Factor structure of the 19-item Comprehensive Psychopathological Rating Scale Self-rating Scale for Affective Syndromes in a Swedish nationwide clinical sample of eating disorder patients

Christopher Hübel1,2,3, Andreas Birgegård4, Therese Johansson5,6, Liselotte V. Petersen3, Rasmus Isomaa7,8, Moritz Herle1,9

1 Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, Camberwell, London, UK
2 UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, UK
3 National Centre for Register-based Research, Aarhus BSS Business and Social Sciences, Aarhus University, Aarhus, Denmark
4 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
5 Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
6 Centre for Women's Mental Health during the Reproductive Lifespan – Womher, Uppsala University, Uppsala, Sweden
7 The Wellbeing Services County of Ostrobothnia, Finland
8 Faculty of Education and Welfare Studies, Åbo Akademi University, Vasa, Finland
9 Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK

Corresponding author: Dr. Christopher Hübel, MD, PhD, (christopher.1.huebel@kcl.ac.uk), Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.

Running title: CPRS-S-A in eating disorders

Keywords. Depression; compulsion; anxiety; disinterest; hypochondriasis; psychometrics; questionnaire

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract (250/250)

Objective:

Individuals with eating disorders have anxiety and depression symptoms. To study these comorbidities, we need high-quality self-report measures appropriate for patients and population samples covering a wide range of symptoms. One potential tool is the 19-item self-rated version of the Comprehensive Psychopathological Rating Scale for Affective Syndromes (CPRS-S-A), but its factor structure has not been validated in eating disorder patients. We investigated its factor structure and tested if the derived subscales are invariant across eating disorders and if eating disorder patients differ on these scales.

Method:

The sample comprises patients registered by 45 treatment units in the nationwide Stepwise quality assurance database for specialised eating disorder care in Sweden (n = 9,509). Patients self-reported their anxiety and depression symptoms using the CPRS-S-A. Analyses included an exploratory factor analysis in a split sample, a confirmatory factor analysis on a hold-out sample, and invariance testing. We examined differences in subscales across different eating disorders.

Results:

Results suggested a four-factor solution with the subscales: Depression, Somatic & fear symptoms, Disinterest, and Worry. Further multigroup confirmatory factor analysis indicated that the factor structure of the subscales held across the different eating disorders. Patients with anorexia nervosa binge-eating/purging subtype scored the highest and patients with unspecified feeding and eating disorders the lowest on all subscales. Additionally, we detected factor-specific differences amongst eating disorders.

Discussion:

In summary, our four-factor solution of the CPRS-S-A is suitable for patients with different eating disorders and may help to identify differences in anxiety and depression domains amongst eating disorders.

Public Significance Statement:

Patients with eating disorders often have anxiety and depression symptoms that impact treatment and recovery. Therefore, we need questionnaires that measure these symptoms so we can study them. More than 9,000 Swedish patients with eating disorders answered an
anxiety and depression questionnaire. We tested if the questionnaire is suitable for patients with eating disorders. We could group questions resulting in a fine-tuned tool to study anxiety and depression symptoms.
1. Introduction

