The Feasibility of the Thai Sensory Profile Assessment Tool (TSPA) for Classifying the participants for Mind-Body intervention

Thanaporn Kanchanawong¹, Thitichaya Prasoetsang¹, Faungfah Limwongvatana¹, Ladarat Ooraikul², Sukonta Kunapun², Tiam Srihamjak MA¹, Patama Gomutbutra MD³
1. Department of Occupational Therapy, Faculty of Associated Medicine, Chiang Mai University, Chiang Mai, Thailand
2. Faculty of Nursing, University of Alberta, Edmonton, Canada
3. Department of Nursing, Maharaj Nakorn Chiang Mai Hospital, Thailand
4. Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,

Corresponding Author: Patama Gomutbutra MD
Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200

ORCID no. 0000-0002-7360-8979
E-mail address: pattama.g@cmu.ac.th

Word count for the abstract: 227, Word count for the paper: 3213
Number of tables: 3, Number of figures: 4

Acknowledgments
This study received kindly support from the Faculty of Medicine and Faculty of Associated Medical Science Chiang Mai University. The grant number is Faculty of Medicine Chiang Mai university FUND-25620118-15666. Moreover, the researchers thank Professor Dr. Buncha Ooraikul for their valuable suggestions.

2 June 2022
Abstract

Background: The Thai Sensory Profile Assessment Tool (TSPA) is a tool for measuring individual effects of sensory stimuli events in daily life. The tool is divided into sensory preference, which is relatively stable and formulated from personal experience, and sensory threshold, which is more labile that determines the intensity of sensory perception. A person with a high sensory threshold would perceive less intensity than those with a low threshold. The earlier study found that TSPA has acceptable validity and reliability in classifying sensory processing patterns.

Objective: The study aims to examine the feasibility and interpretability of TSPA for classifying sensory patterns of participants who attend the Mindfulness-Based Flow Practice (MBFP) and Relax On-site program. We hypothesize that different sensory processing patterns may influence MBFP and Relax On-site program response.

Materials and methods: This study is a part of a clinical trial project. The participants were 20 volunteers who are healthy nursing staff working in a university hospital. Each participant was self-tested by TSPA before the intervention, either relaxation on-site or MBFP in the residential retreat program. The effect of MBFP or relaxation on-site was measured quantitatively by the change of serum morning cortisol before and after the intervention and qualitatively from satisfaction interviews after the intervention.

Results: The TSPA assessment takes time average of 20 minutes. We classified participants by TSPA pattern into three groups by the sensory preference, including, 1) Balanced majority (14/20) have a moderate sensory preference and threshold, 2) low sensory preference for taste and smell (3/20), and 3) high sensory preference for sight smell and movement (3/20). At the same time, most participants show higher cortisol after relaxation on-site and decreased cortisol after MBFP. We found people with low smell sensory preference, low smell sensory threshold, high sensory preference insight, and movement with moderate threshold showed a different response.

Conclusions: This pilot study showed that TSPA could be a feasible tool for assessing the sensory preference of the participants to match the health promotion modalities appropriately. However, it needs a larger sample to prove this hypothesis.

Keywords: Thai Sensory Profile Assessment Tool (TSPA), sensory preferences, sensory thresholds, cortisol, satisfaction, Mindfulness-Based Flow Practice.
Introduction

The sensation is an objective and simple conscious experience associated with stimuli. Everyone is personally interested in the experiences of sensation. Research has shown that each person processes sensory information differently (1). For example, some individuals like to work in quiet surroundings, and others may like to work while wearing headphones with rap music playing loudly (2). Sensory processing refers to a person's ability to take in, organize and respond to sensory information in their environment(3). The development of adult sensory profile has been reported by Chung et al. and classified into four categories: auditory, visual, taste, smell, touch, movement, and activity level. It generates four sensory processing patterns: low registration, sensation seeking, sensory sensitivity, and sensation avoiding. (4) Many studies have investigated relationships between sensory processing styles and behavioral and emotional responses in healthy individuals or clinical populations of all ages. Elie Chamoun et al. demonstrate the application of taste preference and sensitivity/threshold correlates with eating behavior (5). Consequence of no significant difference may be because of unique sensory processing patterns.

