Is point wise analysis of the Humphrey visual field feasible as a primary outcome in idiopathic intracranial hypertension?

Susan P Mollan, FRCOphth 0000-0002-6314-4437
Samuel Bodoza,
Áine Ní Mhéalóid, 0000-0003-1920-3513
James L Mitchell,
Neil R. Miller,
Giovanni Montesano, 0000-0002-9148-2804
David P Crabb, 0000-0001-8754-3902
Michael Wall,
Kristian Brock, 0000-0002-3921-0166
Alexandra J Sinclair, 0000-0003-2777-5132

Author affiliations
Mollan, Ní Mhéalóid - Birmingham Neuro-Ophthalmology, University Hospitals Birmingham, Queen Elizabeth Hospital, Birmingham, UK
Bodoza – Informatics, University Hospitals Birmingham, Queen Elizabeth Hospital,
Birmingham, UK
Miller, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Crabb, Montesano -Division of Optometry and Visual Sciences, School of Health Sciences, City, University of London, London, UK

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Corresponding Author: Alex Sinclair, a.b.sinclair@bham.ac.uk, takes full responsibility for the review and interpretation, and the conduct of the research. Alex Sinclair has full access to all of the data.

Keywords: Visual field; point sensitivity; idiopathic intracranial hypertension; pseudotumor cerebri; perimetric mean deviation

Funding information

AJS was funded by a National Institute for Health Research (NIHR) clinician scientist fellowship (NIHR-CS-011-028) and the Medical Research Council, UK (MR/K015184/1) for the duration of the study. AJS is funded by a Sir Jules Thorn Award for Biomedical Science. The view expressed are those of the authors and not necessarily those of the UK National Health Service, the NIHR, or the UK department of Health and Social Care.

Role of Funder/Sponsor: The NIHR and the MRC had no role in the design or conduct of the study; no role in collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; and no role in the decision to submit the manuscript for publication.in the design, execution or write up of this trial.
Competing interests

Professor Mollan reports other Invex Therapeutics, other Heidelberg engineering during the conduct of the study; other from Chugai-Roche Ltd, other from Janssen, other from Allergan, other from Santen, other from Roche, other from Neurodiem, outside the submitted work.

Dr. Brock reports other Invex Therapeutics, during the conduct of the study; other from AstraZeneca, other from GlaxoSmithKline, other from Eli Lilly, other from Merck, outside the submitted work.

Professor Sinclair reports personal fees from Invex therapeutics in her role as Director with stock holdings, during the conduct of the study; other from Allergan, Novartis, Cheisi and Amgen outside the submitted work.

All other authors declare no competing interests.

Data availability statement

Anonymised individual participant data will be made available along with the trial protocol and statistical analysis plan. Proposals should be made to the corresponding author and will be reviewed by the Birmingham Clinical Trials Unit Data Sharing Committee in discussion with the Chief Investigator. A formal Data Sharing Agreement may be required between respective organisations once release of the data is approved and before data can be released.
Abstract

Purpose

Using the Idiopathic Intracranial Hypertension Weight Trial (IIH:WT) data, this study aimed to determine if point analysis of the Humphrey visual field (HVF) could be more informative than the perimetric mean deviation (PMD) as an IIH trial outcome measure.

Methods

IIH:WT was a randomized controlled trial that recruited 66 people with active IIH (mean ± standard deviation age 32 ± 7.8 years). Event-based analysis using a pointwise analysis of the numerical sensitivity data was performed. The number of participants that would be eligible for analysis was calculated when the data were enriched to reflect a medically treated cohort defined as a PMD between -2dB to -7dB.

Results

The HVF 24-2 mean ± standard deviation PMD in the worse eye was −3.5 ± 1.1dB, (range, −2.0 to −6.4dB), and point sensitivity showed a preference for peripheral and blind spot locations. Those points between 0 and -10dB demonstrated negligible ability to improve compared with those between -10dB and -25dB. In evaluating feasibility for a medical intervention trial, 346 points were available for analysis between -10dB and -25dB bilaterally compared with 4123 in baseline sensitivities of 0 to -10dB.

Conclusions

Mildly affected baseline sensitivities were unlikely to show considerable change over 24 months. There were fewer points available for analysis and greater variability if moderately affected baseline points were chosen. If point analysis was used as an outcome measure in a medical intervention trial, the majority of points would not demonstrate clinically meaningful change, thus offering little advantage over PMD.
TRIAL REGISTRATION

clinicaltrials.gov Identifier: NCT02124486.
Introduction

Idiopathic Intracranial Hypertension (IIH) is characterised by raised intracranial pressure (ICP) that in most cases causes papilloedema with risk of permanent visual loss. It is associated with systemic metabolic dysfunction and central obesity. The incidence of IIH is increasing in line with the escalation in worldwide obesity rates. The IIH weight trial (IIH:WT) provided evidence that weight loss through bariatric surgery resulted in long-term remission of ICP compared with a lifestyle weight management intervention.

