Targeted reduction of airborne viral transmission risk in residential aged care

Amanda Brass1,2, Andrew P Shoubridge1,2, Nicolas Larby3, Levi Elms1,2, Sarah K Sims1,2,
Erin Flynn1,2,4, Caroline Miller1,5, Maria Crotty6,7, Lito E Papanicolas1,2,8, Steve L Wesselingh1, Lidia Morawska9, Scott C Bell10,11, Steven L Taylor1,2,*, Geraint B Rogers1,2,*

1The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
2The Microbiome and Host Health Programme, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
3Aged Care Property Services Management, South Australia, Australia
4National Centre for Epidemiology & Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
5School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
6College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
7Southern Adelaide Local Health Network, SA Health, Adelaide, South Australia, Australia
8SA Pathology, SA Health, Adelaide, South Australia, Australia
9International Laboratory for Air Quality and Health, Queensland University of Technology, Queensland, Australia
10The Prince Charles Hospital, Brisbane, Queensland, Australia
11Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
* Joint senior

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Correspondence:

Name: Dr. Steven L Taylor

Email: steven.taylor@sahmri.com

Phone: +61 (08) 8204 5711.

Address: 5D332, Flinders Medical Centre, Flinders Drive, Bedford Park, South Australia, 5042, Australia

Keywords: Ventilation, airborne transmission, aged care, COVID-19
Abstract

COVID-19 has demonstrated the devastating consequences of the rapid spread of an airborne virus in residential aged care. We report the use of CO₂-based ventilation assessment to empirically identify potential “super-spreader” zones within an aged care facility, and determine the efficacy of rapidly implemented, inexpensive, risk reduction measures.

Main Text

Outbreaks of COVID-19 in residential aged care facilities (RACF) have proven devastating. The combination of high transmission rates and resident vulnerability has led to rates of mortality that are higher than any other setting, including acute care hospital facilities [1]. In response, aged care providers and public health authorities have enacted measures to reduce the risk of SARS-CoV-2 exposure to prevent transmission within facilities. These measures include social distancing, reduced visitation by family members (site lockdowns), the wearing of personal protective equipment (PPE) by staff and visitors, and isolation of those with active infection. The impact of these measures on the well-being and quality-of-life of residents, more than half of whom have reduced cognitive ability or dementia [2], has been considerable [3]. The need to identify less disruptive measures to protect RACF populations from airborne viral transmission (including respiratory viruses other than SARS-CoV-2) is urgent.

Current strategies to reduce rates of indoor viral transmission can be placed into two broad categories; 1) those that reduce the susceptible occupant population, including occupancy limits, vaccination programs, and PPE use, and 2) those that prevent the accumulation of viable viral particles within the circulating air of an RACF environment [4]. This latter group of measures is more effective as it doesn’t require any behaviour changes to staff or visitors. It also offers long-term advantages by avoiding the need to place additional burden on facility residents and staff, or the need to limit access to facilities by family members. Several
strategies to reduce the build-up of viable viral particles can be employed, including the use of high-efficiency particulate absorbing (HEPA) air-filtration, or ultraviolet C (UVC) disinfection devices [3,4]. However, most effective approach is arguably to remove viral particles through increased ventilation [5].

Outdoor venues are associated with a low relative risk for airborne viral transmission due to the rapid clearance of virus-containing airborne particles through natural air movement. Indoor spaces, where air exchange is considerably reduced, are estimated to have a SARS-CoV-2 transmission risk that is more than 18 times higher [6]. Increasing rates of air exchange within the built environment would reduce this transmission risk substantially. The principal reason that this strategy has not been employed widely is the considerable costs associated with heating or cooling external air [7]. Instead, many facilities, including RACFs, typically employ high rates of air recirculation, inadvertently resulting in recirculation of the virus as well [5].

Increasing ventilation within facilities that house vulnerable populations has been advocated widely during the COVID-19 pandemic [8]. However, implementation of ventilation measures has been limited. The ability to target increases in air exchange to those zones within facilities that carry the highest transmission risk would greatly increase the financial feasibility of improving ventilation. Here we report the use of a rapid, low-cost, strategy to empirically identify potential “super-spreader” zones within an RACF, and the efficacy of the targeted ventilation-based risk reduction measures that were deployed in response.

While atmospheric CO₂ levels remain relatively constant, indoor CO₂ levels increase as a result of human respiration. Elevated CO₂ levels have been used widely as a marker of indoor air quality and, relative to occupancy, a measure of air exchange and ventilation efficiency. Indeed, such measures correlate strongly with infectious disease outcomes, such as absenteeism due to acute respiratory infection [9]. CO₂ levels can be determined accurately
using inexpensive monitors, allowing for high transmission risk zones within facilities to be identified rapidly and mitigation strategies to be enacted. We used 62 wall-mounted remotely-monitored CO₂ sensors (Aranet4 Pro Sensors, Radical, Australia) to monitor CO₂ levels over a four-week period within a two-storey 110-bed RACF in Australia. During this period, all staff and visitors to the RACF were required to wear N95 face masks (or equivalent), goggles or face shield, and be vaccinated against COVID-19. Deployment of CO₂ monitors covered the majority of accessible sites within the facility, including “back of house” areas used by staff only (n=17) and mixed communal areas used by both staff and residents (n=45). The zones employed a range of heating, ventilation, and air-conditioning (HVAC) systems, including evaporative cooling with 100% fresh ducted air, refrigerated reverse cycle ducted air, refrigerated reverse cycle split system, and exhaust air. Each monitor also captured temperature, humidity, and pressure, enabling data normalisation.