Tian Srikamjak et al. developed the first sensory assessment tool to measure sensory processing patterns of Thai people called THAI SENSORY PROFILE ASSESSMENT TOOL (TSPA). The Thai Sensory Profile Assessment Tool (TSPA) measures the individual effect of sensory stimuli events in daily life. The tool adapted Dunn's theory of adult sensory profile (1) divided into sensory preference, which is quite stable formulated from personal experience, and sensory threshold, which is more labile to determine the intensity of sensory perception. A person with a high sensory threshold would percept less intensity than those with low thresholds. The earlier study found TSPA has acceptable validity and reliability in classifying sensory processing patterns. This tool has acceptable validity and reliability in classifying sensory processing patterns (6). Although further verification of this version of TSPA was needed, the applications of TSPA for Thai people showed its benefits. For example, Kongnerm and Srikamjak used TSPA to investigate the relationship between Sensory Patterns and Stress in 90 relapsed alcohol-dependent clients in Suansaranrom Psychiatric Hospital, Surat Thani province, Thailand. The results of the study portrayed that: 1) sensory preferences of vision had negative significant correlation with stresses (r = - .264, .341, P < .05) and was the most influence on Stresses (Beta = -.326, P < .05), 2) sensory threshold of smell had negative significant correlation with stresses (r = - .245, -.263, P < .05) and was the most influence on stresses (Beta = -.349, -.292, P < .05)(7). The Psychometric properties of TSPA have examined the content validity in conjunction with an expert panel discussion. The reliabilities of the tools were assessed using data from 387 Thai participants aged 15 years and over from 5 geographical areas of Thailand. The content of the TSPA has accepted the agreement of a majority of the experts, including a psychiatrist, occupational therapist, physical therapist, psychologist, and special education teacher. The test-retest reliability result of Modules 1 and 2 was obtained using the Intraclass Correlation Coefficient method. There were between 0.78 - 0.85 and between 0.55 - 0.75, respectively. Using the Cronbach's correlation coefficient, the internal consistency of the Module 1 was between 0.59 - 0.78, and Module 2 was between 0.32 - 0.62. (8)

This pilot study aimed to examine the feasibility and interpretability of TSPA for classifying sensory patterns of participants who attend the Mindfulness-Based Flow Practice (MBFP) and Relax On-site program. We hypothesize that different sensory processing patterns may influence MBFP and Relax On-site program response.
Materials and methods:

This trial is a sub-study under the project entitled "The Cellular and Physiologic Mechanism of Mindfulness-Based Flow Practice (MBFP) therapy for Depressive and Anxiety Symptoms, an Exploratory Clinical Trial" which was registered on the Thailand clinical trial registry: TCTR20180313001 (https://www.thaiclinicaltrials.org). The ethical approved by the Faculty of Medicine, Chiang Mai University, Institutional Review Board (IRB), the Chiang Mai Medical School Ethical Committee (study code: FAM-2561-05432). All participants were informed of the purposes of the project and the extent of their involvement and gave their consent before participating in the study. This study is a part of a clinical trial project. The participants were 20 volunteers who are healthy nursing staff working in a university hospital. They are randomized into two groups by computer-based randomization using permuted blocks: group A received relaxation on-site, and group B received MBFP. Each participant was self-tested by TSPA before the intervention, either relaxation on-site or MBFP in the residential retreat program. The effect of MBFP or relaxation on-site was measured quantitatively by the change of serum morning cortisol before and after the intervention and qualitatively from satisfaction interviews after the intervention.

Participants

Participants were recruited from the self-enrolled volunteer from Nursing Department. The participants consisted of nurses and nursing assistants. The inclusion criteria were pre-menopause females without serious physical or psychological illnesses.