Measurable outcomes are vital to provide evidence when treating patients, and the perimetric mean deviation (PMD), among other end points such as lumbar puncture opening pressure, has been used as an end point in IIH clinical trials. There are recognised limitations of visual field testing in IIH, such as the time needed to complete the test and the need to perform accurate reliable visual field testing. There is thus an established performance learning effect that impacts accuracy of initial performances. It has also been recently been observed that cognitive dysfunction that occurs in patients with IIH can affect the reliability of visual fields. In the IIH Treatment Trial (IIHTT), a 0.71dB difference in the PMD was found between the two trial arms and was related to clinically significant findings, such as noteworthy improvements in papilloedema, ICP as measured by lumbar puncture, and improved quality-of-life measures.

There are a number of different ways to evaluate visual field damage. PMD, is an event based analysis, as implemented in the Humphrey Field Analyzer (HFA, Zeiss Meditec, Dublin, CA), is measured in decibels (dB) using a logarithmic scale and is calculated from all of the total deviation points with weighting inversely proportional to the expected variance.
at each location in a normal population, effectively giving more weight to the central
locations.\textsuperscript{18-20} However, peripheral locations are more affected than central locations in
patients with IIH.\textsuperscript{17} Pointwise approaches have the advantage of being more sensitive to
localized loss than other types of global analyses as they retain the spatial representation of
the visual field. Pointwise analysis of the IIHTT detailed significant improvement in the visual
function in the active treatment arm compared with placebo.\textsuperscript{14} To apply this analysis to
future trials, or indeed to consider restricting the analysis to a particular subset of points in
the visual field, the number and location of points that could be predicted to change in an
IIH intervention trial needs to be determined. In addition, the amount of change in these
points needs to be established to determine if sufficient points have the ability to change to
an extent that would be clinically meaningful. The purpose of this study was to characterise
the pointwise pattern of visual field change in a cohort of people with active IIH who were in
a setting of a randomised clinical trial and to determine if point analysis would be feasible as
an outcome measure for future IIH clinical trials.

\textit{Materials and methods}

IIH:WT was a prospective, multi-center, open-label, parallel-group, controlled trial in which
participants with IIH were randomized in a 1:1 ratio to a bariatric surgery pathway or the
Weight Watchers\textsuperscript{TM} programme, a community weight management intervention (CWI). The
study was approved by the Ethics Review Board of the National Research Ethics Committee
West Midlands –The Black Country approved IIH:WT (14/WM/0011). In accordance with the
Declaration of Helsinki, all subjects gave written informed consent to participate in the
study, and the detailed clinical trial methodology has been published.\textsuperscript{21}
Subjects

Women (18-55 years) with a body mass index over 35 kg/m² were eligible if they had a clinical diagnosis of active IIH meeting the criteria outlined by Friedman et al. All participants were recruited between March 2014 and October 2017.

Evaluations were performed at baseline, 12 months, and 24 months. The primary outcome was ICP as measured by lumbar puncture; secondary outcomes included lumbar puncture opening pressure at 24 months as well as visual acuity, contrast sensitivity, PMD, and quality-of-life measures. Optic nerve head swelling was measured using spectral domain optical coherence tomography (SD-OCT; Spectralis, Heidelberg Engineering). Three masked neuro-ophthalmologists used colour fundus photographs to assess the severity of papilloedema using the Frisén classification grades of 0 to 5.

At each visit, Humphrey Visual Fields with a 24-2 Swedish Interactive Threshold Algorithm (SITA) standard test pattern using a size III white stimulus were performed. HVF were included for analysis if they were considered reliable as defined by less than 15% false-positive rates and 30% fixation losses and false-negative rates according to previous criteria. In this analysis, the raw values of the patient’s retinal sensitivity at each of the HVF 24-2 predetermined points were extracted from pdf scans of the HVFs using a custom data extraction tool based around the Python package ‘hvf extraction script’. This script used Google’s Tesseract Optical Character Recognition to distinguish text inside a digital image and return the relevant text into a useable format. Although the ‘hvf extraction script’ was not originally intended for use on scanned documents, we found that by cleaning the images before processing, we could obtain values for a majority of the retinal sensitivity.
points. To account for any missing data between the original values and the data extraction tool, we completed a manual validation of the whole cohort point retinal sensitivity to eliminate missing data and to detect any discrepancies.

