A generalized ODE susceptible-infectious-susceptible compartmental model with potentially periodic behavior

Scott Greenhalgh¹*, Anna Dumas²,

1. Department of Mathematics, Siena College, 515 Loudon Road, Loudonville, NY, 12211
ORCID: 0000-0003-2484-4147
2. Department of Mathematics, Siena College, 515 Loudon Road, Loudonville, NY, 12211

* Corresponding author email: sgreenhalgh@siena.edu

Abstract. Differential equation compartmental models are invaluable tools used to forecast and analyze disease trajectories. Of these models, the subclass dealing only with susceptible and infectious individuals provides a rare and extremely useful example where solutions have a closed-form expression, as represented by the logistic equation. However, the logistic equation is limited in its capacity to describe disease trajectories, as its solutions must monotonically converge to either the disease-free equilibrium or endemic equilibrium, depending on parameters. Unfortunately, many diseases undergo periodic cycles and therefore do not converge to any equilibria. To address this limitation, we developed a generalized susceptible-infectious-susceptible compartmental model capable of describing both periodic and non-periodic disease trajectories built directly from an infectious period distribution. To demonstrate our approach, we apply the model to predict gonorrhea incidence in the US, and illustrate how model parameters affect the behavior of the system. The significance of our work is that we provide a novel susceptible-infected-susceptible model whose solution has a closed-form expression, which could be periodic or non-periodic, depending on model parameterization. Because of this, the work provides disease modelers with a simple means to investigate the potential periodic behavior of many diseases, and thereby aids in ongoing initiatives to curtail recurrent outbreaks.

Keywords: infectious period, duration of infection, gonorrhea, integral equations, differential equations.

MSC 92D30

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Statements and Declarations

Competing Interests: The authors have no relevant financial or non-financial interests to disclose.

Acknowledgments

The authors wish to thank Drs. Troy Day, Emelie Kenney for constructive feedback that greatly improved the work. SG was partially supported by the National Science Foundation Grant DMS-2052592.

Funding

SG was partially supported by the National Science Foundation Grant DMS-2052592

Author contributions

All authors contributed to the study design. Data collection was performed by Anna Dumas. Model analyses were performed by Scott Greenhalgh and Anna Dumas. The first draft of the manuscript was written by Scott Greenhalgh and Anna Dumas, with revision and editing conducted by Scott Greenhalgh. All authors read and approved the final manuscript.
1. Introduction

A rare few ODE compartmental models have solutions that are closed-form expressions. Most view this list as the class of susceptible-infectious (SI) and susceptible-infectious-susceptible (SIS) models, which amount to some form of the logistic growth equation (Nåsell 2011; Martcheva 2015). Less well-known are the infectious-recovered (IR) models (Lloyd 2017), which are akin to exponential growth, and thereby also deserve inclusion. Historically, these simple models have proven to be of great utility in the study of disease dynamics. For instance, SIS models are commonly used as a first means to predict the total number of people that an epidemic will infect, through the use of the associated final size equation (Brauer 2006; Martcheva 2015). They are also used in the framework to estimate the doubling-time of an epidemic (Smirnova et al. 2022) and can be applied to determine the vaccination level required to cause disease burnout (van den Driessche 2017). While IR models may have fewer applications, they are infamously quoted in media and literature (Fansher et al. 2022), as “exponential growth” is synonymous with most pandemics. Consequently, lay audiences and novice disease modelers are far more likely to be familiar with the behavior of IR models, at least in comparison to other model types.

Inarguably, SI, SIS, and IR differential equation models and their applications have inspired many current and future disease modelers. These models have limitations though. For instance, their ability to predict the trajectory of diseases is limited, as all trajectories monotonically converge to an equilibrium. Thus, these models cannot predict any form of recurrent epidemics, such as seasonal influenza, measles, and many sexually transmitted infections, among others. While current extensions of these models can address this issue, they do so at the cost of losing the closed-form expressions that make these elementary models convenient.

Here, we propose a new take on the SIS model. We derive our model starting from the general formulation of SIS models as a system of integral equations (Brauer 2010; Greenhalgh and Rozins 2021) under a general assumption placed on the duration of infection distribution. For particular cases of this class of distributions, we show that our generalized susceptible-infected-susceptible model (gSIS) reduces to the traditional SIS model (Kermack and Mckendrick 1991a, b, c) with constant coefficients, the SI model (when the demographic turnover rate is set to zero), and the IR model, respectively. In addition to these subclasses, we also show that our SIS model is nonautonomous directly because of the assumptions imposed on the duration of infection, and can analogously be viewed as a logistic growth equation with time-varying parameters. While many other works may have tackled similar logistic growth equations (Benardete et al. 2008; Lopez et al. 2010; Hale and Kocak 2012; Mir and Dubeau 2016), we illustrate how to connect the time-varying rates directly to the duration of infection, transmission rate, and demographic turnover rate. To achieve this, we propose that the duration of infection distribution belongs to a particular family of generalized exponential distribution (Bakouch et al. 2018), rather than the classical exponential distribution that is commonly inappropriate for describing the duration of infection (Lloyd 2001b, a; Nguyen and Rohani 2008; Conlan et al. 2010; Krylova and Earn 2013).

As proof of concept, we apply our gSIS model to predict gonorrhea incidence in the US. Gonorrhea is a nationally reportable sexually transmitted disease (2022a, b), which is typically caused by the spread of bacteria during sexual contact (Buder et al. 2019), although mother-to-child transmission is possible.
While medical treatment is available, gonorrhea infection confers little to no immunity (Russell et al. 2020), with re-infection common after subsequent exposures (Fung et al. 2007). However, despite this dynamic of infection, return to susceptibility, and re-infection, trends in gonorrhea infection can appear oscillatory (Tan et al. 2013), rather than convergent to a disease-free or endemic equilibrium, which casts doubt on the applicability of traditional SIS models for predicting disease trends. So, we apply our gSIS model to capture the oscillatory trajectory of gonorrhea in the US, all the while maintaining the convenient properties expected of traditional SIS models.

