Profiling of immune responses to COVID-19 and vaccination uncovers potent adjuvant capacities of SARS CoV-2 infection to vaccination leading to memory T cell responses with a Th17 signature in cancer patients

Miriam Echaide¹, Ibone Labiano², Marina Delgado²,³, Angela Fernández de Lascoiti ²,³, Patricia Ochoa ³, Maider Garnica¹, Pablo Ramos¹, Luisa Chocarro¹, Leticia Fernández¹, Hugo Arasanz¹,³, Ana Bocanegra¹, Ester Blanco¹, Sergio Piñeiro¹, Miren Zuazo¹, Pilar Morente¹, Ruth Vera²,³, Maria Alsina²,³, David Escors¹*, Grazyna Kochan¹*

¹. Oncoimmunology Group, Navarrabiomed, Fundación Miguel Servet-Hospital Universitario de Navarra-UPNA-IdISNA, Irunlarrea 3, 31008 Pamplona, Spain.

³. Department of Medical Oncology, Hospital Universitario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain.

* Corresponding authors: David Escors (descorsm@navarra.es), Grazyna Kochan (grazyna.kochan@navarra.es), Navarrabiomed, Irunlarrea 3, 31008 Pamplona, Navarra, Spain.

Summary: Immune profiling was performed in oncologic patients to assess responses to SARS CoV-2 and vaccination. COVID-19 disease before vaccination had major consequences for antibody and T cell responses in oncologic patients.
ABSTRACT

Previous studies have shown differing immune responses in cancer patients towards natural infection and vaccination compared to healthy individuals. Therefore, it is yet unclear whether cancer patients show differential responses to SARS CoV-2 natural infection and vaccination with current mRNA vaccines. Immune profiling was performed in three cohorts of healthy donors and oncologic patients: infected with SARS CoV-2, BNT162b2-vaccinated, and vaccinated with previous SARS CoV-2 infection. Vaccine was found to be a poor inductor of S-specific T cell responses compared to natural infection, which acted as a potent adjuvant for vaccination in antibody and T cell responses. Antibodies towards the M protein were a biomarker of disease severity, while the major targets for T cell responses in natural infection were the M and S protein, but not the N protein. T cell responses quickly decayed after 6 months post-vaccination. T cell profiling showed that vaccination expands effector T cells rather than memory T cell subsets unless the subjects had previous COVID-19 disease. Cancer patients with previous COVID-19 and subsequently vaccinated exhibited exacerbated CD8 responses, with elevated IL17 CD4 and CD8 T cell subsets, and neutrophils. Concluding, a previous COVID-19 infection has potent adjuvant effects for vaccination leading to memory T cell differentiation, but with enhanced inflammatory responses in cancer patients.
INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) caused a new outbreak of pneumonia in Wuhan, China, in December 2019 [1]. Since then, it has caused the COVID-19 pandemic [2]. Patients with cancer are thought to be at higher risk of contracting a severe disease leading to death [3]. Patients with cancer often present co-morbidities and risk factors associated with COVID-19 severity, including older age, chronic inflammation and genetic alterations associated with severe disease [2-5]. Patients with cancer are usually immunocompromised by the disease and antineoplastic treatments [3, 6-8]. Another frequent feature in cancer patients is T cell senescence. During aging, T cells proceed towards terminal differentiation by a sequential loss of CD27 and CD28 co-receptor surface expression [9, 10]. T cell senescence is characterized loss of effector functions and impaired anti-viral immunity. Senescent T cells are enriched in effector phenotypes such as effector-memory (CD62L- CD45RA-) and effector T cells (CD62L- CD45RA+), with a loss of central memory (CD62L+ CD45RA-) and naïve (CD62L+ CD45RA+) phenotypes [10]. On top of this, cancers can exacerbate chronic inflammation, which may favour pro-inflammatory cytokine release that may contribute to COVID-19 clinical syndrome [11, 12]. It is yet unclear who these alterations impact immunity against SARS-CoV-2 and responses to vaccination [3, 13, 14].

Immune responses to SARS CoV-2 infection in healthy subjects are diverse and complex [15, 16], and only few studies have addressed this in cancer patients. In general, oncologic patients have shown comparable antibody responses [13, 17-19]. However, T cell responses were strongly reduced in oncologic patients [17]. Although regarded as a risk population, cancer patients were underrepresented in clinical trials assessing vaccine safety and efficacy [20, 21]. Overall, high seroconversion rates were shown with comparable or slightly lower antibody titres in patients with solid tumours compared to healthy donors [19, 20, 22-34]. However, a meta-analysis of 35 studies suggested lower protection by vaccination in oncologic patients [35]. T cell activities towards the S protein [22, 23, 29, 33] showed from insufficient responses [22], lower activation rates [23, 33] or comparable to healthy donors [29].

So far, detailed information on SARS CoV-2 immunity and responses to vaccination in patients with cancer is still lacking [14, 35]. For instance, three of the structural proteins
(S, M and N) are the main components of the coronavirion [36, 37], but only the S protein is included in most vaccine formulations in Europe. Therefore, immune responses towards other structural proteins remain poorly studied [38, 39]. Finally, it is still far from clear whether previous infection affects the responses to vaccination in cancer patients, particularly in T cell immunity.