Statistical Analysis

Analysis of clinical data was based on the full data set according to the statistical analysis plan. In this evaluation, analyses were based on a per protocol analysis. Statistical analysis was performed using R v3.6.3 (R Foundation for Statistical Computing, Vienna, Austria). Data were reported with mean and standard deviations (SD) for normally distributed variables (median and range for non-parametric data). Hierarchical linear regression models were used to analyse repeated measures of the primary and secondary outcomes and to estimate differences adjusted for baseline values. In these models, population-level effects (also known as fixed effects) comprised the intercept, time as a factor variable, and the 2-way interaction of treatment arm and time as a factor variable to model-changing treatment effects over time. Group-level effects (also known as random effects) comprised patient-level adjustments to the intercept. Missing clinical data, due to any absence or choice, were excluded from the analysis and not imputed. The threshold for statistical significance was pre-specified at $p<0.05$.

Results

Characteristics of the study population are summarized in Table 1. Headache was the predominant reported symptom and also was the most vexing symptom when participants ranked the importance of their symptoms; visual symptoms, as defined by the participants,
were reported by 77% (supplemental table 1) and were the second-most bothersome aspect of the condition.

The cohort had marked variability in PMD (worse eye) of $-3.6 \pm 3.7$ dB (mean ± SD) (n=65) at baseline; $-2.4 \pm 2.5$ dB (n= 58) at 12 months; and $-3.1 \pm 2.5$ dB at 24 months. There was improvement in the PMD in both trial arms. In the bariatric surgery arm, the PMD improved from $-3.6 \pm 3.8$ dB to $-2.8 \pm 2.6$ dB at 12 months, and in the CWI arm, from $-3.5 \pm 3.8$ dB to $-2.0 \pm 2.3$ dB (adjusted mean difference= -0.5, 95% Confidence Interval (CI)): -2.0 - 1.0, $p=0.526$) (Table 2). Papilloedema decreased in both arms, with a median Frisén grade of 2 (IQR 2-3) at baseline, decreasing to 1 (IQR 1-2) in the bariatric arm, and median Frisén grade 2 (IQR 2-3) decreasing to 1 (IQR 1-2) in the CWI arm at 12 months. This was reflected in the global RNFL OCT imaging, showing significant improvement in both arms (Table 2). These improvements occurred in the context of lowering ICP over the course of the study, with the mean ± SD LP opening pressure decreasing from $34.8 \pm 5.8$ cm CSF at baseline to $26.4 \pm 8.1$ cm CSF at 12 months in the bariatric surgery arm (-8.7 ± 1.3, p<0.001). In the CWI arm, the mean ± SD LP opening pressure decreased from $34.6 \pm 5.6$ cm CSF at baseline to $32.0 \pm 5.2$ cm CSF at 12 months (-2.5 ± 1.4, p=0.084). The adjusted mean difference between the two arms was -6.0 ± 1.8, $p=0.001$ at 12 months and -8.2 ± 2.0, $p<0.001$ at 24 months.7

**Pointwise sensitivity – whole cohort at baseline**

The whole cohort HVF were characterised at baseline by the sensitivity of each point on the 24-2. This showed that the central points were less affected than the peripheral points (Figure 1a). The whole cohort then was categorised according to the extent of their reduced visual function at baseline as per PMD category of ≥ -2dB (Figure 1b); between -2dB to -7dB
(Figure 1c); and ≤-7dB (Figure 1d). As the visual function declined, the distribution of the
average deviation points becomes increasing prominent in the periphery and around the
blind spot.

**Pointwise location sensitivity – whole cohort at 12 and 24 months**

To understand the pointwise change over the course of the study, we categorised the points
by their individual pointwise sensitivity at baseline. We then plotted the mean change in
sensitivity at each point from the visual field from baseline to 12 and 24 months (Figure 2).

Points with baseline sensitivities between 0 and -10dB showed small changes over time
points (0 to 5dB, mean 0.02 ± 3.1; -5 to -10dB, mean 2.4 ± 4.7 at 12 months) (Figure 2; Table
3). Points with sensitivities worse than -10dB demonstrated a larger improvement over
time; for example, between -10 and -15dB, mean ± SD was 5.78 ± 6.10dB; -15 to -20dB,
mean was 11.10 ± 5.02dB (Figure 2; Table 3) at 12 months. For points with baseline
sensitivities of -35 to -30dB, there was a large standard deviation (mean, 16.51 ± 13.75dB )
(Figure 2; Table 3) at 12 months.