1.1 Comorbidity among affective disorders and eating disorders

Symptoms of anxiety and depression, such as disinterest, low mood, and suicidality are commonly found amongst patients with eating disorders from population and clinical samples (Dolan et al., 2021; Eckert et al., 1982; Kaye et al., 2004; Martín et al., 2019; Puccio et al., 2016; Udo & Grilo, 2019). Overall, the prevalence of comorbid depression among individuals with any eating disorders is estimated at 75% (Godart et al., 2015). Specifically, ~60% of adolescents with anorexia nervosa report depressive symptoms (Blinder et al., 2006; Bühren et al., 2014) and patients with anorexia nervosa often have a comorbid clinical diagnosis of depression (Jaitz et al., 2013; Ulfvebrand et al., 2015). This high level of comorbidity with depression is also observed in individuals with bulimia nervosa, in population (Hudson et al., 2007; Swanson et al., 2011) and clinical samples (Fischer & le Grange, 2007; Kaye et al., 2004; Ulfvebrand et al., 2015). Similarly to depression, anxiety and eating disorders also co-occur (Garcia et al., 2020; Godart et al., 2002; Kaye et al., 2004; Kerr-Gaffney et al., 2018; Steinhausen et al., 2015; Swinbourne et al., 2012; Ulfvebrand et al., 2015). However, prevalence estimates show considerable heterogeneity depending on measure or assessment type (e.g. self-report versus clinical interview) (Godart et al., 2007; Meier et al., 2015). Overall, the co-occurrence of depressive or anxiety symptoms with eating disorder symptoms complicates treatment (Brand-Gothelf et al., 2014; Martín et al., 2019; Thornton et al., 2011). Therefore, accurate assessment of anxiety and depression symptoms in eating disorders may be beneficial for treatment planning.

1.2 Measurement issues

To study comorbidity among eating disorders, anxiety, and depression, we need high-quality measures of symptoms to delineate differences in eating disorder presentation in clinical and population samples. Measures like the Patient Health Questionnaire-9 (PHQ-9; Kroenke et al., 2001) and the Generalised Anxiety Disorder Assessment (GAD-7; Spitzer et al., 2006) are widely used in research. The PHQ-9 and GAD-7 factor structure and scores have been validated in samples of eating disorder patients and the general population, indicating that both questionnaires are suitable (Wisting et al., 2021). However, as they are strictly based on diagnostic criteria, these questionnaires only cover a limited range of anxiety and depression symptoms. Hence, in order to explore the whole spectrum of symptoms, broader assessment tools to better understand the heterogeneity in eating disorder presentations, evading the cost- and time-related limitations of diagnostic interviews, are urgently needed. One potential scale of interest is the Comprehensive Psychopathological Rating Scale (Asberg & Schalling, 1979) which consists of 65 items and was originally developed to evaluate treatment outcomes in
psychological interventions. The scale includes items covering symptoms of psychiatric
disorders, such as schizophrenia but also anxiety and depression. The scale was originally
developed in Sweden, and has been translated into most other European languages. The
complete version of the CPRS is rarely used, but shorter subscales have been deemed to be more
useful, such as the Montgomery Åsberg Depression Rating Scale (MADRS; Montgomery &
Asberg, 1979) and the Self-rating Scale for Affective Syndromes (CPRS-S-A; Svanborg & Asberg,
1994). The latter is in focus here, and is designed to contain subscales for depression, anxiety,
and compulsivity.

A previous analysis of the CPRS-S-A questionnaire in a subsample of the data available for our
investigation showed that patients with an unspecified feeding or eating disorder reported
fewer problems than patients with other eating disorders. Additionally, patients with the
anorexia nervosa binge-eating/purging subtype reported more problems compared with
atypical anorexia nervosa patients (Ekeroth et al., 2013). One issue of the questionnaire lies in
the construction of its three subscales. When calculating the subscales, it is advised to include
the same item in several subscales. Therefore, the subscales are highly correlated. In our
sample, these correlations ranged from 0.78 to 0.86, and are likely to be inflated, potentially
rendering the original subscales unreliable. Therefore, in this study, we explored and confirmed
the factor structure of the Self-rating Scale for Affective Syndromes (CPRS-S-A); a short form of
the CPRS (Svanborg & Asberg, 1994) in a large clinical sample of individuals with eating
disorders in Sweden. Moreover, we investigated our newly derived CPRS-S-A subscales further
by studying their differences across eating disorder subtypes.