2. Methods

In what follows, we illustrate a gSIS model, as formulated by a system of ODEs. We derive the model starting from a system of Volterra integral equations, imposing the assumption that the infectious period belongs to a class of generalized exponential distributions. We then proceed to reduce the model to a logistic growth equation with time-varying parameters, illustrate the closed-form solutions for all special parameter values (Table 1), and completely characterize the stability properties of the system, including the potential occurrence of periodic cycles.

2.1 Generalized differential equation compartmental models. Classically, one of the most general forms of compartmental models is those formulated as a system of Volterra integral equations (Kermack and McKendrick 1937; Kermack and Mckendrick 1991a, b, c; Brauer 2008, 2010). For this classical compartmental model, the proportion of susceptible individuals is denoted as s, and the proportion of infected individuals is denoted as i, where the transition between compartments is given by

$$s = 1 - i \int_0^t \beta_i(x)s(x)P(t, x)e^{-bt} \, dx,$$

$$i = i_0 P(t, 0) e^{-bt} + \int_0^t \beta_i(x)s(x)P(t, x)e^{-bt} \, dx.$$

where β is the transmission rate, and b is the demographic turnover rate. Together, $P(t, x)e^{-b(t-x)}$ is the kernel of the integral equation, where $P(t, x)$ is a conditional survival function for the duration of infection for the proportion that remains infectious at time t given infection occurred at time x, and $e^{-b(t-x)}$ is a conditional survival function for natural mortality.

From 2.1, one can obtain the traditional differential equation SI model by imposing $P(t, x) = e^{-y(t-x)}$, differentiating 2.1 with respect to t, and then substituting the remaining integral terms with the appropriate multiple of equations from 2.1 respectively.

To obtain the analogous generalized differential equation compartmental model (GDEC), we consider the same integral equation model structure but incorporate the average duration of infection at time t, namely the mean residual waiting-time $m(t)$. Note, that this changes how a disease is quantified in a population. It considers the number of person-days of infection (or proportion of person-day of
infection), rather than the standard quantity of incidence (or proportion of infected). The transition between these compartments is given by

\[
s(t)m(t) = m(t) - \int_0^t \beta i(x)s(x)m(x)p(t-x)e^{-b(t-x)} \, dx,
\]

\[i(t)m(t) = i_0 m(0) p(t, 0) e^{-bt} + \int_0^t \beta i(x)s(x)m(x)p(t-x) e^{-b(t-x)} \, dx.
\]

The distinction of 2.2 in comparison to 2.1 is that it describes both the infected proportion and a time-varying average duration of infection through the product \(i(t)m(t)\), yet akin to 2.1, only the currently infected proportion contribute to infection, by means of the term \(\beta i(x)\) within the integral, (see (Greenhalgh and Rozins 2021) for further details). Imposing the assumption that

\[P(t, x) = \exp(-\int_x^t \eta(z) \, dz),\]

follows that 2.2 reduces to the gSIS model (Greenhalgh and Rozins 2021):

\[s'm + m's = bm + m' - \betaism - bsm + \eta im,\]

\[i'm + m'i = \betaism - bim - \eta im,\]

or given the conservation of population, \(s + i = 1\), after a slight rearrangement, simply

\[i' = \hat{r}(t)i(1 - \frac{i}{k(t)}),\]

where \(\hat{r}(t) = \beta - b - \eta - \frac{m'}{m}\), and \(k(t) = \frac{1}{\beta} \hat{r}(t)\).

2.2 The periodic hazard rate and mean residual waiting-time. The hazard rate and mean residual waiting-time functions are constructs often used in survival and reliability analysis to describe the frequency of events and the time remaining in a given state, respectively, after an elapsed period of time (Finkelstein 2008). The hazard rate function also characterizes (Gupta and Bradley 2003; Finkelstein 2008) the mean residual waiting-time through

\[\eta = \frac{m+1}{m},\]

and is often either non-increasing or non-decreasing (Finkelstein and Esaulova 2001). Recent work, however, illustrates the utility of more flexible functional forms. Specifically, hazard rates with a bathtub (Finkelstein and Esaulova 2001), upside-down bathtub (Sharma et al. 2014), or roller-coaster (Wong and Lindstrom) shape have been applied broadly in various contexts (Gupta and Gupta 2007). Here, we consider hazard rates that are potentially periodic, depending on model parameterization (Bakouch et al. 2018).
To obtain such a rate, we start from the cumulative distribution function (CDF) (Gupta and Langford 1984; Bakouch et al. 2018):

\[
F(t) = 1 - \frac{1}{w^2 + (1-\alpha)\rho^2} (w^2 + \rho^2 - \alpha \rho^2 \cos(\omega t) + \alpha w \rho \sin(\omega t)) e^{-\rho t} = 1 - e^{-\int \eta(z) \, dz},
\]

where \(\alpha \in (-1, 1), w \geq 0, \rho > 0, \) and \(t \geq 0. \) From the CDF, the corresponding survival function and probability density function are

\[
\bar{F}(t) = 1 - F(t),
\]

and

\[
f(t) = \frac{\rho (w^2 + \rho^2)}{w^2 + (1-\alpha)\rho^2} \left(1 - \alpha \cos(\omega t) \right) e^{-\rho t},
\]

respectively.