MATERIALS AND METHODS

Study cohort and design

This study was conducted according to the principles of the Declaration of Helsinki. The study was approved by the Clinical Research Ethics Committees of Hospital Universitario de Navarra and informed consents were obtained for all subjects. Study cohort and design are schematically depicted in supplementary figure S1. Peripheral blood samples from 57 healthy donors (H) and from 40 oncology patients (O) were obtained in the Oncology Unit of the University Hospital of Navarra (HUN), between April and December 2021. Samples corresponded to six study groups, including H donors and O patients with previous SARS CoV-2 infection (H-CoV, n=15; O-CoV, n=10), vaccinated without previous infection (H-V, n=22; O-V, n=20) and vaccinated after having an infection (H-V-CoV, n=10; O-V-CoV, n=10). SARS CoV-2 infection was confirmed by a positive PCR test. A group of H donors without previous infection nor vaccination was included as a control (H-N/N, n=10). The total sample size of the study was established a priori to achieve a minimum power of 0.8 considering a large effect size (f=0.4) using Gpower 3.1 [40]. General clinical characteristics and SARS CoV-2-related parameters of the study cohort are summarized in Table 1 and Table 2, respectively. Infected patients were classified for COVID-19 severity according to the Treatment Guidelines of the NIH (https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/):

0 = **Asymptomatic or Presymptomatic Infection:** Positive for SARS-CoV-2 without symptoms.

1 = **Mild Illness:** Any of the symptoms of COVID-19 without shortness of breath, dyspnoea, or abnormal chest imaging.

2 = **Moderate Illness:** Evidence of lower respiratory disease during clinical assessment or imaging with oxygen saturation (SpO₂) ≥94% on room air at sea level.
3 = Severe Illness: Individuals with SpO$_2$ <94%, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO$_2$/FiO$_2$) <300 mm Hg, a respiratory rate >30 breaths/min, or lung infiltrates >50%.

4 = Critical Illness: Respiratory failure, septic shock, and/or multiple organ dysfunction.

Sample processing, PBMCs reactivation and flow cytometry

Blood collection, PBMC, myeloid cells and T cell purification, activation and flow cytometry were carried out as previously described [41]. The following fluorochrome-conjugated antibodies were used: CD14-Violet Fluor 450 (Ref 75-0149-T100, TONBO), CD11b-PerCP-Cy5-5 (Ref 65-0112-U1, TONBO), CD66b-APC-Cy7 (Ref 130-120-146, Miltenyi), CD54-FITC (Ref 130-104-214, Miltenyi), CD19-PE (Ref 130-113-731, Miltenyi), CD3-APC (Ref 130-113-135, Miltenyi), CD62L-APC (Ref 130-113-617, Miltenyi), CD8-APC-Cy7 (Ref 130-110-681, Miltenyi), CD4-FITC (Ref 130-114-531, Miltenyi), CD27-PE (Ref 50-0279-T100, TONBO), CD28-PE-Cy7 (Ref 130-126-316, Miltenyi), CD8-PE-Cy7 (Ref 130-120-680, Miltenyi), CD4-APC-Cy7 (Ref 25-0049-T100, TONBO), CD154-PerCP-Cy5-5 (Ref 130-122-800, Miltenyi), CD137-PE (Ref 130-110-763, Miltenyi), IFNγ-FITC (Ref 130-113-497, Miltenyi), IL-17-Vio770 (Ref 130-118-249, Miltenyi), CD45RA-FITC (Ref 35-0458-T025, TONBO), CD62L-APC (Ref 130-113-617, Miltenyi).

For T cell activation half a million PBMCs were plated per well in a 96-well plate, and reactivated with 0.8 ng/µl of the following SARS-CoV-2 PepTivators (Miltenyi) separately: PepTivator SARS-CoV-2 Prot_M, PepTivator SARS-CoV-2 Prot_N, PepTivator SARS-CoV-2 Prot_S, PepTivator SARS-CoV-2 Prot_S1, PepTivator SARS-CoV-2 Prot_S+ . S protein PepTivators were mixed. Cells were incubated for 17-19 hours at 37°C, and then treated with 1 µl/ml of Brefeldin A (ThermoFisher Scientific). Cells were washed and stained for flow cytometry.

SARS CoV-2 protein expression and purification

For ELISA and stimulation studies M, S and N proteins were produced using Bac-to-Bac baculovirus expression. Briefly, synthetic genes encoding S1 (1-303 amino acid), full length N and the cytoplasmic domain of the M protein (1-100 amino acid) were fused to histidine tags and cloned. Protein production and purification by Ni-NTA affinity and
size exclusion chromatographies were performed following standard protocols (Bac-to-Bac Thermofisher).

Non-sandwich ELISA

Donor sera were obtained from peripheral blood, centrifuged and frozen at -20°C. For detection of S and N specific antibodies, a 96-well plate was coated with 5 µg/mL of the corresponding protein, followed by blocking with 1X PBS-2% BSA. 1:800, 1:250 and 1:80 sera dilutions were used for detection of anti-S antibodies, anti-N antibodies and anti-M antibodies, respectively. Anti-human IgGs HRP-labelled antibody (ThermoFisher) was used as secondary antibody. ELISAS were developed with 100 µL TMB substrate (Sigma) and read at 450 nm.