2. Methods
2.1 Sample
The sample comprises inpatients and outpatients registered by 45 treatment units in the
Stepwise quality assurance database for specialised eating disorder care in Sweden aged 18
years and older (Birgégård et al., 2010). Stepwise is a nationwide internet-based data collection
system, which includes individuals through medical or self-referral, if intention to treat has
been established, and if the individual received a formal eating disorder diagnosis. The database
has been used since 2005 and our data were extracted on 23rd of November 2017. At data
extraction, approximately 10,470 adult patients had been registered.
2.2 Eating disorder diagnosis

Clinicians registered patients’ eating disorders diagnosis based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) (American Psychiatric Association, 2013). In our analysis, we translated DSM-IV to DSM-5 eating disorders to reflect the current understanding of eating disorders. Depending on the patient’s endorsement of binge eating or purging in either the Eating Disorder Examination questionnaire (EDE-Q) (Luce & Crowther, 1999) or the Structured Eating Disorder Interview (SEDI) (de Man Lapidoth & Birgegård, 2010), we re-assigned DSM-5 diagnoses. We used 18.5 kg/m² as the cutoff value for underweight in anorexia nervosa. Anorexia nervosa without weight criterion (n = 50) or without amenorrhea (n = 186) that had a BMI lower than 18.5 kg/m² who endorsed any binge eating or purging were assigned anorexia nervosa binge-eating/purging. If none endorsed, they were assigned an anorexia nervosa restricting diagnosis (n without weight criterion = 84 or n without amenorrhea = 144). If their BMI was above 18.5 kg/m², we assigned an atypical anorexia nervosa diagnosis (n without weight criterion = 411 or n without amenorrhea = 402). Eating Disorder Not Otherwise Specified (EDNOS) type 3 or bulimia nervosa without sufficient duration/frequency criteria (n = 833) was assigned as bulimia nervosa diagnosis because those criteria are relaxed in DSM-5. Further, EDNOS example 4 was kept as “purging disorder”. The remaining unspecified eating disorders that were not classified into either of these categories were termed “Unspecified feeding or eating disorder” (UFED), consisting of patients with “chewing and spitting”, bulimia nervosa/binge-eating disorder with low frequency/duration, or other residual types that did not fit any of the main categories.

2.3 Exclusion

We excluded 801 duplicated entries of repeated registrations of the same individual. Subsequently, we iteratively excluded 2 individuals with missing age, 16 not assigned a treatment centre, 120 without a clinical eating disorder diagnosis, and 22 because they had not answered the CPRS questionnaire. The final sample comprised 9,509 eating disorder patients.

2.4 Ethics

When patients were entered into the database, clinicians recorded consent for general research use of their data and 3% declined participation. This study is approved by the Stockholm Regional Ethics Board (Reg. no. 2009/196-31/4).
2.5 Comprehensive Psychopathological Rating Scale, Self-rated Version for Affective Syndromes

At registration, the patients answered 19 items of the CPRS-S-A. We present the instrument as Supplementary Material. The answer options are different for each question, but they are on a scale from 0 to 3, rated in 0.5-point increments. We recoded these values to 0–6. We renamed item 19, titled “Zest for life” in the MADRS-S to “Suicidal thoughts” to represent its content better.

Figure 1. Pairwise Pearson’s correlations among the Self-rating Scale for Affective Syndromes (CPRS-S-A) items. We calculated the correlations in 9,509 participants registered in Stepwise, the Swedish clinical eating disorder database. We estimated the number of independent traits in the matrix using the Galwey method and adjusted the threshold (Di4< = 0.003) accordingly. All correlations are statistically significant at this threshold. Saturation represents the strength of the correlation. Positive correlations are red, negative correlations are blue.
2.6 Exploratory factor analyses

We calculated pairwise Pearson correlations among all items (Figure 1) in the full sample \((n = 9,509) \). We inspected the matrix visually for singularity, multicollinearity, and redundancy of items (i.e., values <0.30 and >0.90). We calculated the determinant of the matrix (Dziuban & Shirkey, 1974), the Kaiser-Meyer-Olkin (KMO) statistic (Kaiser, 1974), and performed Bartlett’s Test of Sphericity (Bartlett, 1950), to test if our data are suitable for an exploratory factor analysis. To inform our decision on the underlying factor structure, we performed parallel analysis (Horn, 1965), and calculated the Very Simple Structure criterion (VSS Revelle & Rocklin, 1979), and Velicer’s Minimum Average Partial (MAP) criterion (Velicer, 1976). We performed the exploratory factor analysis on 70\% \((n = 6,656) \) of the sample using the maximum likelihood estimator in the “psych” R package (Revelle & Revelle, 2015). Given that the CPRS items have seven answer options, we treated them as continuous. We allowed the factors to correlate using oblimin rotation. To judge the fit of our model, we applied the criteria as outlined in Table 1 (Hu & Bentler, 1999). We retained the items with factor loadings of >0.30. If multiple models showed adequate fit, we would choose the model with factors that encompass the greatest number of items.