When points with baseline sensitivity between -10 and -25dB were analysed for the whole
cohort, mean change at 12 months was 8.53 ± 6.75dB, increasing further to 9.61 ± 6.99dB
by 24 months. (Table 3; Table 4)

A population defined by a PMD between -2dB and -7dB at baseline was identified and
analysed to simulate a medically treated population. In this enriched population there was a
similar distribution of changes in the point-sensitive deviation at baseline (Figure 2b).
Overall, the vast majority of data points that could be analysed were in the 0 to -10dB
category (n=4123), compared with points between -10dB and -25dB (n=346) and -25dB to -5dB, (n=487), respectively. (Table 5)

**Analysis of pointwise sensitivities in the trial cohort**

To establish how point-sensitivity analysis performs in this cohort, we initially looked at the utility of baseline points between -0 and -10dB. As expected, these demonstrated very little change at 12 and 24 months (at 12 months, mean change 0.4 ± 3.5dB; at 24 months, mean change 0.48 ± 4.11 dB). We then selected baseline sensitivities between -10 and -25dB, as we have shown that these have ability to change over time (Figure 2). Indeed, amongst those with baseline -10 to -25dB, it was only when using the whole cohort that the largest mean change was noted: 8.53 ± 6.75dB at 12 months and 9.60 ± 6.99dB at 24 months (Table 4). However, there were fewer points available for analysis n=346 at 12 months and n=329 at 24 months compared with n=4123 at 12 months and n=1844 at 24 months in cases where the baseline pointwise sensitivity ranged from 0 to -10dB. (Table 5) Furthermore, there was little difference between trial arms observed when analysing the points that were between -10 to -25dB at baseline: bariatric surgery arm was 8.75 ± 6.51 dB at 12 months and CWI was 8.16 ± 7.15dB change at 12 months. This was despite a significant difference between baseline and 12 months in the ICP of -6.0cm CSF between the trial arms. Amongst those in the CWI arm who were not on acetazolamide, point sensitivity mean change between baseline and 12 months was 8.03 ±7.26 dB. Despite the significant reduction in ICP found between the bariatric surgery group as compared to CWI, there was little discrimination analysing point sensitivities between bariatric surgery, CWI, CWI with no acetazolamide treatment, and CWI with concurrent use of acetazolamide. (Table 6)
Categorising the population by baseline PMD

To understand how representative a baseline point sensitivity beyond -10dB in one or more points was in an active IIH population, we calculated the number of points ≥-10dB in each individual (Table 7). In the whole cohort, the median number of points on the baseline visual field worse than -10dB was 5 (IQR 2, 13), with 57% of the cohort having at least 2 points worse than -10dB at baseline (Table 7). The population then was enriched to reflect a potentially medically managed cohort, those with a PMD between -2 and -7dB at baseline. In this group at baseline, 42% had 5 points or more that were worse than -10dB. As the number of points required for analysis decreases, more participants are available for inclusion; for example, 73% had at least 2 or more points and 85% had 1 point worse than -10dB. (Table 7) 31% of patients at 12 months and 38% at 24 months would have achieved 5 or more points that improved by 7dB. (Table 8)

Discussion

We have characterised the pointwise pattern of visual field change in a cohort of people with active IIH who were recruited to the IIH:WT. We observed that those with baseline point sensitivities between 0 and -10dB showed small changes over time and, as expected, were unlikely to demonstrate clinically meaningful change over both 12 and 24 months. Points in the -10 to -25dB category did demonstrate change that could be considered clinically meaningful (mean 8.5dB in at least one point in the whole visual field); however, using data between -10 and -25dB generated fewer data points and large standard deviations for analysis. To emphasize how non-representative a baseline point sensitivity beyond -10dB in one or more points was in our active IIH population, we found that even though the median number of points worse than -10dB was five, 43% of all the participants...
had fewer than two points worse than -10 dB at baseline. Hence, data points worse than -
10 dB were not representative of the majority of IIH patients.