Statistical analyses

Statistical analyses were performed with GraphPad 8. Variables under study were tested for normality (Kruskal-Wallis test), homogeneity of variances (F test), and homogeneity (Spearman’s coefficient of variation). Antibody titres and percentages of cell types as quantified by flow cytometry were either not normally distributed or showed high variability. For multi-group comparisons of these variables, non-parametric Kruskal-Wallis tests were performed followed by pair-wise comparisons with Dunn’s test. For experiments involving only two independent groups, the non-parametric U of Mann Whitney was used. The percentages of T cell phenotypes were normally distributed, homogeneous and with comparable variances. In this case, one-way ANOVAs were carried out followed by *a posteriori* pair-wise comparisons with Tukey’s test.
RESULTS

Cohort characteristics

Clinical and SARS-CoV-2-related characteristics of the cohorts are summarized in Table 1 and Table 2. Most oncologic (O) patients with solid tumours were under anti-neoplastic treatments, mostly chemotherapy at the time of sample collection. Treatments were not interrupted during vaccination. The degree of COVID-19 severity was generally higher in O patients compared to healthy (H) donors (Supplementary figure S2a). Disease severity was significantly different between H donors with previous COVID-19 disease (H-CoV) and O patients with previous COVID-19 disease (O-CoV) (Supplementary figure S2b). The majority of donors were vaccinated with BNT162b2 (Pfizer), inducing mild adverse events in 5% of O patients. The time elapsed from SARS CoV-2 infection or vaccination to sample collection was heterogeneous (Supplementary figure S2d and S2e), but only significantly different in O-CoV versus vaccinated oncologic patients with previous COVID-19 disease (O-CoV-V), which was longer for the latter group. 45.5% of vaccinated healthy (H-V) donors completed the vaccination regime more than 6 months before sample extraction.
Table 1. Clinical and demographic characteristics of the study cohort

<table>
<thead>
<tr>
<th></th>
<th>Healthy donors</th>
<th></th>
<th>Oncologic patients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-N/N (n=10)</td>
<td>H-CoV (n=15)</td>
<td>H-V (n=22)</td>
<td>H-CoV-V (n=10)</td>
</tr>
<tr>
<td>Age (median, Q1,Q3)</td>
<td>40 (25-58)</td>
<td>55 (53-61)</td>
<td>55 (42-61)</td>
<td>48 (34-61)</td>
</tr>
<tr>
<td>Gender (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6 (60)</td>
<td>9 (60)</td>
<td>2 (9)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Female</td>
<td>4 (40)</td>
<td>6 (40)</td>
<td>20 (91)</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHT</td>
<td>1 (11)</td>
<td>4 (29)</td>
<td>2 (9)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>DM</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>DLP</td>
<td>1 (11)</td>
<td>5 (36)</td>
<td>4 (18)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>IC</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Neumo</td>
<td>0 (0)</td>
<td>3 (21)</td>
<td>1 (4,5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon/rectum</td>
<td>4 (40)</td>
<td>Pancreas 8 (40); liver 5 (25); colon/rectum 3 (15); lung, sarcoma 1 (10)</td>
<td>2 (20); pancreas, gastric 2 (20); meso., lung, ovary, salivary glands 1 (10)</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>8 (40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast,</td>
<td>2 (20);</td>
<td>5 (25);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gastric</td>
<td>pancreas,</td>
<td>3 (15);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>meso., lungen</td>
<td>meso.,</td>
<td>2 (20);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung, Sarcoma</td>
<td>lung,</td>
<td>2 (20);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer treatment</td>
<td>NT 2 (20)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>during sample</td>
<td>CT 5 (50)</td>
<td>5 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKI</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer treatment</td>
<td>CT+TKI 1 (20)</td>
<td>3 (15)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CoV, SARS CoV-2 infection; vac, vaccinated; CT, chemotherapy; DLP, dyslipidaemia; DM, diabetes mellitus; AHT, arterial hypertension; IC, ischemic cardiopathy; IT, immunotherapy; meso., mesothelioma; Neumo., neumopathies; NT, non-treated; TKI, tyrosin-kinase inhibitors; Q1, quartile 1; Q3, quartile 3; vac, vaccinated.
Table 2. SARS CoV-2- related parameters of the study cohort