Table 1. Criteria for a good fit (Hu & Bentler, 1999)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Mean Square Error of Approximation (RMSEA)</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Tucker Lewis Index (TLI)</td>
<td>≥0.95</td>
</tr>
<tr>
<td>Standardised Root Mean Square Residuals (SRMR)</td>
<td>≤0.05</td>
</tr>
<tr>
<td>Bayesian Information Criteria (BIC)</td>
<td>Smaller than other models</td>
</tr>
</tbody>
</table>

2.7Confirmatory factor analysis and factor scores

We validated our exploratory factor analysis model with a confirmatory factor analysis (CFA) on the remaining 30\% participants using the “lavaan” R package (Rosseel, 2012). We interpreted fit statistics (Hu & Bentler, 1999; Schreiber et al., 2006) and considered a Comparative Fit Index (CFI) ≥0.95 as good fit. Subsequently, we computed the confirmatory factor analysis in the full sample \((n = 9,509) \) to provide fit statistics and calculate factor scores, using the Bartlett estimator for continuous items.
2.8 Descriptive indices and psychometric properties
We show responses to the individual items and distributions of the factor scores as frequency
and box plots. We also report mean and standard deviations for our generated factor scores and
report Cronbach’s α (Bland & Altman, 1997; Cronbach, 1951) and McDonald’s ω (Hayes &
Coutts, 2020) as measures of internal consistency.

2.9 Multigroup confirmatory factor analysis
We performed a multigroup confirmatory factor analysis (MGCFA) to test if the questionnaire
elicits the same responses, response patterns, and has the same underlying factor structure
across eating disorder diagnostic groups. If statistical invariance in responding is found, then we
can compare scores and subscale scores across groups. Different types of measurement
invariance exist: configural, the factor structure is similar across groups; metric, factor loadings
are similar across groups; scalar, intercepts (i.e., group means) are similar; and strict, residuals
(i.e., variances) are similar across the groups. We tested for these invariance models in a
stepwise procedure from the least restricted model to the fully restricted model. Overall,
invariance indicates that different groups are from the same population.

2.10 Group comparisons
We judged the distribution of the factor scores by visually inspecting qq and distribution plots
(Supplementary Figure S1). None of the four subscales showed a normal distribution.
Therefore, we performed non-parametric Kruskal-Wallis one-way ANOVAs. If significant,
Dunn’s post-hoc tests were carried out with a Benjamini Hochberg-adjusted level of significance
for the pairwise comparisons.

3. Results
3.1 Descriptives
The patients in our sample were on average 26 years ($SD = 8$) old and the age ranged from 18 to
70 years, with 96% of the sample being female. Of the patients, 1,363 (14%) received an
anorexia nervosa restricting, 702 (7%) anorexia nervosa binge-eating/purging, 832 (9%) an
atypical anorexia nervosa, 3,807 (40%) a bulimia nervosa, 658 (7%) a binge-eating disorder,
1,711 (18%) a purging disorder diagnosis, and 436 UFED (5%).
3.2. Descriptives of the CPRS-S-A in Stepwise

The CPRS-S-A showed a Cronbach’s α ($\alpha = 0.90$) and McDonald’s ϕ ($\phi = 0.92$) in our sample (Supplementary Table S1). The distribution of answers to the questionnaire items is displayed in Figure 2 for the full sample and Supplementary Table S2 for the discovery sample.