Eligibility for the IIH:WT was not determined by PMD criteria. Therefore to enrich the HVF
data to reflect a typically medically managed cohort, we chose the baseline HVF in which
the PMD was between -2 and -7 dB (the range criteria used in the IIHTT\textsuperscript{9}). Amongst this
group (-2 to -7 dB PMD at baseline) 42\% had five points or more worse than -10 dB at
baseline (Table 7). If only two points were required for analysis in the -2 to -7 dB population,
73\% had two or more points worse than -10 dB in either eye at baseline (Table 7). This
indicates that the feasibility of using point analysis as an outcome for an interventional
medical trial would be challenging, as the pool of point-sensitivity data available for
meaningful analysis would be extremely small. Additionally, the participants overall would
be less representative of the whole disease spectrum, which may affect the applicability of
the results being directly translatable to clinical practice. Lastly, test locations with 8 to 18
dB of loss at baseline had a 95\% prediction interval that nearly covered the full
measurement range of the instrument (0-40 dB)\textsuperscript{28}; this results in the retest variability of
these test locations being so poor that there is little signal to be extracted from the
variability related noise.\textsuperscript{29}

There is no universally adopted minimally clinically important change in any given visual
field test parameter in IIH, unlike has been agreed in glaucoma.\textsuperscript{30,31,32} In the IIHTT, effect size
was chosen at 1.3 dB based on a determination of the change in PMD that would alter
patient management by experts. The investigators subsequently concluded that a 0.71 dB
difference in the PMD between the two trial arms was clinically meaningful.\textsuperscript{9,13} This
conclusion was based on significant improvements in lumbar puncture opening pressure, papilloedema (as measured by OCT), and both vision-specific and overall health-related quality of life measures.

Most of the literature analysing HVF data is focused on glaucoma, the most common optic neuropathy. In glaucoma, visual field progression equal to or faster than −0.5 dB per year for at least five abnormal test locations at baseline has been found to be clinically significant, as have changes from baseline beyond the 5% probability levels for the Glaucoma Change Probability analysis, in five or more reproducible points, or visual field locations. Pointwise linear regression has been demonstrated to be a sensitive technique for detecting rate of progressive deterioration in visual fields in glaucoma. The IIHTT investigators found that pointwise visual field change improvements were identified around the blind spot and the nasal area, possibly reflecting the reduction in optic head nerve swelling as papilloedema resolved. Overall, there are fundamental differences between the two diseases, which could potentially confound the applicability of glaucoma outcome measures to IIH trials. Other tools that assess visual function, such visual acuity (Snellen or LogMar), colour vision, and contrast sensitivity, have not been found to be discriminatory in medically managed IIH. The IIH patient experience, as measured by specific quality-of-life tools, was found to be influenced mainly by PMD in the better eye, visual acuity in the worse eye, visual symptoms, and pain symptoms in the IIHTT cohort. Other studies analysing global quality of life tools (SF-36) have identified headache as a major factor. Indeed, in one study, whilst both headache and vision featured in the top 10 priorities, headache ranked higher than vision.
One key limitation of this study is that it only included patients in a well-established disease cohort. Hence, the results may not be applicable to those with recently diagnosed IIH, as were recruited to the IIHTT, and may not be applicable to severely affected patients that may require emergency surgery. Regression to the mean was demonstrated in our cohort for the mean deviation (Figure 2), and although this occurs in many diseases over time, it provides evidence that a control arm is fundamental to the design of interventional trials in IIH.

As we demonstrated in this study and as has been reported by others the visual field deficit in IIH typically occurs across the full VF and increases with eccentricity. Unfortunately, these are the very points that show the largest variability in visual field testing. Visual field tests also have been found to be unreliable when visual field locations have sensitivity below 15 to 19 dB because of a reduction in the asymptotic maximum response probability. In addition to these limitations of the test, there are demonstrable changes in cognition in the domains of attention and executive function that have been found in IIH patients and that directly affect the performance indicators in visual field testing.

These data suggest that although point analysis of the HVF in active, medically treated IIH is possible, this technique is considerably compromised as the amount of data available to demonstrate a clinically meaningful change is small. Hence, point analysis seems to offer no advantage over analysis of global PMD scores in this population. Future studies may consider investigating the use of a larger stimulus size which has been demonstrated to retain the ability to detect defects, lower retest variability and improve the useful dynamic.

16
range of the instrument.\textsuperscript{46,47} Recently, archetypal analysis, an unsupervised machine-
learning technique, has been reported in IIH. Archetypal analysis could help reduce
dependence on subjective clinician visual field interpretation and could improve the
accuracy and uniformity of visual field analysis by monitoring regional defects.\textsuperscript{48} In the
IIHTT, the investigators identified a subtle, mild general HVF depression pattern in the
participants at baseline. This is a notable finding, as visual fields with global diffuse damage
tend to be more variable than fields with focal blinding damage and other regions that are
normal,\textsuperscript{49} further highlighting that more research on the utility of automated visual fields in
IIH is required.