Instruments

1. The Thai Sensory Profile Assessment Tool (TSPA): Version 2007

TSPA is a self-administered measurement of sensory responses for the general public over 15 years old who can read and write Thai. The tool is divided into two modules: 1) the first module, sensory preference, is composed of 60 items which include questions related to sensory systems such as sight, hearing, smell, taste, touch, and movement, which a subject usually likes to use, especially in everyday life; 2) the second module, sensory threshold, is composed of 60 items which include questions related to sensory systems which include sight, hearing, smell, taste, touch, and movement which a subject usually needs for to responses to stimuli in everyday life. The TSPA measures the respondent's frequency of responses to specific sensations by employing a Likert scale from 0 = never to 4 = always for sensory preference and high threshold questionnaires, and from 4 = never to 0 = always for low threshold questionnaires. A computer-based program calculates scores from both modules and reports as graphs and percentages, as shown in Figure 1.

Figure 1: TSPA Report: blue line show the sensory preference, and the orange line shows the sensory threshold

2 June 2022
The interpretation of TSPA report is the cut scores. The cut scores do not indicate when a particular pattern becomes problematic but show a particular frequency of an individual response to sensory stimuli in everyday life. In this tool, we use the percentage, and quartile deviation of each sense as cut scores consist of 1) Less than 25 % = Low score, 2) 25-75% = Moderate score, and 3) More than 75% = High score.

2. Morning serum cortisol
 Morning serum cortisol serum is a common physiology biomarker that may be used to examine the Mind-Body Intervention (MBIs) biomarker outcomes. For this study, a blood sample was collected between 8-9 am and stored in EDTA-coated tubes in the morning. Plasma was obtained by centrifugation of blood at 3000 rpm, four °C 10 minutes, and frozen at -80 °C immediately until analysis. Plasma cortisol levels were measured and analyzed according to the protocols provided by the test manufacturer at the central laboratory of the Maharaj Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

3. Mindfulness-Based Flow Practice (MBFP) and Relax On-site program
 In both the Mindfulness-Based Flow Practice (MBFP) Group and Relax Onsite group (Control group), All participants underwent 8-hour on weekends (Saturday and Sunday)
 3.1 Two Hours Mindfulness-Based Flow Practice (MBFP)
 2-hours MBFP is a mind-body intervention integrated the concepts of flow and mindfulness model through 6 activity modules, including 1) 10-15 minutes of learning about MBFP (before or after practices) 2) 10-15 minutes of self-observation through the sensory, emotional, and cognition information 3) 40-45 minutes of muscle stretching 5) 15 minutes of relaxation breathing 6) 10-15 minutes of imagery guidance. Most activity modules tell participants about their body position or proprioceptive sense.
 3.2) Relax On-site program
 Participants were assigned to the same resort as the MBFP group and had the same food. During the MBFP Intervention, they were allowed to travel or light exercise around the resort but not allowed to bring office work to do. This program modified from concepts of multisensory environments / MSEs were to promote enjoyment and relaxation.

Procedures
1. Participants were informed consent before data collection.
2. Participants were randomized into two groups, the intervention first (group A) and the intervention later (group B), with a crossover of three months for the wash-out period. And the researcher made an appointment with the technician to take the participants' blood to check serum cortisol in the morning.
3. One day before and after the Trial (Friday and Monday), Serum cortisol was collected along with baseline blood pressure, BMI, and waist-hip circumference on the morning of the first Trial.

2 June 2022
4. On the day of the Trial, the researcher collected TSPA data from both groups in the morning before attending the Mindfulness-Based Flow Practice (MBFP) and Relax On-site program. NCSS version 2021 (East Kaysville, Utah) was used for analysis. The demographic data were described in frequency and mean. The sensory patterns data were analysis in frequency, percentage, and quartile deviation.

Results

From the demographic data The participants were 20 palliative care nurse staffs, who appear working in a university hospital, aged 20-45 years old. All participants were healthy or did not have an uncontrolled disease; 75% are single. Mean morning serum cortisol level was 10.19 ± 5.59 μg/dl in Table 1.