<table>
<thead>
<tr>
<th></th>
<th>Healthy donors</th>
<th>Oncologic patients</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-N/N (n = 10)</td>
<td>H-CoV (n = 15)</td>
<td>H-V (n = 22)</td>
<td>H-CoV-V (n = 10)</td>
</tr>
<tr>
<td>SARS CoV-2 infection severity</td>
<td>0 4(27)</td>
<td>1 11(73)</td>
<td>2 0(0)</td>
<td>3 0(0)</td>
</tr>
<tr>
<td></td>
<td>1 11(73)</td>
<td>2 4(44)</td>
<td>3 0(0)</td>
<td>0 0(0)</td>
</tr>
<tr>
<td>Clinical manifestation</td>
<td>Pneum. 0(0)</td>
<td>0(0)</td>
<td>9(90)</td>
<td>3(30)</td>
</tr>
<tr>
<td>Complications 0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>4(40)</td>
<td>0(0)</td>
</tr>
<tr>
<td>Time: infection-sample months (mean±SD)</td>
<td>4.7±2.4</td>
<td>8.5±4.2</td>
<td>2.8±2.6</td>
<td>8.6±3.3</td>
</tr>
<tr>
<td>Cancer treatment</td>
<td>NT 3 (30)</td>
<td>CT 4 (40)</td>
<td>IT 0(0)</td>
<td>CT 4 (40)</td>
</tr>
<tr>
<td>during SARS CoV-2 infection</td>
<td>TKI 2 (20)</td>
<td>0 (0)</td>
<td>2 (20)</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Type of vaccine (n, %)</td>
<td>BNT162b2 (Pfizer) 18 (82)</td>
<td>9 (90)</td>
<td>15 (75)</td>
<td>10 (100)</td>
</tr>
<tr>
<td></td>
<td>mRNA-1273 (Moderna) 2 (9)</td>
<td>1 (10)</td>
<td>5 (25)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Vaxzevria (Astrazeneca) 2 (9)</td>
<td>0 (0)</td>
<td>5 (25)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Adverse events (n, %)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>2 (10)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Time: vaccine-sample months (mean±SD)</td>
<td>5.1±3.7</td>
<td>3.1±1.3</td>
<td>3.3±2.7</td>
<td>0.9±0.4</td>
</tr>
<tr>
<td>Cancer treatment</td>
<td>NT 2 (10)</td>
<td>CT 11 (55)</td>
<td>IT 0(0)</td>
<td>CT 11 (55)</td>
</tr>
<tr>
<td>during vaccination</td>
<td>TKI 3 (11)</td>
<td>3 (30)</td>
<td>3 (30)</td>
<td>3 (30)</td>
</tr>
<tr>
<td>(n, %) CT+TKI 4 (20)</td>
<td>3 (30)</td>
<td>3 (30)</td>
<td>3 (30)</td>
<td>3 (30)</td>
</tr>
</tbody>
</table>

CoV, SARS CoV-2 infection; vac, vaccinated; CT, chemotherapy; IT, immunotherapy; NT, non-treated; SD, standard deviation; TKI, tyrosin-kinase inhibitors; Q1, quartile 1; Q3, quartile 3; vac, vaccinated.
Profiling of antibody responses towards S, M and N proteins

IgG antibody responses were evaluated towards SARS CoV-2 infection and vaccination. IgG antibody titres towards the viral proteins S, M and N were quantified, and sera from pre-pandemic donors served as technical negative controls (TC).

Infected healthy and oncologic individuals (H-CoV and O-CoV) had low S-specific IgG titres [42]. No differences were observed as well between H-N/N (healthy no COVID, no vaccinated) and H-CoV groups (figure 1a, 2b). As expected, vaccination significantly increased titres in H donors and O patients (H-V and O-V groups) (Figure 1a, 2b).

Vaccination in previously infected subjects (H-CoV-V and O-CoV-V) elevated S-specific IgG titers highly significantly, suggesting a potent adjuvant effect over vaccination (figure 1a, 2b). Interestingly, S-specific antibody titres were elevated in O-CoV-V group compared to H-CoV-V group (figure 1c). A positive correlation between antibody titres and disease severity was described before [16]. However, the differences in COVID-19 severity between O-CoV-V and H-CoV-V groups were not significant (Supplementary figure 2c). Otherwise, the time elapsed from vaccination to sample collection was shorter in O-CoV-V compared to H-CoV-V (Supplementary figure 2e). To find out if this could be the case, IgG titres were quantified in H-V donors as a function of the time elapsed from vaccination to sample collection. There was a non-significant reduction of IgG titres in donors who completed their vaccination regimen more than 6 months before sample collection (Supplementary figure S3).

M-specific IgG antibody titres were generally very low, and previous SARS CoV-2 or vaccination did not have an effect with the exception of a mild elevation in H-CoV and O-CoV groups (figure 1d, 1e). No differences were found between H donors and O patients (figure 1f). In contrast, N-specific IgG titres in infected groups (H-CoV, H-CoV-V, O-CoV and O-CoV-V) were significantly elevated compared to their vaccinated counterparts (H-V and O-H) (figure 1g, 1h), without differences between H donors and O patients (figure 1i).
Figure 1. IgGs antibody titres against S, M and N proteins. a, b, c) S-specific IgG antibody titres in sera (1:800) from H donors (a) and from O patients (b). c) Comparison between H donors and O patients. d, e, f) M-specific IgG antibody titres in sera (1:80) from H donors (d) and from O patients (e). f) Comparison between H donors and O patients. g, h, i) N-specific IgG antibody titres in sera (1:250) from H donors (g) and from O patients (h). i) Comparison of N-IgG titres between H donors and O patients. Non-parametric Kruskal-Wallis test was used for multiple comparisons followed by Dunn’s test for selected pair-wise comparisons. *, **, *** and **** indicate a p value <0.05, <0.01, <0.001 and <0.0001, respectively.

Profiling of CD4 T cell activation and differentiation phenotypes

Specific T cell responses towards the three main structural proteins were evaluated in peripheral blood mononuclear cells (PBMCs). PBMCs were incubated with viral protein-specific peptivators and upregulation of the early activation markers CD154 and CD137
assessed by flow cytometry. Non-stimulated PBMCs were used as a control (NST) (Supplementary figure S4). S-specific CD4 T cells were detectable in patients with previous SARS-CoV-2 infection, especially in O patients. However, vaccination alone was not a potent inductor of S-specific CD4 T cells. In contrast, CD4 T cell responses were boosted in CoV-V groups, suggesting again a potent adjuvant effect of previous infection over T cell responses as well (figure 2a, 2b). No differences were observed between H donors and O patients (figure 2c).

