimated 3 - 5 million severe cases and 290 - 650 thousand influenza-related respiratory deaths [7]. According to the Office of National Statistics, the number of deaths from influenza in England and Wales was 510 in 2020, compared to 1,213 and 1,596 in 2019 and 2018 respectively [8].

In the military, influenza virus is one of the few infections able to stop military operations due to its ability to cause a large population of healthy soldiers to suddenly become ill. During the 1918-19 influenza pandemic, approximately 50,000 British soldiers were hospitalized in a single week, with an estimated 10,000 deaths [9]. In the course of the COVID-19 pandemic, influenza activity has remained low as confirmed by multiple national surveillance systems in various countries [10–18].

COVID-19 and influenza (flu) are both respiratory diseases with similar transmission pathways [19]. Public health interventions including non-pharmaceutical interventions (NPIs) targeted at the COVID-19 pandemic have been reported to have impacted influenza activity [10,11,13,20,21]. These NPIs include individual measures (such as hand hygiene, respiratory hygiene and use of face masks); population-related measures (such as promoting physical distancing and restricting movement/gathering of people); and environmental measures (such as cleaning and ventilation of indoor spaces) [22].

In the United Kingdom (UK), NPIs used to control COVID-19 include public health messaging, social and physical distancing measures, national lockdowns (with most people working from home), the wearing of face coverings, hand hygiene and travel restrictions [10]. These measures were adopted by the UK Armed Forces (UKAF) in military facilities, including other NPIs such as capacity restrictions in offices and communal areas, use of screens to separate workstations in offices, isolation of cases and contacts, use of posters to educate and remind soldiers about COVID-19 prevention measures, conducting military training in smaller cohorts/teams and regular cleaning/disinfecting surfaces and high touch points such as door handles and communal items. Although these measures aim to control COVID-19 transmission in the UKAF, they could potentially have similar effects on influenza...
activity. This study aims to assess the impact of NPI targeted at the COVID-19 pandemic on influenza reported cases in the UKAF.

2. Materials and Methods

2.1 Study population and design

The study population was UKAF (Army, Air Force and Navy) personnel either currently serving or previously served and tested positive for influenza during the study period. A longitudinal study design was used and involved the retrospective analysis of secondary data obtained from the UKAF Defence Medical Information Capability Programme (DMICP).

2.2 Data collection

Data on influenza cases used for this study covered the entire flu season (September to April) from 2017 to 2021. It included influenza data pre COVID-19 pandemic (September 2017 – April 2018, September 2018 – April 2019; September 2019 - April 2020) and during the COVID-19 pandemic (September 2020 – April 2021). Sensitive information such as name, gender, age, and location were not included in the data provided.

2.3 Data management.

The data was checked for validity and entered into Microsoft Excel to facilitate storage and analysis. The data was uploaded onto IBM SPSS version 27 and analysed.

2.4 Data analysis

Data analysis aimed to test the hypothesis that the NPIs used during the COVID-19 pandemic had an impact on seasonal influenza cases within the UKAF. Data analysis involved both descriptive and inferential statistical computations. Descriptive statistics included but were not limited to means (M), standard deviations (SD), skewness and kurtosis. Inferential statistics included t-tests, Levene’s test and Cohen’s d estimates. A p-value of < 0.05 was considered statistically. Tables and charts were used to present results after analysis. significant.

2.5 Ethical considerations

This study was guided by the Helsinki Declaration as revised in 2013. Ethical approval was obtained from Leeds Beckett University in line with its ethics policy and procedures. Further consent was obtained from the UKAF where secondary data was sourced for the study.

3. Results

A chart was produced from the collated data to show the trend of influenza cases in the UKAF over the study period.