Table 1: Demographic data and measurement outcome

<table>
<thead>
<tr>
<th>Factors</th>
<th>(N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex</td>
<td>n (%)</td>
</tr>
<tr>
<td>Age (year)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
</tr>
<tr>
<td>Register nurse</td>
<td>n (%)</td>
</tr>
<tr>
<td>Nursing assistant</td>
<td>n (%)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Master</td>
<td>n (%)</td>
</tr>
<tr>
<td>Bachelor</td>
<td>n (%)</td>
</tr>
<tr>
<td>High school</td>
<td>n (%)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>n (%)</td>
</tr>
<tr>
<td>Married</td>
<td>n (%)</td>
</tr>
<tr>
<td>Sleep quality (PSQI score)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Poor sleep quality from PSQI score</td>
<td>n (%)</td>
</tr>
<tr>
<td>Self-evaluate poor sleep quality</td>
<td>n (%)</td>
</tr>
<tr>
<td>Depression score (PHQ-9) (missing 1)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Morning serum glucose (mg/dl)</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Morning serum cortisol (μg/dl)</td>
<td>Mean ± SD</td>
</tr>
</tbody>
</table>
Table 2 showed the classification of Mostly of participants has moderate sensory preference. There are 1 participant has low sensory preference in tast and 2 participants in smell. For high sensory preference there are 3 participants that has preferences in sight, smell and movement.

Table 2: Frequency and Percentage of participants' Sensory Preferences clarified by TSPA (N=20)

<table>
<thead>
<tr>
<th>Sensory Modalities</th>
<th>Sensory Preferences</th>
<th>Low score</th>
<th>Moderate score</th>
<th>High score</th>
</tr>
</thead>
<tbody>
<tr>
<td>sight</td>
<td></td>
<td>0 (0%)</td>
<td>19 (95%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Hearing</td>
<td></td>
<td>0 (0%)</td>
<td>20 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Taste</td>
<td></td>
<td>1 (5%)</td>
<td>19 (95%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Smell</td>
<td></td>
<td>2 (10%)</td>
<td>17 (85%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Touch</td>
<td></td>
<td>0 (0%)</td>
<td>20 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Movement</td>
<td></td>
<td>0 (0%)</td>
<td>19 (95%)</td>
<td>1 (5%)</td>
</tr>
</tbody>
</table>

Table 3 shows the sensory threshold for each group of sensory preferences. It could be noted that all of the moderate sensory preference also has a moderate sensory threshold among the three who has low smell preference. Two have low smell preference, but one has a high smell and sight threshold. The high sensory preference group all has moderate sensory thresholds.

Table 3: Frequency and Percentage of participants' sensory thresholds clarified by TSPA for each group of sensory preference (N=20)

<table>
<thead>
<tr>
<th>Sensory Modalities</th>
<th>Sensory Thresholds</th>
<th>Low score</th>
<th>Moderate score</th>
<th>High score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate all sensory preference</td>
<td></td>
<td>0 (0%)</td>
<td>14 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Low smell preference</td>
<td></td>
<td>2 (10%) test, smell</td>
<td>0(0%)</td>
<td>1 (0%) sight, smell</td>
</tr>
<tr>
<td>High smell preference</td>
<td></td>
<td>0(0%)</td>
<td>1 (100%) all sense</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>High sight preference</td>
<td></td>
<td>0 (0%)</td>
<td>1 (100%) all sense</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>High movement preference</td>
<td></td>
<td>0 (0%)</td>
<td>1 (100%) all sense</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Figure 2 shows the group of participants who has moderate in all sensory processing patterns and thresholds depict a similar response pattern that increases cortisol after relaxation on-site and reduces cortisol after MBFP. Meanwhile, in Figure 3, it could be noted that low smell sensory preference with a high threshold demonstrates the same response as the first group. Still, those with low sensory threshold showed blunted responses to both relaxation on-site and MBFP. Figure 4 shows the group of high sensory preferences, including those with high movement, sight, and smell with moderate in all sensory thresholds. Those with high smell sensory preference demonstrate cortisol change after interventions, the same as the first group. However, those with high sight preference reduce cortisol after relaxation on site, and who have high movement preference show a 'reverse' pattern contrast with the first group.

Figure 2: Effects of Relaxation on Site and Intensive MBFP on cortisol levels in participants with moderate scores of all sensory preferences and sensory thresholds group (n=14)

Figure 3: Effects of Relaxation on Site and Intensive MBFP on cortisol levels in participants with low sensory preference in smell and test (n=3)

2 June 2022
Figure 4: Effects of Relaxation on Site and Intensive MBFP on Cortisol Levels in high preference of smell, sight and movement and moderate score of other senses both preferences and thresholds n 3.