Similar results were found for M-specific CD4 T cells, which were the most abundant in donors with previous COVID-19 and similar in H and O patients (H-CoV-V and O-CoV-V) (figure 2d-2f). Unexpectedly, some CD4 reactivity towards M protein was observed in H-V and O-V donors, who did not have a previous infection. These results suggested expansion of cross-reactive CD4 T cells specific possibly towards other human coronaviruses caused by vaccination. Indeed, the M protein sequence is well-conserved between human coronaviruses (supplementary figure S5).

CD4 responses towards the N protein were only detected in vaccinated donors with previous infection (H-CoV-V and O-CoV-V). We found that N is a poor inductor of T cell responses both in H and O donors, requiring natural infection and vaccination to expand them (figure 2g-2i). Both S and M proteins were equally good inductors of CD4 responses (figure 2j), but significantly decayed after 6 months post-vaccination (figure 2k).

Most oncologic patients have dysfunctional T cell immunity with altered T cell phenotypes [42]. To investigate if this was the case after infection or vaccination, CD62L and CD45RA expression profiles were characterized in S-specific CD4 T cells (supplementary figure S6a). Vaccination alone caused a significant increase in effector cells (CD62L- CD45RA+) in H-V donors (figure 2l and supplementary figure S6b). Importantly, H and O donors with previous COVID-19 showed a significant increase in effector memory (CD62L- CD45RA-) and effector (CD62L- CD45RA+) S-specific CD4 T cells following vaccination, compared to their counterparts without COVID-19 infection. These results showed that SARS-CoV-2 infection was a potent adjuvant to vaccination in addition to expanding memory T cells (figures 2l, 2m, supplementary figures S6c-S6f). No significant differences were observed in CD27/CD28 expression profiles in T cells within H and O groups (supplementary figures S6g, S6h).
Figure 2. CD4 T cell responses to S, M and N peptides of SARS CoV-2 proteins. A technical control of non-stimulated (NST) PMBCs was included. a, b, c) Percentage CD4 T cells in PBMCs stimulated with S peptides in the H donors (a) and in O patients (b). c) Comparison between H donors and O patients. d, e, f) Percentage CD4 T cells in PBMCs stimulated with M peptides in H donors (d) and in O patients (e). f) Comparison between H donors and O patients. g, h, i) Percentage CD4 T cells in PBMCs stimulated with N peptides in the H donors (g) and in O patients (h). i) Comparison between H donors and O patients. a-i) Krustal-Wallis test followed by Dunn’s test for pair-wise comparisons was employed. j) Dot plot of the percentage of S and M-specific CD4 T cells. The U of Mann-Whitney was used to test differences. k) Dot plot of S- and M-specific CD4 T cells in vaccinated H donors, from samples collected at the indicated timelines. Pair-wise comparisons were performed using the U of Mann-Whitney. l, m) Relative percentages of CD4 T cell differentiation phenotypes in H donors (l) and O patients (m). N, CM, EM and E, indicate naïve-stem cell (CD62L+ CD45RA+), central memory (CD62L+ CD45RA-), effector memory (CD62L- CD45RA-) and effector (CD62L- CD45RA+)
phenotypes. Relevant statistical comparisons are detailed in supplementary figures S6b-6f. *, **, ***, **** indicate \(P < 0.05, < 0.01, < 0.001 \) and < 0.0001, respectively.

Profiling of CD8 T cell activation and differentiation phenotypes

The strongest inducer of CD8 T cell responses was having a previous infection with COVID-19 both for O and H donors but not vaccination alone (figure 3a-3c and supplementary figure S7). There was a tendency to increased percentages of S-specific CD8 T cells in O patients which could be caused by the differences in COVID-19 severity (supplementary figure S2b). A similar pattern of response was observed for M-specific CD8 T cells (figure 3d, 3e). No evidence of potential cross-reactive M-specific CD8 T cells was observed after vaccination in subjects without previous COVID-19. A tendency to elevated M-specific CD8 T cells in O-CoV group was found compared to H-CoV (figure 3f and supplementary figure S2b).

No N-specific CD8 responses were observed (figure 3g-3i). While the N protein was found a poor inducer of CD8 T cells, the M protein was instead the main target as evaluated in the O-CoV group (figure 3j).