Figure 2. Endorsement of the Comprehensive Psychopathological Rating Scale Self-rating Scale for Affective Syndromes (CPRS-S-A) 19 items version in the Stepwise sample (n = 9,509). The saturation of blue indicates a higher endorsement on the specific item. We display percentages. Originally, each item had seven answer options ranging from 0-3, which were later recorded from 0-6 for the main analyses. The answer options differed across items, with higher values indicating a stronger endorsement.

3.3 Suitability of the data for factor analysis

Prior to factor analyses, the suitability of the data was investigated. None of the items showed zero or near-zero variance (Supplementary Table S3). Kaiser-Meyer-Olkin measure (KMO = 0.94, Supplementary Table S4) and significant Bartlett test of sphericity ($p < 2.22 \times 10^{-16}$) indicated that the data were suitable for factor analyses. Pearson’s correlations ranged from 0.09 to 0.68 (Figure 1). The exploratory factor analysis was conducted on one random split of the sample (n = 6,656; 70%). As we were primarily interested in core anxiety and depression symptoms, we excluded the items “14. Obsessions” and “15. Compulsions” from the factor analysis. Furthermore, they loaded strongly on one factor by themselves, representing an index
of compulsion. If these items had remained in the model, they would have lowered our power to measure meaningful underlying factors as they would have distorted the model towards their own factor. We, furthermore, excluded the item “11. Health concerns”, because its correlation with the other items was small ($r = 0.09$ to 0.29; Figure 1), rendering it unsuitable for factor analysis. Cronbach’s α remained stable after these items were dropped (Supplementary Table S5).

Figure 3. Exploratory factor analysis of 16 items of the Comprehensive Psychopathological Rating Scale Self-rating Scale for Affective Syndromes (CPRS-S-A). The path diagram shows item factor loadings and between-factor correlations for the four factors of Depression, Somatic & fear symptoms, Disinterest, and Worry. Paths with a factor loading of <0.3 were omitted.
3.4 Exploratory factor analysis

Very simple structure (Supplementary Table S6) and parallel analysis (Supplementary Table S7) suggested a one factor solution. However, as we are interested in different anxiety and depression symptoms, a comparison of fit statistics suggested that the five factor solution fitted the data best. However, the model contained two factors on which only one item loaded (i.e., 2. Feelings of unease & 12. Worry about minor things) and therefore the model was unsuitable. Hence, we chose the four-factor solution as our final model which explained 34% of the total variance. The factor solution had a low RMSEA (0.042, 90% CI: 0.039 0.045) and low Bayesian Information Criterion (BIC = 245; for full results, see Table 2 and Supplementary Tables S8-12). As factors were considered to be correlated, factors were realigned using an oblique rotation. The factor loadings for each item, after rotation, are listed in Figure 3. Items 3 and 4 (Irritation and anger, and Sleep, respectively) did not load on any of the factors and are therefore not included in the confirmatory factor analysis. We labelled the four factors: F1 Depression, F2 Somatic & fear symptoms, F3 Disinterest, and F4 Worry

Table 2. Model fit statistics for exploratory factor analysis

The factor analysis was performed on 16 items of the Comprehensive Psychopathological Rating Scale Self-rating Scale for Affective Syndromes (CPRS-S-A) in the Swedish quality register for eating disorder care, Stepwise (n = 6,656).

<table>
<thead>
<tr>
<th>Number of factors</th>
<th>df</th>
<th>RMSEA (≤ 0.06)</th>
<th>RMSEA (≥ 0.95)</th>
<th>TLI</th>
<th>BIC</th>
<th>SRMR (≤ 0.08)</th>
<th>Cumulative variance</th>
<th>Minimum item loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104</td>
<td>0.078</td>
<td>[0.076, 0.080]</td>
<td>0.882</td>
<td>3351</td>
<td>0.05</td>
<td>0.38</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td>0.062</td>
<td>[0.060, 0.065]</td>
<td>0.923</td>
<td>1608</td>
<td>0.03</td>
<td>0.35</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>0.053</td>
<td>[0.051 0.056]</td>
<td>0.944</td>
<td>840</td>
<td>0.03</td>
<td>0.33</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>0.042</td>
<td>[0.039 0.045]</td>
<td>0.965</td>
<td>245</td>
<td>0.02</td>
<td>0.34</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0.035</td>
<td>[0.033 0.038]</td>
<td>0.975</td>
<td>29</td>
<td>0.01</td>
<td>0.34</td>
<td>1</td>
</tr>
</tbody>
</table>