The qualitative data from the interview:

Overall, most of the feedback was positive, as follows:

i like self-hug posture; it makes me feel warm.

Stretching muscle makes me feel relaxed.

Feel comfortable and peaceful.

Massage reliefes my muscle pain.
"It's nice to rest for me."

Furthermore, there was positive feedback from high score participants below.

"It makes me relaxed, and I feel the substance of happiness in my body increasing" (High preference for movement)
"dark room makes have a better sleep, and it gives me nice resting time" (High threshold of sight)
"It seems like exercise, but it makes me feel relieved."
"The sound makes me feel peaceful."

However, there was some negative feedback to the movement section from participants with the dominant characteristic of movement sensory preference as follows.

"I didn't like the difficult postures because I could not do them."
"Some postures gave me pain (especially trunk hyperextension)."

The massage section (that could be represented as the tactile section) from participants with dominant characteristic of tactile sensory preference.

"I think the amount of compression was inadequate for me."
"The massage tickled me, so I didn't like it."

The visual part from participants with tactile sensory preference.

"Sometimes, I felt distracted from the light outside the room."

The sound background from participants with dominant characteristic movement and touch sensory preference.

"I didn't like it when there were several sensory stimulations because I prefer to be in a quiet place during leisure time."
"Sometimes, the sounds were scary to me."

Discussion

In the present study, we explored the association between sensory preference and sensory threshold on the one hand and cortisol and satisfaction on the other hand in 20 nursing personnel. Our results indicate that TSPA is feasible and easy to use to classify sensory patterns of participants who attend the Mindfulness-Based Flow Practice (MBFP) and Relax On-site program. The majority (80%) of participants balance all sensory preferences and thresholds. These results are consistent with a previous study that this sensory pattern is the commonest in the general population. (9). This group has responded to the same pattern increasing cortisol after relaxation on-site and reducing cortisol after MBFP. The nature of relaxation on-site could explain it. Though it inhibits bringing work to do in the report, it could not prevent participants from rumination or worrying about their work and family. Meanwhile, MBFP has more potential to bring the participants' attention to the activity. However, this study could not claim that MBFP reduces cortisol more than relaxation on-site. In addition, the crossover control trial, which consisted of 50 participants, found no significant difference in cortisol. Still, MBFP significantly increased Brain-Derived Neurotrophic factors compared to relaxation on-site. (10).

Interestingly, a person with low smell sensory preference and low threshold showed blunted responses to relaxation on-site and MBFP. This person may be classified as a kind of 'sensory avoidance' although there are no particular aroma sensory stimuli in either relaxation on-site or MBFP, this personality show blunted response which is different from the peer. This person also has a high score of burnout (11), which is coherent with the previous study's finding that those with sensory avoidance have a high level of work-related burnout (3). In addition, those with high movement preference and moderate sensory threshold show a 'reverse' pattern contrast with the first group. It could reflect the nature of the intervention since relaxation on-site allows participants to walk or run around the resort while MBFP limited movements to only joint position sensation (proproprioeption). These findings were reflected in an interview with this person "I didn't like the
difficult postures because I could not do them." and "Some postures gave me pain (especially trunk hyperextension."

However, the small sample size also impacted the limited Number in each classified sensory pattern, meaning that these results should be interpreted cautiously as Winnie Dunn stated that "the response to sensory stimuli can be more easily understood when we study people whose sensory processing is so unusual that it interferes even desirable life activities. The concepts involved are not as clear when studying people without a particular disorder because most people have moderate behaviors that don't stand out" (12).