No differences in S-specific CD8 phenotypes or changes were observed between H-V and O-V (supplementary figure S8a-S8f). However, there were marked baseline differences between H-CoV-V and O-CoV-V who had COVID-19 infection (figure 3k, supplementary figure S8b-S8g). A large proportion of S-specific CD8 T cells in H-CoV-V were poorly differentiated phenotypes (CD62L+ CD45RA+) before stimulation with S peptides. Their oncologic counterparts had expanded effector memory and effector T cell compartments (figure 3k and supplementary figure S8h). After stimulation with S peptides, in contrast to H donors, O patients further expanded T cells with effector phenotypes with a drastic reduction of naïve T cells (figure 3k and supplementary figure 7l). These results strongly indicated that O-CoV-V donors had exacerbated effector memory and effector responses. Indeed, baseline T cell phenotypes in O-CoV-V patients showed an drastic reduction in poorly differentiated (CD27+ CD28+) CD8 T cells compared to the non-oncologic H-CoV-V counterparts (figure 3l, supplementary figure S8j). Not significant differences were found between H-V and O-V (supplementary figure S8k).
Figure 3. SARS-CoV-2-CD8 T cell responses in H and O donors. a, b, c) Percentage of S-specific CD8 T cells in PBMCs stimulated with S-peptides in H donors and O patients as indicated. d, e, f) Percentage of S-specific CD8 T cells in PBMCs stimulated with M-peptides in H donors and O patients. g, h, i) Percentage of S-specific CD8 T cells in PBMCs stimulated with N-peptides in H donors and O patients. a-i) Significance was tested with Krustal-Wallis followed by Dunn’s test. j) Percentage of activated CD8 T cells after stimulation with S or M specific peptides in O-CoV donors. U of Mann-Whitney was used to test for significance. k) Relative percentages of CD8 T cell differentiation phenotypes in the indicated groups of H and O donors. Means and error bars (standard deviations) are shown. N, CM, EM and E, indicate naïve-stem cell (CD62L+ CD45RA+), central memory (CD62L+ CD45RA-), effector memory (CD62L- CD45RA-) and effector (CD62L- CD45RA+) phenotypes. Relevant statistical differences are detailed in supplementary figure S8. j) Relative percentages of CD8 T cell differentiation phenotypes in the indicated groups of H and O donors. CD27+ CD28+, CD27+ CD28-, CD27- CD28+.
and CD27+ CD28+ indicate poorly differentiated, intermediate differentiated and highly
differentiated T cell phenotypes. Relevant statistical differences are detailed in
supplementary figure S8. *, ** and *** indicate significant (P<0.05), very significant
(P<0.01) and highly significant (P<0.001) differences. NST, technical control of non-
stimulated (NST) PMBCs.

Evaluation of inflammatory cytokine expression in T cells

As severe COVID-19 is associated with exacerbated inflammatory responses, IFNγ and
IL-17 expression was evaluated first within S and M-specific CD4 T cells following
stimulation (supplementary figure S9). Overall, the proportion of inflammatory CD4 T
cells was heterogeneous. Previous infection induced INFγ-CD4 T cells in H donors and
O patients (H-CoV and O-CoV), significantly higher in O-CoV compared to O-V group.
In H donors, the CoV-V group showed the strongest responses (figure 4a, 4b).
Nevertheless, responses were comparable between H donors and O patients (figure 4c).
Similar results were observed for M-specific IFNg-CD4 T cells (figure 4d-4f).

IL-17-CD4 T cells specific for the S protein were only elevated in H-CoV and O-CoV
groups, suggesting that infection was an inducer of Th17 responses (figure 4g, 4h). O
patients showed a non-significant trend towards increased IL-17 CD4 T cells compared
to H donors (figure 4i). Equivalent results were obtained for the M protein (figure 4j-4l).
Overall, these results indicated a stronger inflammatory response in O patients compared
to H donors that could be associated to disease severity or cancer (Supplementary figure
S2b). As expected from our previous results, inflammatory CD4 T cell subsets decayed
6 months after vaccination (figure 4m, 4n).
Figure 4. IFNγ and IL-17 expression in CD4 T cells specific for S and M proteins.

- a, b, c) Percentage of IFNγ-CD4 T cells specific for the S protein in H and O groups.
- d, e, f) Percentage of IFNγ-CD4 T cells specific for the M protein in H and O groups.
- g, h, i) Percentage of IL17-CD4 T cells specific for the S protein in H and O groups.
- j, k, l) Percentage of IL17-CD4 T cells specific for the M protein in H and O groups.

Statistical significance was evaluated with Kruskal-Wallis followed by Dunn’s pair-wise comparisons.

- m, n) Percentage of CD4 T cells expressing IL-17 and IFNγ expression in H-V donors that completed the vaccine regime before sample collection in the indicated timelines, for both S and M proteins. Significance was tested with the U of Mann-Whitney test. NST, technical control of non-stimulated PMBCs.

* *, **, *** indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) differences.
Inflammatory S and M-specific CD8 T cell subsets were quantified (supplementary figure S9b). Infection but not vaccination was the strongest inducer of S-specific IFNγ-CD8 T cells in H and O patients (figure 5a-5c). Similar results were obtained for M-specific T cells (figure 5d, 5e), without differences between H donors and O patients (figure 5f). There were however marked differences for for IL17-CD8 T cells, which were increased in subjects with previous COVID-19 following vaccination (figure 5g, 5h). Although there was high variability, we observed a tendency towards increased IL17-CD8 T cells in O patients compared to H donors (figure 5i). Similar results were obtained for M-specific CD8 T cells (figure 5j, 5k), which were comparable between H donors and O patients (figure 5l). Although responses were in general low, inflammatory S- and M-specific CD8 T cells decayed 6 months after vaccination (figure 5m, 5n)
Figure 5. IFNγ and IL-17 expression in CD8 T cells specific for S and M proteins. a, b, c) Percentage of IFNγ-CD8 T cells specific for the S protein in H and O groups. d, e, f) Percentage of IFNγ-CD8 T cells specific for the M protein in H and O groups. g, h, i) Percentage of IL17-CD8 T cells specific for the S protein in H and O groups. j, k, l) Percentage of IL17-CD8 T cells specific for the M protein in H and O groups.
Percentage of IL17-CD8 T cells specific for the M protein in H and O groups. a-l) Statistical significance was evaluated with Kruskal-Wallis followed by Dunn’s pair-wise comparisons. m, n) Percentage of CD8 T cells expressing IL-17 and IFNγ expression in H-V donors that completed the vaccine regime before sample collection in the indicated timelines, for both S and M proteins. Significance was tested with the U of Mann-Whitney test. NST, technical control of non-stimulated PMBCs. *, **, *** indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) differences.