In this study of patients with active IIH, pointwise sensitivity analysis did not confer an
advantage over global PMD. As expected, baseline points that were better than -10dB had
little room to improve over time and, thus, offered little utility for analysis. If the generic
threshold for a clinically meaningful change of 7dB, as suggested by the National Eye
Institute (NEI) of the National Institutes of Health (NIH) for glaucoma treatment trials, is
required in IIH treatment trials, baseline points in the range of -10 to -25dB would be
needed for analysis. However, this approach appears not to be feasible in IIH as in our study
there were too few data points available for analysis, and these points are known to be
more variable as they become more negative. Even when a limited threshold was set to
determine a clinically meaningful change, point analysis did not appear to offer an
advantage over global PMD. Consequently, point sensitivity analysis in medically treated IIH
is likely to be prohibitive to running clinical trials and unrepresentative of the disease
spectrum seen in IIH.
Acknowledgements

None

References


35. De Moraes CG, Liebmann JM, Levin LA. Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma. Prog Retin Eye Res. 2017 Jan;56:107-147


41. Mollan S, Hemmings K, Herd CP, Denton A, Williamson S, Sinclair AJ. What are the research priorities for idiopathic intracranial hypertension? A priority setting
partnership between patients and healthcare professionals. BMJ Open. 2019 Mar
15;9(3):e026573


Figure legends

Figure 1

A) The retinal sensitivity at baseline for each location of the Humphrey visual field for the whole cohort, within eye. All patients are used.

B) The retinal sensitivity at baseline for each location of the visual field for those with a PMD of -2dB or better.
The retinal sensitivity at baseline for each location of the visual field for those with a PMD between -2dB and -7dB.

The retinal sensitivity at baseline for each location of the visual field for those with a PMD worse than -7dB.

**Figure 2**

A) The mean change in deviation from baseline (and 95% confidence intervals) to 12 months and 24 months in subsets of points classified by baseline deviation. All patient eyes are used. Categories with at least 10 observations at each time point are shown. The sizes of the groups are naturally different, and this is reflected in the widths of the confidence intervals.

B) The mean change in deviation from baseline (and 95% confidence intervals) to 12 months and 24 months in the population defined by a PMD between -2dB and -7dB at baseline (simulation of a medically treated population).

**Table 1: IIH:WT baseline characteristics**

<table>
<thead>
<tr>
<th></th>
<th>Total (n= 66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years at baseline (mean ± SD)</td>
<td>32 ± 7.8</td>
</tr>
<tr>
<td>Duration of IIH diagnosis (median, IQR)</td>
<td>1.1 (0.5 to 2.6)</td>
</tr>
<tr>
<td>Number on acetazolamide (%)</td>
<td>19 (29%)</td>
</tr>
<tr>
<td>Opening LP pressure, cmCSF (mean ± SD)</td>
<td>35.5 ± 7.0</td>
</tr>
<tr>
<td>Weight, kg (mean ± SD)</td>
<td>118.5 ± 21.1</td>
</tr>
<tr>
<td>BMI (weight (kg)/ height (m²) (mean ± SD)</td>
<td>43.9 ± 7.0</td>
</tr>
</tbody>
</table>
Where there are missing data, the numbers in the category are indicated.

SD: standard deviation, IQR: interquartile range.

Table 2

Visual function and optic nerve head status as measured by SD-OCT at baseline and 12 months

<table>
<thead>
<tr>
<th></th>
<th>Baseline mean value (±SD), number</th>
<th>12 months mean value (±SD), number</th>
<th>Adjusted mean difference in change at 12 months (95% C.I), p</th>
<th>Difference between arms at 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bariatric surgery</td>
<td>CWI</td>
<td>Bariatric surgery</td>
<td>CWI</td>
</tr>
<tr>
<td>Visual Acuity LogMAR</td>
<td>0.0 (0.2), 33</td>
<td>0.0 (0.2), 30</td>
<td>0.0 (0.2), 28</td>
<td>-0.1 (0.1); (-0.2, 0.0), p=0.058</td>
</tr>
<tr>
<td>Contrast Sensitivity</td>
<td>1.7 (0.1), 33</td>
<td>1.7 (0.1), 29</td>
<td>1.7 (0.1), 28</td>
<td>0.0 (0.1); (0.0, 0.1), p=0.463</td>
</tr>
<tr>
<td>Perimetrior Mean Deviation</td>
<td>-3.6 (3.5), 32</td>
<td>-3.5 (3.8), 33</td>
<td>-2.8 (2.6), 29</td>
<td>-2.0 (2.3), 29</td>
</tr>
<tr>
<td>OCT RNFL Average</td>
<td>148.8 (99.1), 32</td>
<td>161.7 (95.7), 32</td>
<td>103.0 (27.4), 29</td>
<td>111.8 (33.1), 28</td>
</tr>
<tr>
<td>(μm)</td>
<td></td>
<td></td>
<td>14.5), p=0.004</td>
<td>19.3), p=0.001</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>