It follows that the hazard rate is

\[
\eta(t) = \frac{f(t)}{\bar{F}(t)} = \frac{m' + 1}{m} = \frac{\rho (w^2 + \rho^2) (1 - \alpha \cos(\omega t))}{w^2 + \rho^2 - \alpha \rho^2 \cos(\omega t) + \alpha w \rho \sin(\omega t)},
\]

where \(m \) is the mean residual waiting-time given by

\[
m(t) = \frac{(w^2 + \rho^2) \cos(\omega t) + 2 \alpha \rho \sin(\omega t)}{\rho (w^2 + \rho^2) (w^2 + \rho^2 - \alpha \rho^2 \cos(\omega t) + \alpha w \rho \sin(\omega t))}.
\]

Necessarily, the initial condition on \(m(t) \) (Gupta and Bradley 2003) is

\[
m(0) = m = \frac{(w^2 + \rho^2) \cos(\omega t) + 2 \alpha \rho \sin(\omega t)}{\rho (w^2 + \rho^2) (w^2 + \rho^2 - \alpha \rho^2 \cos(\omega t) + \alpha w \rho \sin(\omega t))},
\]

where \(\mu \) is the average infectious period.

Given the definition of \(m(t) \), we directly obtain the survival function by (Gupta and Langford 1984; Finkelstein and Vaupel 2009):

\[
\bar{F}(t) = \frac{m(0)}{m(t)} \exp\left(- \int_0^t \frac{1}{m(z)} \, dz \right).
\]

In addition, the average recovery rate at time \(t \) is

\[
\frac{1}{t} \int_0^t \frac{1}{m(z)} \, dz = - \frac{1}{t} \ln \left(\frac{\alpha \rho^2 \cos(\omega t) - 2 \alpha \rho \sin(\omega t) - (\rho^2 + \omega^2)^2}{\alpha \rho \left(\rho^2 - \omega^2 \right) - (\rho^2 + \omega^2)^2} \right) + \rho.
\]

2.3 Model solutions and properties. Under the assumption that \(m(t) \) is time-dependent, the system 2.3 corresponds to a Bernoulli equation (Buckley 1953) of the form
\[
\frac{di}{dt} + P(t)i = Q(t)i^n,
\]

where \(n = 2\), \(P(t) = -\beta + b + \eta + \frac{m^*}{m} = -\beta + b + \frac{2m^* + 1}{m}\), \(Q(t) = -\beta\). Thus, the nonlinear ODE can be transformed through \(i(t) = 1/y(t)\) into the first-order linear non-constant coefficient ODE,

\[
\frac{dy}{dt} - P(t)y = -Q(t).
\]

It follows that the integrating factor of the linear ODE is

\[
\hat{\mu}(t) = \exp\left(\int_{0}^{t} \beta - b - \frac{2m^* + 1}{m} \, dz\right) = \frac{m(0)}{m(t)} e^{-\int_{0}^{t} (\beta - b) \, dz} = \frac{m(0)}{m(t)} F(t) e^{(\beta - b)t}.
\]

Solving yields

\[
y(t) = \frac{1}{\mu(t)} y_0 + \frac{\beta}{\mu(t)} \int_{0}^{t} \hat{\mu}(x) \, dx,
\]

or upon reversing the transformation,

\[
i(t) = \frac{\mu(t) i_0}{1 + \beta \int_{0}^{t} \hat{\mu}(x) \, dx}.
\]

Table 1 Summary of model stability conditions and properties.

<table>
<thead>
<tr>
<th>Growth rate condition</th>
<th>Hazard rate condition</th>
<th>Closed-form expression</th>
<th>Asymptotically stable DFE</th>
<th>Asymptotically stable periodic solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta = 0)</td>
<td>(\alpha = 0) or (w = 0)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\beta = 0)</td>
<td>(\alpha \neq 0) and (w \neq 0)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\beta - b - \rho < 0)</td>
<td>(\alpha = 0) or (w = 0)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\beta - b - \rho > 0)</td>
<td>(\alpha = 0) or (w = 0)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(\beta - b - \rho = 0)</td>
<td>(\alpha = 0) or (w = 0)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\beta - b - \rho = 0)</td>
<td>(\alpha \neq 0) and (w \neq 0)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\beta - b - \rho < 0)</td>
<td>(\alpha \neq 0) and (w \neq 0)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(\beta - b - \rho > 0)</td>
<td>(\alpha \neq 0) and (w \neq 0)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
We now proceed to illustrate that 2.11 includes SIS, and IR classes of compartmental models, and completely classify its stability behavior. Note, for ease of presentation, we exclude SI models, as their features can be obtained from the class of SIS models when $b = 0$.

2.3.1 The case when $\beta = 0$, and $w = 0$ or $\alpha = 0$. In this case, equation 2.3 reduces to an IR model, as described by an exponential decay. The solution in general is given by

$$i(t) = i_0 \exp(- (b + \rho) t),$$

which decays at the rate $b + \rho$, to the disease-free equilibrium (DFE), $i(t) = i_{DFE} = 0$.

2.3.2 The case when $\beta = 0$, and $w \neq 0$ or $\alpha \neq 0$. Similar to section 2.3.1, this model also reduces to an IR model, but the decay rate is time-dependent. The general solution for this case is

$$i(t) = i_0 \exp(- bt - \int_0^t \frac{2m(z) + 1}{m(z)} dz),$$

which possesses a closed-form expression when $\int_0^t \frac{1}{m(z)} dz$ is integrable. It also follows that solutions decay to the DFE, as both $b > 0$ and $m(t) > 0$.