Profiling of systemic myeloid cell subsets and B cells

The percentages of monocytes, granulocytes and neutrophils were quantified in peripheral blood and no differences were found in H donors (figure 6a-c). However, there was a significant elevation of circulating granulocytes in O-CoV and O-CoV-V compared to O-V patients, suggesting that COVID-19 enhanced the expansion of systemic granulocytes (figure 6b). In contrast, O-V donors had significantly expanded the percentage of circulating monocytes, suggesting that vaccination targeted the monocytic lineage instead of the granulocytic lineage (figure 6b-6f). Hence, COVID-19 could perturb systemic immunity in cancer patients towards responses mediated by granulocytes rather than monocytes.

Baseline percentages of circulating CD19+ CD14- B cells were also quantified, without finding significant differences (supplementary figure S10a-S10c). Nevertheless, there was a tendency in O patients to have decreased percentages of circulating B cells (supplementary figure S10d).
DISCUSSION

Oncologic patients usually have a compromised immunity from cancer progression and treatments [10, 43] which may impact on responses to COVID-19 and vaccination. In this study we included S-, M- and N-specific T cell profiling and myeloid cell signatures. Most of donors had been vaccinated with mRNA BNT162b2. This vaccine is a potent inducer of S-specific antibodies [44-46] and we found that antibody responses were not impaired in cancer patients in agreement with others [47]. In this study, we confirmed
that antibody titres decreased over time which would limit serological protection to 6 months [48]. Importantly, T cell responses after vaccination also decayed after 6 months. Indeed, vaccination did not preferentially expand memory T cell subsets, unless the subjects had previous COVID-19. Hence resolution of COVID-19 disease followed by vaccination may confer longer protection for both healthy donors and oncologic patients.

Vaccination mainly induced CD4 T cells, in contrast to SARS CoV-2 infection, which could explain its potency of raising antibody responses possibly through activated CD4 T helper cells [49]. T cell responses towards M and S proteins were found previously [50, 51], but we extended this observation to O patients. In general, M protein was found to be a potent target for CD8 T cell responses even when compared to the S protein. Therefore, the M-protein could be key for developing novel vaccines.

O patients showed differences in T cell immunity compared to healthy donors. Their T cell repertoire was skewed towards differentiated phenotypes expressing IFNγ as shown before [23, 52], but also IL17 as assessed here in H donors and O patients [53]. Vaccination induced IFNγ and elevated IL-17 in CD4 T cells, a marker of Th17 responses [23, 52]. Indeed, SARS-CoV-2 infection also induced a Th17 signature, which could be important for disease severity.

Finally, the profiles of circulating myeloid subsets was in agreement with oncologic patients having more inflammatory profile, as expected in cancer patients [43]. This could be detrimental for vaccine efficacy. Elevated neutrophil counts are frequent in O patients [54, 55], which were even higher in subjects with previous COVID-19. A relationship between COVID-19 severity and higher monocyte and granulocyte content was found in early studies [56, 57].

Concluding, cancer patients showed antibody, T cell and myeloid responses to infection and vaccination. Previous SARS CoV-2 infection had potent adjuvant effects for subsequent vaccination. However, cancer patients showed baseline inflammation, which could be exacerbated upon infection followed by vaccination.
ACKNOWLEDGEMENTS

We are grateful to the patients and their families for generously participating in the study.

FINANCIAL SUPPORT

The OncoImmunology group is funded by the Spanish Association against Cancer (AECC, PROYE16001ESCO); Instituto de Salud Carlos III (ISCIII)-FEDER project grants (FIS PI17/02119, FIS PI20/00010, COV20/00000, and TRANSPOCART ICI19/00069); a Biomedicine Project grant from the Department of Health of the Government of Navarre (BMED 050-2019); Strategic projects from the Department of Industry, Government of Navarre (AGATA, Ref. 0011-1411-2020-000013; LINTERNA, Ref. 0011-1411-2020-000033; DESCARTHES, 0011-1411-2019-000058); Ministerio de Ciencia e Innovación (PID2019-108989RB-I00, PLEC2021-008094 MCIN/AEI/10.13039/ 501100011033). This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 848166.