df: Degrees of freedom; RMSEA: Root Mean Square Error of Approximation; TLI: Tucker-Lewis Fit Index; BIC: Bayesian Information Criterion; SRMR: Standardised Root Mean Square Residuals. The cut off for each statistic to signify good fit is listed in each header (Hu & Bentler,
The model with the lowest BIC is preferred. Cumulative variance indicates the part of the total variance explained by all items comprising the factors.

3.5 Confirmatory factor analysis

We conducted the confirmatory factor analysis in the remaining 30% of the sample ($n = 2,853$; Supplementary Table S13). Results confirmed that the four-factor model was a good fit. The RMSEA (0.060, 90% CI: 0.056, 0.064), the CFI (0.952), and the SRMR (0.032) indicated good fit (Hu & Bentler, 1999). The TLI (0.939) was slightly above the threshold for good fit. We also ran the confirmatory factor analysis in the full sample ($n = 9,509$) which yielded the following fit statistics: $CFI = 0.953$, $TLI = 0.940$, $RMSEA = 0.060$ [90% CI, 0.058, 0.062], $SRMR = 0.030$). We show the resulting factor scores and their distribution in Figure 4 and Supplementary Figure S1.
3.6 Multigroup confirmatory factor analysis

Our multigroup confirmatory factor analysis resulted in full configural and metric invariance, indicating that the factor structure and the factor loadings are comparable across eating disorders (*Supplementary Table S14*). Furthermore, the questionnaire showed partial scalar invariance when freeing up the intercepts of item five and eight, meaning that the means were similar across groups apart from item five (less appetite) and eight (less motivation).
Table 3. Median differences and results from Dunn’s post-hoc tests

We performed Kruskal-Wallis one-way Analysis of Variance (ANOVA) and Dunn’s post-hoc tests for pairwise comparisons and judged significance by adjusting the alpha level using the Benjamini Hochberg approach.

| Factor | ANR vs ANBP | ANR vs AAN | ANR vs BN | ANR vs PUR | ANR vs UFED | ANBP vs ANR | ANBP vs AAN | ANBP vs BN | ANBP vs PUR | ANBP vs UFED | AAN vs ANR | AAN vs AAN | AAN vs BN | AAN vs PUR | AAN vs UFED | BN vs ANR | BN vs AAN | BN vs BN | BN vs PUR | BN vs UFED | BED vs ANR | BED vs AAN | BED vs BN | BED vs PUR | BED vs UFED | PUR vs ANR | PUR vs AAN | PUR vs BN | PUR vs PUR | PUR vs UFED |
|--------|--------------|------------|-----------|------------|-------------|------------|------------|-----------|------------|-------------|------------|-----------|----------|-----------|------------|----------|----------|---------|----------|-----------|-----------|----------|---------|----------|-----------|-----------|
| F1 | 0.6*** | 0.0 | 0.1 | 0.0 | -0.6**** | -0.6*** | -0.5*** | -0.6*** | -1.2*** | -0.1 | 0.0 | -0.6*** | -1.0*** | -0.1 | -0.7*** | 0.0 | -0.6*** | -0.6*** | 0.0 | -0.6*** | 0.0 | -0.6*** | 0.0 | -0.6*** |
| F2 | 0.3*** | 0.0 | -0.1** | -0.1 | 0.1 | -0.4*** | -0.3*** | -0.4*** | -0.7*** | -0.1** | -0.1** | -0.4*** | -0.3*** | -0.1** | -0.3*** | 0.2** | -0.3*** | -0.5*** | 0.0 | -0.3*** | 0.0 | -0.3*** | 0.0 | -0.3*** |
| F3 | 0.3*** | -0.1 | 0.1* | -0.1 | 0.0 | -0.7*** | -0.4*** | -0.2*** | -0.4*** | -0.3*** | -1.0*** | 0.2 | 0.0 | 0.0 | -0.6*** | -0.2** | -0.1** | -0.8*** | 0.1 | -0.6*** | -0.7*** | 0.0 | -0.8*** | 0.3** | -0.5*** | 0.8*** |
| F4 | 0.4*** | 0.0 | 0.0 | -0.3* | 0.0 | -0.8*** | -0.4*** | -0.4*** | -0.7*** | -1.2*** | 0.0 | -0.3* | -0.3* | -0.8*** | -0.3** | 0.0 | -0.8*** | 0.3** | -0.5*** | 0.8*** | 0.0 | -0.8*** | 0.3** | -0.5*** | 0.8*** |