Figure 1: Seasonal trends in influenza cases pre COVID-19 and during the COVID-19 pandemic.
The influenza seasons pre COVID-19 pandemic (2017-18, 2018-19 and 2019-20 – N = 8 for each season) were associated with larger number of flu cases, $M = 526.00$ ($SD = 343.860$), $M = 393.25$ ($SD = 248.529$) and $M = 563.50$ ($SD = 309.591$) respectively. By comparison, the influenza season during the COVID-19 pandemic (2020-21 – N = 8) was associated with a numerically smaller number of influenza cases, $M = 95.38$ ($SD = 70.561$). An independent samples t-test was performed to test the hypothesis that influenza cases pre COVID-19 and during the COVID-19 pandemic were associated with statistically significant different means. As can be seen in Table 1 and Figure 2, the distributions for influenza cases pre COVID-19 and during the COVID-19 pandemic were sufficiently normal for the purpose of conducting a t-test (skew < 2.0 and kurtosis < 9.0; [23]). Additionally, the Levene’s F test showed heterogeneity of variance when the influenza cases were compared. The independent sample t-test was associated with a statistically significant effect as seen in Table 2. The influenza cases during the COVID-19 pandemic were associated with a significantly lower mean than the influenza cases pre COVID-19 pandemic. The Cohen’s d estimates as seen in Table 3 showed a large effect based on Cohen’s (1992) guidelines [24].

Table 1: Descriptive statistics associated with influenza cases before and during the COVID-19 pandemic in the UKAF

<table>
<thead>
<tr>
<th></th>
<th>Influenza cases pre COVID-19 pandemic</th>
<th>Influenza cases during the COVID-19 pandemic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2017-18 season</td>
<td>2018-19 season</td>
</tr>
<tr>
<td>N (months)</td>
<td>Valid</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>526.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td></td>
<td>343.860</td>
</tr>
<tr>
<td>Skewness</td>
<td></td>
<td>0.64117679</td>
</tr>
<tr>
<td>Kurtosis</td>
<td></td>
<td>-0.7158572</td>
</tr>
</tbody>
</table>

Figure 2: Distribution of influenza cases showing the median, minimum and maximum values
Table 2: Inferential statistics when influenza cases: compared pre and during the COVID-19 pandemic.

Influenza cases compared pre COVID-19 and during the COVID-19 pandemic	Levene's test for Equality of Variances	t-test for Equality of Means							
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Lower	Upper
Equal variances assumed									
Equal variances not assumed	3.470	7.588	.009	430.62500	124.10608	141.71170	719.53830		
Equal variances assumed									
Equal variances not assumed	3.261	8.121	.011	297.87500	91.34114	87.78793	507.96207		
2019-21 vs 2020-21	8.971	.010	4.170	14	.001	468.12500	112.26371	227.34329	708.90671
Equal variances assumed									
Equal variances not assumed	4.170	7.725	.003	468.12500	112.26371	207.63324	728.61676		
Table 3: Independent samples effect sizes using the Cohen’s d estimates

<table>
<thead>
<tr>
<th>Influenza cases compared pre COVID-19 and during the COVID-19 pandemic using Cohen’s d</th>
<th>Standardizer(^a)</th>
<th>Point Estimate</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-18 vs 2020-21</td>
<td>248.21216</td>
<td>1.735</td>
<td>.545</td>
</tr>
<tr>
<td>2018-19 vs 2020-21</td>
<td>182.68227</td>
<td>1.631</td>
<td>.461</td>
</tr>
<tr>
<td>2019-20 vs 2020-21</td>
<td>224.52742</td>
<td>2.085</td>
<td>.819</td>
</tr>
</tbody>
</table>

\(^a\) The denominator used in estimating the effect sizes for Cohen’s d is the pooled standard deviation.

4. Discussion

This study assessed the impact of NPIs targeted at the COVID-19 pandemic on influenza reported cases in the UKAF. The seasonal trend in influenza cases in the UKAF as seen in Figure 1 is very similar to the national influenza trend published by Public Health England (PHE) [10]. This demonstrates that NPIs targeted at the COVID-19 pandemic has the same effect on influenza activity both in the UKAF and the entire UK population. Both trends show a steady decrease in the number of influenza cases from January to April in all influenza seasons pre COVID-19 pandemic. However, in 2020 after the onset of COVID-19, there was a rise in the number of influenza cases (675 to 781) from February to March which is uncommon as seen in previous seasons pre COVID-19. This rise was likely to reflect the period before the 16 March 2020 when the government announced the implementation of the first national lockdown in the UK [25].