REFERENCES

Supplementary figure S1. Schematic representation of the study cohort and design. Samples from H donors and O patients naturally infected by SARS CoV-2 and vaccinated with/without previous SARS CoV-2 infection were collected. A group of non-infected non-vaccinated H donors was included for comparison. Blood samples were obtained and analysed for antibody levels, T cell activation and differentiation, and myeloid cell characterisation.
Supplementary figure S2. COVID-19 severity degree and time elapsed from SARS CoV-2 infection and/or vaccination to sample. **a**, **b**, and **c** COVID-19 severity degree according to the NIH guidelines in all H and O individuals (**a**), in H-CoV and O-CoV individuals (**b**), and in H-CoV-V and O-CoV-V individuals (**c**). The U of Mann-Whitney test was used to evaluate significance. **d**, **e** Time elapsed from SARS CoV-2 diagnosis to sample collection (**d**) and from vaccination to sample collection (**e**) in the indicated groups of H donors and O patients. The Kruskal-Wallis test was used for multiple comparisons followed by Dunn’s test for pair-wise comparison. *, **, indicate significant (P<0.05) and very significant (P<0.01) differences.
Supplementary figure S3. Dynamics of S-specific IgG titres. S specific IgG antibody titres in V-H individuals from samples collected less than 6 months and more than 6 months after vaccination. The U of Mann-Whitney test was used for statistical significance.

Supplementary figure S4. Flow cytometry and gating strategy for quantification of activated CD4 T cells. Representative flow cytometry density plots of CD154 and CD137 co-expression profiles in CD4 T cells from donors before and after stimulation with S-peptides, as indicated.
Supplementary figure S5. Sequence alignment. a, b, c) Conserved region of the spike protein (a), membrane protein (b) and nucleocapsid protein (c) of SARS-CoV-2 (in red) with the indicated human coronavirus counterparts: 229E (in green), NL-63 (in orange), OC-43 (in blue) and HKU-1 (in purple). Conserved regions are highlighted in grey.
Supplementary figure S6. CD4 T cell phenotypes after stimulation with S peptides. a) Representative flow cytometry density plots with CD62L-CD45RA co-expression profiles in CD4 T cells before and after the stimulation with S-peptides. Quadrants were established with unstained controls. Percentages of the corresponding populations are shown within the quadrants. b,c) CD4 T cell phenotypic changes in H-V (b) and H-CoV-V (c) donors. (-) and (+S), non-stimulated and S-peptide stimulation. N, CM, EM and E, indicate naïve-stem cell (CD62L+ CD45RA+), central memory (CD62L+ CD45RA-), effector memory (CD62L- CD45RA-) and effector (CD62L- CD45RA+) phenotypes. d) Phenotypic changes in CD4 T cells within O-CoV-V before and after stimulation with S-peptides. e,f) Effects of previous CoV infection in vaccinated H donors and O patients over T cell phenotypes after stimulation with S- peptides. b-f) Relevant statistical comparisons are indicated by ANOVA followed by pair-wise comparisons with Tukey’s test. g,h) Relative percentages of CD4 T cell differentiation phenotypes in H-V and O-V (g) and in H-CoV-V and O-CoV-V (h) CD27+ CD28+, CD27- CD28+ and CD27+ CD28+ indicate poorly differentiated, intermediate differentiated and highly differentiated T cell phenotypes. U of Mann-Whitney was used to test for significance.*,**,**,* indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) differences.
Supplementary figure S7. Flow cytometry and gating strategy for quantification of activated CD8 T cells. Representative flow cytometry density plots of CD154 and CD137 co-expression profiles in CD8 T cells from donors before and after stimulation with S-peptides, as indicated.
Supplementary figure S8. Differentiation phenotypes in CD8 T cells.

a) Representative flow cytometry density plots with CD62L-CD45RA co-expression profiles in CD8 T cells before and after the stimulation with S-peptides. Quadrants were established with unstained controls. Percentages of the corresponding populations are shown within the quadrants.

b, c, d) Relative percentages of CD8 T cell differentiation phenotypes from the indicated H donors and O patient cohorts. Means and error bars (standard deviations) are shown. N, CM, EM and E, indicate naïve-stem cell (CD62L+CD45RA+), central memory (CD62L+CD45RA−), effector memory (CD62L−CD45RA−) and effector (CD62L−CD45RA+) phenotypes.

e, f, g) Relative percentages of CD8 T cell differentiation phenotypes from the indicated H and O cohort groups.

h, i) Relative percentages of CD8 T cell differentiation phenotypes in H-CoV-V and O-CoV-V groups before and after stimulation with S-peptides.

j, k) Relative percentages of CD8 T cell differentiation phenotypes in V-H-CoV, V-O-CoV, H-V and O-V groups as indicated in the graphs. CD27+CD28+, CD27−CD28+ and CD27+CD28+ indicate poorly differentiated, intermediate differentiated and highly differentiated T cell phenotypes.
k) Statistical significance was tested by ANOVA followed by Tukey’s pair-wise comparisons. *, ** and *** indicate, significant ($P<0.05$), very significant ($P<0.01$) and highly significant ($P<0.001$) differences.

Supplementary figure S9. Flow cytometry and gating strategy for quantification of cytokine expression within activated T cells. a) Representative flow cytometry density plots with the expression of INFγ and IL-17 before and after stimulation with S peptides in CD4 T cells. b) In CD8 T cells.
Supplementary figure S10. B-lymphocyte levels in peripheral blood from H donors and O donors. a) Representative flow cytometry density plot of CD19 and CD14 expression in PBMCs from donors. b, c) Percentage of circulating B-cells in the indicated groups of H donors and O patients. d) Percentage of circulating B-cells in the indicated groups of H (in green) and O (in red) subjects. Statistical significance was tested with Kruskal-Wallis followed by Dunn’s pair-wise comparisons. *, **, and *** indicate significant (P<0.05), very significant (P<0.01) and highly significant (P<0.001) differences.