All measures are of worse eye. Negative values in the mean difference and adjusted mean difference favour surgical arm. C.I: confidence interval; SD-OCT: spectral-domain optical coherence tomography; RNFL: retinal nerve fibre layer; SD: standard deviation.
Table 3

Number of points and mean change in point sensitivity in test locations categorized by the baseline point sensitivity subgroup at 12 and 24 months.

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Baseline point sensitivity subgroup (dB)</th>
<th>Number of points</th>
<th>Mean at baseline (dB)</th>
<th>Mean change from baseline</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[-20, -15]</td>
<td>103</td>
<td>-17.029126</td>
<td>11.0873786</td>
<td>5.01977813</td>
</tr>
<tr>
<td></td>
<td>[-15, -10]</td>
<td>176</td>
<td>-11.721591</td>
<td>5.78409091</td>
<td>6.07843751</td>
</tr>
<tr>
<td></td>
<td>[-10, -5]</td>
<td>711</td>
<td>-6.3614627</td>
<td>2.44303797</td>
<td>4.74140335</td>
</tr>
<tr>
<td></td>
<td>[-5, 0]</td>
<td>3412</td>
<td>-1.6770223</td>
<td>-0.0219812</td>
<td>3.03103034</td>
</tr>
<tr>
<td></td>
<td>[0, 5]</td>
<td>661</td>
<td>1.56278366</td>
<td>-2.1527988</td>
<td>3.10219065</td>
</tr>
<tr>
<td></td>
<td>[-10, -5]</td>
<td>652</td>
<td>-6.4033742</td>
<td>2.89723926</td>
<td>4.54979533</td>
</tr>
<tr>
<td></td>
<td>[-5, 0]</td>
<td>2784</td>
<td>-1.7406609</td>
<td>-0.0858477</td>
<td>3.78872898</td>
</tr>
<tr>
<td></td>
<td>[0, 5]</td>
<td>480</td>
<td>1.65</td>
<td>-2.2729167</td>
<td>3.66420589</td>
</tr>
<tr>
<td></td>
<td>[5, 10]</td>
<td>10</td>
<td>7.4</td>
<td>-10.2</td>
<td>4.51663592</td>
</tr>
</tbody>
</table>
Table 4

Number of points and mean change in point sensitivity over time in test locations with a baseline point sensitivity between -10 and -25dB, categorized by trial arm and use of acetazolamide.

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Group</th>
<th>Number of points between -10 and -25dB</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Whole cohort</td>
<td>346</td>
<td>8.53</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>CWI</td>
<td>127</td>
<td>8.16</td>
<td>7.15</td>
</tr>
<tr>
<td></td>
<td>CWI, Acetazolamide</td>
<td>22</td>
<td>8.77</td>
<td>4.31</td>
</tr>
<tr>
<td></td>
<td>CWI, No acetazolamide</td>
<td>105</td>
<td>8.03</td>
<td>7.62</td>
</tr>
<tr>
<td></td>
<td>Bariatric surgery</td>
<td>219</td>
<td>8.75</td>
<td>6.51</td>
</tr>
<tr>
<td>24</td>
<td>Whole cohort</td>
<td>329</td>
<td>9.60</td>
<td>6.99</td>
</tr>
<tr>
<td></td>
<td>CWI</td>
<td>118</td>
<td>11.50</td>
<td>7.09</td>
</tr>
<tr>
<td></td>
<td>CWI, Acetazolamide</td>
<td>15</td>
<td>7.00</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>CWI, No acetazolamide</td>
<td>103</td>
<td>12.16</td>
<td>7.17</td>
</tr>
<tr>
<td></td>
<td>Bariatric surgery</td>
<td>211</td>
<td>8.55</td>
<td>6.71</td>
</tr>
</tbody>
</table>

CWI: community weight management intervention arm.
In an enriched population, defined by a PMD between -2dB and -7dB at baseline, the number of point sensitives were categorized by the location point sensitivity.