2.3.3 The case when $\beta - b - \rho \neq 0$, and $w = 0$ or $\alpha = 0$. In this case, the duration of infection distribution reduces to an exponential distribution. When $\beta - b - \rho \neq 0$, with $w = 0$ or $\alpha = 0$, it follows 2.6 that $m(t) = 1/\rho$. So, equation 2.3 reduces to an SIS model, or equivalently a constant coefficient logistic differential equation. Thus, we have that

$$y(t) = y_0 e^{-(\beta - b - \rho) t} + \frac{\beta}{\beta - b - \rho} \left(1 - e^{-(\beta - b - \rho) t}\right),$$

which implies that

$$i(t) = \frac{i_0 e^{(\beta - b - \rho) t}}{1 + \frac{\beta}{\beta - b - \rho} \left(e^{(\beta - b - \rho) t} - 1\right)}. \quad \text{(2.12)}$$

The stability of each equilibrium of 2.12 is determined by the sign of $\beta - b - \rho$, or equivalently the basic reproductive number, as calculated through the next-generation approach (Diekmann et al. 2010), given by

$$R_0 = \frac{\beta}{b + \rho}. \quad \text{(2.13)}$$

It follows that the DFE is stable when $R_0 < 1$ and the endemic equilibrium is stable when $R_0 > 1$. Note, the stability for $R_0 = 1$ cannot be determined here, as the assumption $\beta - b - \rho \neq 0$ implies $R_0 \neq 1$.
2.3.4 The case when $\beta - b - \rho = 0$, and either $w = 0$ or $\alpha = 0$. Under such conditions, $m = 1/\rho$, and $\hat{\mu}(t) = 1$. It follows that

$$y(t) = y_0 + \beta t = y_0 + (b + \rho)t,$$

and thus

$$i(t) = \frac{i_0}{1 + (b + \rho)t}.$$ \tag{2.15}

Given that $b + \rho > 0$, it follows that the DFE is stable, as $i(t) \to 0$ when $t \to \infty$.

2.3.5 The case when $\beta - b - \rho = 0, w \neq 0, \alpha \neq 0$. When $\beta - b - \rho = 0$, the solution to 2.3 has a closed-form, as

$$\hat{\mu}(t) = \frac{(w^2 + \rho^2 - \alpha^2 \cos(\omega t) + \alpha \omega \rho \sin(\omega t))^2 \left(-w^4 - \alpha^2 \rho^2 - 2w^2 \rho^2 - 2\rho^4 + 2\alpha^4 \right)}{(w^2 + (1 - \alpha)\rho^2)(w^2 + (1 + \alpha)\rho^2)}.$$ \tag{2.14}

Furthermore, it follows that the integral of $\hat{\mu}_0(t)$ also has a closed-form expression, as for integer $n > 0$ we have that

$$\int_{(2n-1)\pi/w}^{(2n+1)\pi/w} \hat{\mu}_0(x)dx = 2\pi \frac{(w^2 + (1 + \alpha)\rho^2)(w^2 + (1 - \alpha)\rho^2)^3}{\sqrt{(w^2 + \rho^2)(w^2 + (1 - \alpha)\rho^2)}} =: \Psi,$$

and

$$\int_{0}^{(2n-1)\pi/w} \hat{\mu}_0(x)dx = (1 - \frac{2}{\pi} \tan^{-1}(\frac{\rho \omega\alpha}{\sqrt{(w^2 + \rho^2)(w^2 + (1 - \alpha)\rho^2)}})) \frac{\Psi}{2} - \frac{2\alpha p(w^2 + (1 - \alpha)\rho^2)(w^4 - (1 - \alpha)^2\rho^4)}{(w^4 + (2 + \alpha)w^2\rho^2 + (1 - \alpha)\rho^4)(w^2 + (1 + \alpha)\rho^2)^2(w^2 + (1 - \alpha)\rho^2)^3} =: \Psi_0.$$ \tag{2.16}

For $t \in \left(\frac{(2n-1)\pi}{w}, \frac{(2n+1)\pi}{w}\right)$ the integral of $\hat{\mu}_0(x)$ is

$$\int_{(2n-1)\pi/w}^{t} \hat{\mu}_0(x)dx = \left(\frac{2}{\pi} \tan^{-1}\left(\frac{(w^2 + (1 + \alpha)\rho^2)\tan(\frac{1}{2}\omega t) + \rho \omega\alpha}{\sqrt{(w^2 + \rho^2)(w^2 + (1 - \alpha)\rho^2)}}\right) + 1\right) \frac{\Psi}{2} + \frac{2\alpha p(w^4 - (1 - \alpha)^2\rho^4)(w^2 + (1 + \alpha)\rho^2)^2\cos(\frac{1}{2}\omega t)}{g(t)}$$

$$+ \frac{2\alpha w^2(w^2 + (1 - \alpha)\rho^2)^2(2 + \alpha)w^2 + (1 - \alpha)\rho^2)(2 - \alpha)\rho^2)\sin(\frac{1}{2}\omega t)\cos(\frac{1}{2}\omega t)}{g(t)} =: \Omega(t)$$

where $g(t) = (w^4 + (2 + \alpha)w^2\rho^2 + (1 - \alpha)\rho^4)(w^2 + (1 - \alpha)^2\rho^2)(w^2 + (1 + \alpha)\rho^2)(w^2 + (1 + \alpha)\rho^2 - 2\alpha \rho^2 \cos(\frac{1}{2}\omega t)) + 2\alpha \omega \rho \sin(\frac{1}{2}\omega t) \cos(\frac{1}{2}\omega t)).$
Thus, provided \(-\frac{(2n-1)\pi}{w} < t < \frac{(2n+1)\pi}{w}\), we have that
\[
\int_{0}^{t} \hat{\mu}_{0}(x)dx = \psi_{0} + (n - 1)\psi + \Omega(t).
\]

Consequently, it follows that \(i(t)\) has a solution represented by a closed-form expression because \(\hat{\mu}_{0}(x)\)
and \(\int_{0}^{t} \hat{\mu}_{0}(x)dt\) have such a feature. Furthermore, given that \(0 < \hat{\mu}_{0}(t) < \infty\) is periodic, we have that
\[
\lim_{t \to \infty} \int_{0}^{t} \hat{\mu}_{0}(x)dx = \infty,
\]
which causes 2.11 to converge to the DFE.