The seasonal trend in influenza cases in the UKAF also shows a steady drop in the number of influenza cases from March to April pre COVID-19 pandemic (2017-18 and 208-19). However, after the onset of COVID-19, there was a sharp decline in the number of influenza cases (from 781 to 29 cases) from the month of March to April 2020. This sudden reduction in the number of cases is likely to reflect the first national lockdown implemented by the UK government in March 2020 [26]. These findings were consistent with those of Huang and colleagues who postulated that the use of stringent NPIs (lockdowns and border controls) in New Zealand marked changed human behaviour, resulting in substantial reductions in contact between influenza-infected individuals and influenza-susceptible individuals [11]. A study conducted in the United States also had similar findings as influenza virus circulation declined sharply within 2 weeks of the COVID-19 emergency declaration and widespread implementation of community mitigation measures [27].
According to our findings, influenza cases reported in the UKAF during the COVID-19 pandemic (2020-21) were significantly lower than cases reported pre COVID-19 pandemic (2017-18, 2018-19 and 2019-20). These finding were consistent with those of a report on the UK’s national surveillance through the Acute Respiratory Infection Watch, showing a total of 40 hospitalised confirmed influenza cases across England from 2020 to 2021, compared to a total of 4,918 cases from 2019 to 2020, 5,667 cases from 2018 to 2019, and 10,107 cases from 2017 to 2018 [10]. Our findings were also consistent with those of similar studies and reports from national surveillance systems in the United States [18], New Zealand [11], Australia [17], Korea [15,16], Taiwan [14] and China [12,13,21], showing a significant reduction in influenza activity (transmission, number of cases and burden of disease). A review conducted by Fricke et al showed similar findings and went on to recommend that NPIs be more strongly emphasized in influenza prevention strategies [20]. Despite this similar findings from different studies, the WHO’s recommended pandemic influenza interventions do not lay emphasis on the use of NPIs because it considers them to be ineffective and impractical [28]. Results from this study and other compelling evidence from similar studies in different settings demonstrate that NPIs (with stringent implementation) can have a significant positive impact on influenza activity.

Although this study adds to existing evidence confirming that NPIs implemented in different settings aimed at the COVID-19 pandemic has a parallel effect on influenza activity, it is novel in that it looked at a military population and is probably the first of its kind in such a setting. Nevertheless, our study had some limitations; firstly, the study did not demonstrate causality, although the consistency of our findings with multiple studies from different settings is compelling. This study would have been stronger if it critically analysed the impact of each NPI on Influenza reported cases. This information would be useful in determining which combination of NPIs is suitable for application within UKAF. Further studies could look at the impact of individual NPIs and assess suitable NPI combinations with the most effect in reducing influenza activity.

5. Conclusions

This study assessed the impact of NPI targeted at the COVID-19 pandemic on Influenza cases within UKAF. The results indicate that the total number of Influenza cases reported within UKAF after the onset of the COVID-19 pandemic was significantly lower than the number of cases reported in influenza seasons pre COVID-19 pandemic. Further research will be useful in exploring how individual NPIs impact influenza activity in the UKAF to support the recommendation of effective NPI combinations.
Acknowledgements

We would like to acknowledge UKAF, the Defence College of Health Education/Training and Leeds Beckett University for facilitating this study.

Financial Disclosure statement

The author(s) received no specific funding for this work.

References

2. Influenza (Seasonal) [Internet]. [cited 2022 Jun 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)

17. Yeoh DK, Foley DA, Minney-Smith CA, Martin AC, Mace AO, Sikazwe CT, Le H, Levy A, Blyth CC, Moore HC. Impact of Coronavirus Disease 2019 Public Health Measures on Detections of

Nonpharmaceutical Interventions for Pandemic Influenza, National and Community Measures - Volume 12, Number 1—January 2006 - Emerging Infectious Diseases journal - CDC. [cited 2022 Jun 9]; Available from: https://wwwnc.cdc.gov/eid/article/12/1/05-1371_article
Fig 1