Over the course of the survey period, none of the 45 mixed zones showed indications of poor ventilation, with the highest peak CO₂ concentration being 830 ppm, which was in the resident dining room during the lunch period. However, of the 17 assessed back of house zones, which were only accessible to staff, 3 were identified as high transmission risk based on CO₂ levels exceeding 1000 ppm for a period of 15 min or more (levels logged at 60 second intervals). These included one of the two staff lunch rooms and two of the three staff meeting rooms (Figure 1A). Interventions were identified based on the zone usage, the HVAC modality employed, and the ability to achieve improved ventilation rapidly and at low relative cost.

High risk zone 1: The staff lunch room had a floor area of 19 m² with a refrigerated reverse cycle split system HVAC. Despite room density restrictions of 1 person per 4 m², high, regular, and prolonged CO₂ peaks were identified in the lunch room corresponding to meal breaks (Supplementary Figure 1). Of note, staff were not masked while eating and CO₂
levels did not return to baseline levels for several hours after these peak periods. To quantify room ventilation, a subsequent CO₂ decay curve was generated over a 6-hour period, during which the staff lunch room was not occupied. The resulting air changes per hour (ACH) was 0.65 (Figure 1B), which is 10-fold lower than the Australian Standards for ventilation in a healthcare setting [10]. Discussion with the facility’s environmental management team identified that installation of an extraction fan at a cost of $3400 AUD would effectively ventilate the room. The fan was set to extract air at 100 L/s and connected to a room sensor allowing usage to be limited to times of room occupancy. Retesting ventilation by CO₂ decay curve after extraction fan installation yielded an improved ACH of 5.30 (Figure 1B). Ongoing running costs of the extraction fan were calculated by an AC current and voltage data logger to be $40.20 AUD per year.

High risk zones 2 and 3: Two staff meeting rooms also had CO₂ peaks indicative of high transmission risk. The first room had a floor area of 50 m² and a refrigerated reverse cycle ducted air system controlled by a remote control. CO₂ peaks in this room were less frequent than the staff lunch room, with a total of two peaks over 1000 ppm during the survey period. It was noted by facility management that the HVAC was rarely switched on during meetings, potentially explaining these CO₂ peaks. Intervention strategies were therefore minimal, with the HVAC system programming adjusted to automatically turn on during times when the room is in use. The second room had a floor area of 20 m² and a refrigerated reverse cycle split system HVAC. Like the first meeting room, a total of two peaks above 1000 ppm were recorded in this room during the survey period. However, unlike the first meeting room, existing HVAC could not be easily modified to improve ventilation. Interim protocols were therefore implemented, continuing a mandated mask use and room density limit for staff using this room.
Globally, the COVID-19 pandemic has again underlined the vulnerability of those living in residential aged care to airborne transmission of viral infections. In addition to COVID-19, seasonal respiratory viruses, including seasonal influenza and respiratory syncytial virus (RSV) represent a major cause of morbidity and mortality for residents [11]. Indeed, following a period of reduced exposure, the seasonal influenza peaks in 2022 are predicted to pose a significant health threat, as seen in the 2021-2022 winter in the Northern Hemisphere [12]. Targeting effective risk reduction measures to areas that are likely to contribute disproportionately viral spread could provide considerable protection.

In our analysis, passive and simulated CO$_2$ levels were used to identify high transmission risk zones. Such approaches are simple and readily deployable, however do not account for other factors affecting transmission risk, such as PPE and level of interaction [13]. CO$_2$ peaks were also based on levels recommended by The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) of less than 600 ppm above outdoor concentrations (approximately, 420 ppm) [14]. The recommendation of these thresholds is based on consideration of a number of factors, including comfort. Alignment of target levels more closely with empirically assessed viral transmission rates would enable further protocol refinements.

The approach we describe has the potential to be applied beyond aged care. Rapid, targeted, improvements in air quality management, based on empirical facility surveys, could substantially reduce airborne pathogen transmission in other high-risk contexts, and warrant consideration in settings such as detention facilities, hospitals, or schools.

Competing interests

The authors declare that they have no competing interests.
This study was funded through the Australian Medical Research Future Fund (GNT2005904).

SLT is supported by an NHMRC Emerging Leader Fellowship (GNT1195421). GBR is supported by an NHMRC Senior Research Fellowship (GNT1155179) and a Matthew Flinders Professorial Fellowship. CM is supported by an NHMRC Emerging Leader Fellowship (GNT1195421).
REFERENCES

Figure 1: A) CO₂ peaks over a one-week period for the identified high risk transmission zones. B) CO₂ decay curve for the staff lunch room before (orange) and after (green) extraction fan installation. Air changes per hour (ACH) calculated by fitting non-linear regression.
Supplementary Figure 1: CO₂ tracing of a 24 h period in the staff lunch room over the course of a week. A) Prior to the installation of the extraction fan, showing high prolonged peaks between 10am-2pm and 7pm-10pm, corresponding with staff lunch and dinner breaks. B) After the installation of the extraction fan, showing reduced peaks.