2.3.6 The case when \(\beta - b - \rho \neq 0, w \neq 0, \alpha \neq 0\). For this case in general, the solutions are up to
the quadrature of \(\hat{\mu}(t)\). To understand the qualitative behavior of \(i'\), we first consider the reformulation
of 2.3 as a logistic equation with time-varying parameters:
\[
(i m)' = r(t) \hat{m}(1 - \frac{im}{k(t)}),
\]
where \(r(t) = r(t + \frac{2\pi}{w}) = \beta - b - \eta(t)\) and \(k(t) = k(t + \frac{2\pi}{w}) = \frac{(\beta - b - \eta(t))m(t)}{\beta}\).

To demonstrate the stability properties of 2.16, it suffices to provide conditions so that \(r(t) > 0\) and
\(0 < k < \hat{k}(t) < \bar{k}\) (Lopez et al. 2010; Hale and Kocak 2012). As \(\beta > 0, m(t) > 0,\) and
\(m(t) = m(t + \frac{2\pi}{w})\), this problem reduces further to investigating \(r(t) = \beta - b - \eta(t)\).

The critical points of \(r(t)\) occur when
\[
\frac{dn}{dt} \mid_{t=t^*} = 0 \iff w \sin(w t^*) + \rho \alpha - \rho \cos(w t^*) = 0,
\]
Furthermore, from \(t^*\), a local minimum occurs when
\[
\frac{d^2 n}{dt^2} \mid_{t=t^*} = - \frac{a pw^3 (w^2 + \rho^2)}{(w^2 + (1-\alpha^2)\rho^2)^2} > 0,
\]
and a local maximum when
\[
\frac{d^2 n}{dt^2} \mid_{t=t^*} = - \frac{a pw^3 (w^2 + \rho^2)}{(w^2 + (1-\alpha^2)\rho^2)^2} < 0.
\]
It follows that
\[
r(t^*) = \beta - b - \rho \pm \frac{pw\alpha}{\sqrt{w^2 + (1-\alpha^2)\rho^2}}.
\]
Thus, if
\[\beta - b - \rho - \frac{\rho \omega}{\sqrt{\omega^2 + (1-\alpha)\rho^2}} > 0, \]
then 2.16 has two non-negative periodic solutions (Lopez et al. 2010; Hale and Kocak 2012), with one being the DFE. The second periodic solution arises because there exists \(K = \frac{\beta}{(\beta - b - \rho - \frac{\rho \omega}{\sqrt{\omega^2 + (1-\alpha)\rho^2}}) \max m(t)} \) and \(\tilde{K} = \frac{\beta}{(\beta - b - \rho - \frac{\rho \omega}{\sqrt{\omega^2 + (1-\alpha)\rho^2}}) \min m(t)} > 0 \), so that

1. for \(i_0 \in [K, \tilde{K}] \) then \(i(t) \in [K, \tilde{K}] \),
2. for \(i_0 < K \) then \(i' > 0 \), and
3. when \(i_0 > \tilde{K} \) then \(i' < 0 \).

To summarize, \([K, \tilde{K}]\) acts as a trapping region for \(i(t) \), and so there exists \(i_0 \in [K, \tilde{K}] \) such that \(i(t) \) is periodic. Furthermore, this second periodic solution satisfies the criteria to be asymptotically stable (Hale and Kocak 2012).

To address when \(\beta - b - \rho - \frac{\rho \omega}{\sqrt{\omega^2 + (1-\alpha)\rho^2}} < 0 \), we first assume there exists \(\epsilon > 0 \) so that
\[\beta = b + \rho + \epsilon. \]
It follows from 2.6 and 2.7 that 2.9 is bounded:
\[Le^{\epsilon t} \leq \mu(t) \leq U e^{\epsilon t}, \]
where \(0 < L \leq U \) are constants.

Thus, given \(i_0 > 0 \), from 2.11 we have that
\[LB(t) = \frac{i \epsilon L e^{\epsilon t}}{1 + \beta i \int_0^t U e^{\epsilon x} dx} \leq i(t) \leq \frac{i \epsilon U e^{\epsilon t}}{1 + \beta i \int_0^t L e^{\epsilon x} dx} =: UB(t). \]

Taking the limit as \(t \to \infty \) and applying l'Hôpital's rule, we obtain the bounds
\[0 < \frac{\epsilon L}{(\epsilon + b + \rho)U} \leq \lim_{t \to \infty} i(t) \leq \frac{\epsilon U}{(\epsilon + b + \rho)L}. \]

It follows that
\[\frac{d}{dt} LB = \epsilon LB (1 - \frac{b + \rho + \epsilon}{\epsilon} \frac{U}{L} LB), \]
and
\[
\frac{d}{dt} UB = \epsilon UB (1 - \frac{(b + p + \epsilon)}{U} UB).
\]

Naturally, this implies that
\[
\frac{d}{dt} LB \leq \frac{d}{dt} i \leq \frac{d}{dt} UB.
\]

As a consequence of these bounds, if \(i < \frac{\epsilon L}{(\epsilon + b + p) U} \), then \(\frac{d}{dt} i > 0 \), and if \(i > \frac{\epsilon U}{(\epsilon + b + p) L} \), then \(\frac{d}{dt} i < 0 \).