Usability of TSPA was scored as good within the sub-group of study participants. The study has generated several suggested areas for improvement that could use TSPA as a assessment tool in clinical populations: First, the TSPA consists of 2 modules, sensory preferences, and thresholds. Each module comprises six sensory modalities: sight, sound, smell, taste, touch, and movement. The content of the TSPA has been accepted the agreement by a major of the experts. The test-retest reliability result of Modules 1 and 2 was obtained using the Intraclass Correlation Coefficient method. There were between 0.78 - 0.85 and between 0.55 - 0.75 for Modules 1 and 2. Using the Cronbach's correlation coefficient, the internal consistency of the Module 1 was between 0.59 - 0.78, and Module 2 was between 0.32 - 0.62. The movement had the lowest Cronbach's correlation coefficient, which might be because this sensory modality composes of 2 sensory systems: vestibular and proprioceptive sensation. Therefore, the items in this sensory modality might not result in the exact measurement, leading to a low internal consistency. For further studies, separation of these two senses and research used in development and refinement are recommended to maximize reliability and validity. Second, TSPA is divided into sensory preference composed of 60 items and sensory threshold composed of 60 items. It might have too many items and take too long for the participants to complete. Therefore, we should develop a short version of TSPA. Third technological advancement in the area of mass communication. The trend of the world has shifted everything done on the internet, such as education, entertainment, and health care. Incorporate the widespread coronavirus pandemic (covid-19) impact on access to services and resources and press on people to change their routines and improve their resilience and self-management(13). The future feasibility of TSPA will need collaborative assessment between individuals, families, therapists, and researchers to better understand individual preferences and thresholds through the activity called "Telehealth."

Conclusion

Although further verification of TSPA is needed, this pilot study showed that TSPA has the potential to classify the participants for Mind-Body intervention. We propose further development and refinement to maximize reliability and validity and use TSPA to support individuals and families through Telehealth.

Conflict of interest

TS is the inventor of MBFP and TSPA. However, no monetary incentives were received for the training and tools. No other authors have conflicts, and there has been no significant financial support for this work that could have influenced its outcome.

Funding statement

This study received funding from the Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. The grant number is Faculty of Medicine Chiang Mai University FUND-25620118-15666.

Supplement data

The Thai Sensory Profile Assessment Tool (TSPA) can be accessed via DOI 10.17605/OSF.IO/4WV9A for the English version and DOI 10.17605/OSF.IO/4W98M2 for the Thai version.

Ethical statement

The Faculty approved this study of Medicine of Chiang Mai University as a sub-study under the project "The Cellular and Physiologic Mechanism of Mindfulness-Based Flow Practice (MBFP) therapy for Depressive and"

2 June 2022
Anxiety Symptoms. An Exploratory Clinical Trial" by the Faculty of Medicine Chiang Mai university Institutional Review Board (IRB) the Chiang Mai Medical School Ethical committee (study code: FAM-2561-0543). Informed consent All participants were informed and gave their consent before participating.

Reference:

[6.] Srihamjak T, Sawlom S, Munkhevit P. Thai Sensory Profile Assessment Tool. Chiang Mai University. 2007. [in Thai]

2 June 2022

2 June 2022
Figure 1: TSPA Report: blue line shows the sensory preference and orange line is sensory threshold.
Figure 2: Effects of Relaxation on Site and Intensive MBFP on cortisol levels in participants with moderate scores of all sensory preferences and sensory thresholds group (n = 14)
Figure 2: Effects of Relaxation on Site and Intensive MBFP on cortisol levels in participants with moderate scores of all sensory preferences and sensory thresholds group (n = 14)
Figure 3: Effects of Relaxation on Site and Intensive MBFP on cortisol levels in participants with low sensory preference in smell and test (n=3)
Figure 4: Effects of Relaxation on Site and Intensive MBFP on Cortisol Levels in high preference of smell, sight and movement and moderate score of other senses both preferences and thresholds (n=3)

![Graph showing cortisol levels before and after relaxation and mindfulness practice.](image-url)

- **Relaxation onsite**
 - Red line: High smell preference, moderate all sense threshold
 - Orange line: High sight preference, moderate of all sense thresholds
 - Green line: High movement preference, moderate of all sense threshold

- **Mindfulness practice**
 - Red line: High smell preference, moderate all sense threshold
 - Orange line: High sight preference, moderate of all sense thresholds
 - Green line: High movement preference, moderate of all sense threshold

The graphs illustrate the changes in cortisol levels before and after relaxation and mindfulness practice for individuals with different sensory preferences and thresholds.