<table>
<thead>
<tr>
<th>Baseline point sensitivity subgroup</th>
<th>Time point (months)</th>
<th>Number of points that could be analysed</th>
<th>Mean (dB)</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to -10dB</td>
<td>12</td>
<td>4123</td>
<td>0.40</td>
<td>3.51</td>
</tr>
<tr>
<td>0 to -10dB</td>
<td>24</td>
<td>3436</td>
<td>0.48</td>
<td>4.11</td>
</tr>
<tr>
<td>-10dB to -25dB</td>
<td>12</td>
<td>346</td>
<td>8.53</td>
<td>6.75</td>
</tr>
<tr>
<td>-10dB to -25dB</td>
<td>24</td>
<td>329</td>
<td>9.60</td>
<td>6.99</td>
</tr>
<tr>
<td>-25dB to -35dB</td>
<td>24</td>
<td>445</td>
<td>12.64</td>
<td>9.345</td>
</tr>
</tbody>
</table>

Longitudinal mean pointwise location sensitivity changes in those with point sensitivities between -10dB to -25dB, categorized by treatment at 12 and 24 months.

<table>
<thead>
<tr>
<th></th>
<th>Total cohort</th>
<th>Bariatric surgery</th>
<th>ALL CWI</th>
<th>CWI (no concurrent acetazolamide treatment)</th>
<th>CWI and concurrent use of acetazolamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (±SD), number</td>
<td>Effect size</td>
<td>Mean (±SD), number</td>
<td>Effect size</td>
<td>Mean (±SD), number</td>
<td>Effect size</td>
</tr>
<tr>
<td>12 months</td>
<td>8.53 (6.8), 346</td>
<td>1.27</td>
<td>8.75 (6.5), 219</td>
<td>1.34</td>
<td>8.16 (7.2), 127</td>
</tr>
<tr>
<td>24 months</td>
<td>9.60 (6.99), 329</td>
<td>1.37</td>
<td>8.55 (6.7), 211</td>
<td>1.27</td>
<td>11.5 (7.1), 118</td>
</tr>
</tbody>
</table>

CWI, community weight management intervention; SD, standard deviation.
Number of participants who had one or more baseline points in either eye with a sensitivity worse than -10 dB in the entire cohort with and without perimetric mean deviation criteria. The median points (IQR) column shows the median number of points ≤ -10 in either eye at baseline (and IQR) in only those patients who have at least one qualifying point.

<table>
<thead>
<tr>
<th>Population</th>
<th>Median points (IQR)</th>
<th>Number of points ≤ -10dB in either eye at baseline (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole cohort</td>
<td>5 (2, 13.5)</td>
<td>58 39 (0.672) 33 (0.569) 26 (0.448) 20 (0.345) 20 (0.345)</td>
</tr>
</tbody>
</table>
Table 8

The percentage and number of participants who had pointwise improvement of 7dB or more from baseline at 12 and 24 months.

<table>
<thead>
<tr>
<th>Number of available points on the HVF 24-2 at baseline</th>
<th>% number of patients (n) who had a pointwise improvement of 7dB or more from baseline at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 months (n=53)</td>
</tr>
<tr>
<td>0</td>
<td>26 (14)</td>
</tr>
<tr>
<td>1</td>
<td>13 (7)</td>
</tr>
<tr>
<td>2</td>
<td>6 (3)</td>
</tr>
<tr>
<td>3</td>
<td>4 (2)</td>
</tr>
<tr>
<td>4</td>
<td>1 (7)</td>
</tr>
<tr>
<td>5</td>
<td>1 (4)</td>
</tr>
<tr>
<td>&gt; 5</td>
<td>30 (16)</td>
</tr>
</tbody>
</table>

PMD, perimetric mean deviation; IQR, interquartile range

Supplemental Table 1

IIH symptoms at diagnosis, as reported by participants following direct questioning

<table>
<thead>
<tr>
<th>Symptoms reported</th>
<th>Total n=66</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>63 (95)</td>
</tr>
<tr>
<td>No</td>
<td>3 (5)</td>
</tr>
<tr>
<td>Visual symptoms*</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>48 (73)</td>
</tr>
<tr>
<td>No</td>
<td>18 (27)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Diplopia</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18 (27)</td>
</tr>
<tr>
<td>No</td>
<td>48 (73)</td>
</tr>
<tr>
<td>Visual Obscurations</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>34 (52)</td>
</tr>
<tr>
<td>No</td>
<td>32 (52)</td>
</tr>
<tr>
<td>Pulsatile Tinnitus</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>49 (74)</td>
</tr>
<tr>
<td>No</td>
<td>17 (26)</td>
</tr>
</tbody>
</table>

*Visual symptoms, as defined by the patient, that did not include diplopia or visual obscurations such as blurred vision or difficulty reading.*