Similar to when \(r(t) \) is strictly positive, \(\left[\frac{\epsilon L}{(\epsilon + b + p) U}, \frac{\epsilon U}{(\epsilon + b + p) L} \right] \) acts as a trapping region. Therefore, provided \(\beta - b - \rho > 0 \), there exists a second periodic solution, which is asymptotically stable (Supplementary Information).

Next, we consider \(\epsilon > 0 \) so that \(\beta = b + \rho - \epsilon \). It follows once again that constants exist so that
\[
\hat{L} e^{-\epsilon t} \leq \mu(t) \leq \hat{U} e^{-\epsilon t}.
\]

Given these bounds on the integrating factor \(\hat{\mu}(t) \), we have that
\[
0 \leq i(t) \leq \frac{\hat{e} e^{-\epsilon t}}{1 + \beta \int_0^t \hat{L} e^{-\epsilon x} dx}.
\]

Taking the limit, we have that \(\lim_{t \to \infty} \frac{\hat{e} e^{-\epsilon t}}{1 + \beta \int_0^t \hat{L} e^{-\epsilon x} dx} = 0 \), and thus \(i(t) \) converges to the DFE.

3. Application of the methodology to gonorrhea in the United States.

To illustrate the utility of our model, we apply it as well as the traditional SIS model to predict gonorrhea incidence in the United States. We consider periodic and non-periodic scenarios of our model (Table 1), estimating parameters by minimizing the least-square error of model predictions with historical data on gonorrhea incidence from 2018-2021, as well as infectious period data from the literature (2022a, b).

From data on the infectious period of gonorrhea (2022a, b), the average duration of infection is \(\mu \approx 1.05 \) weeks. Using this, we reduce the number of parameters to estimate by imposing that \(\rho \) satisfies
\[
\mu = \frac{(w^2 + p^2) + 2\alpha (w^2 - p^2)}{\rho (w^2 + p^2)(w^2 + p^2 - \alpha p^2)} = 0,
\]
given \(\mu \) is the average duration of infection, where \(w \) and \(\alpha \) are determined by minimizing the least square error between model predictions and gonorrhea incidence data for the gSIS model, or set to zero for the traditional SIS model. Details of additional parameters, including the transmission rate, are available in Table 2.
Given the estimate of model parameters, the (time-varying) average duration of infection varies between 7.12 days and 7.76 days for the gSIS model, and remains constant at 7.34 days for the SIS model (Figure 1). For both models, we have that the DFE is unstable, as \(\tilde{\beta} - \tilde{\rho} - b = 0.023 > 0 \) and \(\hat{\beta} - \hat{\rho} - b = 0.018 > 0 \) for the gSIS and SIS models, respectively. Using the estimated parameters (Table 2), the gSIS and traditional SIS models predict a maximum of 6224 and 7789 new incidences of gonorrhea per week, respectively, over the next 300 weeks (Figure 2). For the gSIS model, the period of the epidemic was estimated as 39.9 weeks, with an amplitude of seasonality of -0.257.

To inform on the merit of our predictions, we calculated Akaike information criteria (AIC) (Lancelot et al. 2002). Briefly, AIC is a mathematical method for comparing how well models fit data, relative to one another, which takes into account model complexity (Symonds and Moussalli 2011). Assuming model solutions are represented by \(i(t; \beta, \rho, \alpha, \omega, i_0) \), we define the new incidence as

\[
\lambda(t; N, \beta, \rho, \alpha, \omega, i_0) = N\beta i(t; \beta, \rho, \alpha, \omega, i_0)(1 - i(t; \beta, \rho, \alpha, \omega, i_0)),
\]

where a subscript of SIS or gSIS is used to distinguish between cases.

It follows for the gSIS and SIS models that \(AIC_{gSIS} = 654.8 \) and \(AIC_{SIS} = 833.7 \) (Supplementary Information). Thus, as \(AIC_{gSIS} < AIC_{SIS} \), the criterion suggests that gSIS is a more appropriate model for describing the trajectory of gonorrhea.

Fig. 1. The time-varying average duration of infection. Estimate of average duration of infection of gonorrhea infection at time \(t \) for a) \(1/\rho = 7.429 \text{ days}, \alpha = -0.257, \frac{2\pi}{\omega} = 39.9 \text{ weeks} \) (red solid curve) and b) \(1/\rho = 7.4294 \text{ days}, \alpha = \omega = 0 \) (blue dashed curve).
Fig. 2. Model fit and predictions of new gonorrhea infections. The trajectory of new gonorrhea infections based on data (black dotted curve), SI model (red solid curve), and generalized SI model (blue dashed line).

Table 2. Parameters, base values, and sources.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic turnover rate</td>
<td>b</td>
<td>0.024/year</td>
</tr>
<tr>
<td>Population size (1000s)</td>
<td>N</td>
<td>SIS: 437.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gSIS: 218.7</td>
</tr>
<tr>
<td>Duration of infection (in absence of periodicity) $1/\rho$</td>
<td></td>
<td>SIS: 1.06 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gSIS: 1.05 weeks</td>
</tr>
<tr>
<td>Transmission rate</td>
<td>β</td>
<td>SIS: 0.971/week</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gSIS: 0.966/week</td>
</tr>
<tr>
<td>Periodic of the epidemic</td>
<td>$\frac{2\pi}{w}$</td>
<td>SIS: Undefined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gSIS: 39.9 weeks</td>
</tr>
<tr>
<td>Magnitude of seasonality</td>
<td>α</td>
<td>SIS: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gSIS: -0.257</td>
</tr>
</tbody>
</table>

4. Discussion

We demonstrated a novel take on SIS models motivated by their extension to generalized differential equation compartmental models. For our model, we completely characterized its stability behavior, illustrated its equivalence to two formulations of time-varying logistic growth equations, and demonstrated that all known families of compartmental models that feature solutions with closed-form expressions are special cases. Importantly, this work is also the first to build an SIS compartmental...
model with time-varying parameters directly from assumptions placed on the duration of infection
distribution, while also extending SIS models to potentially feature periodic behavior.

We illustrated a GDECM with new solutions that were closed-form expressions beyond the well-known
SIS, SI, and IR models. While it remains an open question whether more complex models have such
convenient properties, the added flexibility of GDECM should provide a means to obtain additional gSIS
models with such features. Furthermore, the GDECM framework may even enable the development of
the first SIR models with solutions that have a closed-form expression. If such a SIR model exists, it would
imply the existence of an additional conservation law beyond the conservation of population, and
therefore could, at least in theory, be tested empirically.

An interesting feature of gSIS is that the existence of periodic solutions requires $\beta - \rho - b > 0$, or
equivalently $R_0 = \frac{\beta}{\rho + b} > 1$. Typically, for autonomous compartmental models, the existence of
periodic solutions (when only one endemic equilibrium exists) requires a specific set of parameter values
so that $\beta - \rho - b \approx 0$, at least according to Hopf-bifurcation theory (Stadtländer and K.-H. Stadtländer
2010). As such, the condition required for periodic solutions of gSIS models suggests oscillatory dynamics
are far more likely, which is corroborated by observed trends of many disease trajectories that feature
reproductive numbers greater than one.

While our work focuses on gSIS models, it provides an important extension to logistic growth equations
with time-varying parameters. To date, the majority of analyses of such logistic models require that the
time-varying growth parameter is non-negative for periodic solutions to exist. Here, we show that it is
possible to weaken this condition to periodic rates that are positive more often than negative.
Biologically speaking, such a condition seems plausible, at least for diseases or species that reproduce in
low numbers frequently, subject to some form of seasonal fluctuations.

The estimated epidemic period of 39.9 weeks provided by the gSIS model closely mirrors the average
duration of a school year of approximately 40 weeks (including weekends and holidays). While this
similarity could be a coincidence, the high prevalence of gonorrhea among 15-24 year-olds (2022a), and
the known role of the school year in the transmission of other diseases (Keeling et al. 2001; Metcalf et al.
2009), suggests that the length of the school year may play a prominent role in the periodic behavior of
gonorrhea.

A further avenue of research is to consider a gSIS multistrain model that features a mixture of
distributions with periodic hazard rates. Specifically, with such a model and distribution it may be
possible to ascertain fundamental frequencies of transmission and infection directly from the model’s
solution. Subsequently, it may also be possible to determine whether there could be any resonance
between strains (Bacaër and Abdurahman 2008) and how such a thing may contribute to pathogen
evolution. Another direction for future work is the merger of gSIS with techniques for predicting the
doubling-time of epidemics. While recent work tackles the question of doubling-time for epidemic
models in the context of a modified Richards model (Smirnova et al. 2022) (a generalization of logistic
growth), it stands to reason that such analysis could be applied to gSIS models, given their formulations
as logistic growth equations with time-dependent parameters. Relatedly, the solutions with closed-form
expression of gSIS should also provide a means to estimate a final size function, akin to a final size
equation of autonomous SIS models, that could provide details on the number of infected individuals, given only an initial condition and desired time period.

While this work focuses on a modification of differential equation SIS models to include a time-varying average duration of infection, one could also study gSIS models in the context of integral equations. The added flexibility of such a modification to an integral equation description of disease spread may provide a means to tackle open challenges in disease modeling (Lloyd-Smith et al. 2015), such as understanding the endemic equilibrium and defining its stability (Roberts et al. 2015).

Extending SIS models to the framework of GDECM carries with it many of the limitations of differential equation compartmental models, with a homogeneously mixed population likely being the most prominent drawback. Furthermore, the extension of SIS to gSIS still may not be sufficient to accurately represent the transmission dynamics of gonorrhea, as the inclusion of treatment, asymptomatic infection, and treatment resistance classes, among others, may be required to accurately capture transmission dynamics. Another drawback of gSIS, at least relative to SIS, is that it requires more abundant information on the average duration of infection, namely how it varies in time. While this requirement may not greatly inhibit the theoretical development and application of this new class of models, it may preclude its use in more data-intensive disease modeling analyses.

In summary, we demonstrated a new class of compartmental models based on extending a simple SIS model to the framework of GDECM. In accomplishing this, we showed how this simple extension adds the potential for rich dynamics and solutions that have closed-form expressions. Naturally, generalizing compartmental models further will likely only enhance these features and properties, and thereby provide ample avenues for future investigation.

Declarations

Funding: SG was partially supported by the National Science Foundation Grant DMS-2052592

Competing Interests: The authors have no relevant financial or non-financial interests to disclose

Acknowledgments: The authors wish to thank Drs. Troy Day and Emelie Kenney for constructive feedback that greatly improved the clarity of the work

Data availability statement: The datasets generated during and/or analyzed during the current study are available in a GITHUB repository (Greenhalgh and Dumas 2022), see doi 10.5281/zenodo.6595905
References

Greenhalgh S, Dumas A (2022) mathguypi314/GSISmodel: gSIS model. Zenodo

Inference 137:3525–3536

Lloyd A (2017) Introduction to Epidemiological Modeling: Basic Models and Their Properties

Nåsell I (2011) Thresholds for the SIS Model. Lecture Notes in Mathematics 171–175

Supplementary Information

In this appendix, we provide further details on the stability of periodic solutions for our generalized susceptible-infected-susceptible model (gSIS). In addition, we also provide details that demonstrate that the mean residual waiting-time, \(m(t) \), is positive and bounded, and outline our calculation of the Akaike Information Criterion (AIC).

S.1. Stability conditions of periodic solutions. Consider the gSIS model, as represented by the time-varying logistic growth equation,

\[
\frac{\dot{i}}{i} = r(t)(1 - \frac{i}{k(t))},
\]

where \(r(t) = \beta - b - \frac{2m'+1}{m} \) and \(k(t) = \frac{1}{\beta} r(t) \).

Assuming \(i(t) \) is a periodic solution, with period \(\frac{2\pi}{w} \), it follows that

\[
\frac{1}{i(2\pi \frac{n}{w})} = A + \frac{B}{i(0)},
\]

where

\[
A = B \int_0^{2\pi \frac{n}{w}} \frac{r(t)}{k(t)} \exp(- \int_0^t \frac{r(z)}{k(t)} dz) dt,
\]

and

\[
B = \exp(- \int_0^{2\pi \frac{n}{w}} r(t) dt).
\]

Defining \(i_n = i(\frac{2\pi n}{w}) \), it follows that S1.1 is equivalent to

\[
\frac{1}{i_{n+1}} = A + \frac{B}{i_n},
\]

or

\[
i_{n+1} - i_n = (1 - B)i_{n+1}(1 - \frac{A}{1-B} i_n).
\]

It follows that S1.2 has two equilibria, \(i^* = 0 \), which corresponds to the DFE of \(i' \), and \(i^* = \frac{1-B}{A} \), which corresponds to the periodic solution of \(i' \). Linearizing S1.2 about \(i^* \), it follows that \(i \) is locally stable provided

\[-1 + B < 0.\]

Translating this back to the original system, we have that the periodic solution is locally stable when
\[-1 + \exp(-\int_{0}^{\frac{2\pi}{w}} \beta - b - \frac{2m'+1}{m} dt) < 0.\]

Noting that \(\int_{0}^{\frac{2\pi}{m}} m dt = \ln(\frac{2\pi}{w}) - \ln(m(0)) = 0\), and that \(\int_{0}^{\frac{2\pi}{m}} \frac{dz}{m(z)} = \frac{2\pi}{w} \rho\) due to the periodicity of \(m(t)\), it follows that S1.3 reduces to

\[\beta - b - \rho > 0.\]

S.2 Upper and lower bounds on the mean residual waiting-time. Here we show that the mean residual waiting-time, given by

\[m(t) = \frac{(w^2 + \rho^2)^2 + \alpha \rho^2 (w^2 - \rho^2) \cos(w t) + 2\alpha \rho^2 \sin(w t)}{\rho (w^2 + \rho^2)(w^2 + \rho^2 - \alpha \rho^2 \cos(w t) + \alpha \omega \rho \sin(w t))}\]

is positive and bounded.

To begin, we determine the critical points of \(m(t)\),

\[m(t^*)' = 0.\]

Recalling the hazard rate \(\eta = \frac{m'+1}{m}\), we have that

\[m(t^*)' = \eta(t^*)m(t^*) - 1 = 0.\]

By virtue of \(\eta\) being positive and bounded (Bakouch et al. 2018), it follows that \(m\) is the same.

S.3 The calculation of Akaike Information Criteria. Assuming model solutions are represented by \(i(t; \beta, \rho, \alpha, w, i^*_0)\), we define new incidence as

\[\lambda(t; N, \beta, \rho, \alpha, w, i^*_0) = N\beta i(t; \beta, \rho, \alpha, w, i^*_0)(1 - i(t; \beta, \rho, \alpha, w, i^*_0)),\]

where a subscript of SIS or gSIS is used to distinguish between cases.

It follows for the SIS model that

\[AIC_{SIS} = M(\ln(2\pi) + 1) + M \ln(\frac{1}{M} \sum_{j=0}^{M} (\lambda_{SIS}(j; N, \beta, \rho, 0, 0, i^*_0) - \hat{i}_{new}(j))^2) + 2(k_{SIS} + 1) = 833.7\]

where \(M\) is the number of data points, \(i_{new}(j)\) is the observed new incidence on the \(j^{th}\) week, \(k_{SIS} = 3\) is the number of estimated parameters, and \(\hat{N}, \hat{\beta},\) and \(\hat{i}^*_0\) are best estimates of these parameters from the least square minimization procedure.
Similarly, for the gSIS model, it follows that

\[
AIC_{gSIS} = M(\ln(2\pi) + 1) + M \ln\left(\frac{1}{M} \sum_{j=0}^{M} (\lambda_{gSIS}(j; \tilde{N}, \tilde{\beta}, \tilde{\rho}, \tilde{\alpha}, \tilde{w}, \tilde{i}_0) - i_{\text{new}}(j))^2\right) + 2(k_{gSIS} + 1) = 654.8
\]

where \(k_{gSIS} = 5\) is the number of parameters estimated, and \(\tilde{N}, \tilde{\beta}, \tilde{\rho}, \tilde{\alpha}, \tilde{w}\) and \(\tilde{i}_0\) are the best estimates of parameters from the least square minimization procedure for the gSIS model.