Note. F1 Depression, F2 Somatic & fear symptoms, F3 Disinterest, and F4 Worry, **** < 1 x 10⁻⁴, *** < 0.001, ** < 0.01, * < 0.05

ANR, anorexia nervosa restricting; ANBP, anorexia nervosa binge-eating/purging; AAN, atypical anorexia nervosa; BN, bulimia nervosa; BED, binge-eating disorder; PUR, purging disorder patients; UFED, unspecified feeding or eating disorder.
3.7 Factor scores

We calculated factor scores for each individual based on the final model (Figure 4 & Supplementary Table S15). We compared the factor scores using Kruskal–Wallis one-way analysis of variance, and Dunn’s post hoc test (Table 3). Overall, individuals with anorexia nervosa binge-eating/purging scored higher on all four subscales than all other eating disorders, including the restricting subtype of anorexia nervosa. However, there was no statistically significant difference on any of the four scores between the restricting subtype and atypical anorexia nervosa or purging disorder. Individuals with UFED scored lower on all four scales than all other eating disorders.

On factor 2 Somatic & fear symptoms, patients with anorexia nervosa or purging disorder scored higher than individuals with either bulimia nervosa or binge-eating disorder. Patients with anorexia nervosa restricting subtype or atypical anorexia nervosa reported depressive symptoms on the same median level as patients with either bulimia nervosa, binge-eating disorder, or purging disorder. However, compared with anorexia nervosa binge-eating/purging, all other eating disorders reported fewer depressive symptoms. On factor 3 Disinterest, the results showed a mixed picture: patients with either anorexia nervosa binge-eating/purging subtype or bulimia nervosa reported more disinterest than the other eating disorders.

4. Discussion

4.1 Summary

Summary of findings. Using a factor analytic approach, we propose and confirm a four factor structure of the Self-rating Scale for Affective Syndromes (CPRS-S-A) questionnaire in the world’s largest clinical sample of individuals with eating disorders. Based on questionnaire responses of these Swedish patients, we propose four latent factors capturing specific aspects of depression and anxiety symptoms: 1. Depression (4 items), 2. Somatic & fear symptoms (5 items), 3. Disinterest (3 items) and 4. Worry (2 items).

Reduced scale. Our psychometric analysis suggests items can be removed due to their low correlations with other items. Our proposed reduced scale has a total of 14 questionnaire items and is hence shorter than the original CPRS-S-A with 19 items. First, we could drop item “11. Health concerns” as it barely correlated with other items on the scale. Second, we dropped two items regarding compulsiveness (i.e., item 14 & 15) as these were not deemed core to depression and anxiety, were highly correlated with each other, and hence would have distorted the factor analysis. Further, two items (i.e., 4. Sleep and 3. Irritation and anger) did not sufficiently load onto any of our four factors and were hence dropped.
4.2 Context of existing literature

Difference to original scale. Our factor structure differs substantially from the original CPRS-S-A (Svanborg & Asberg, 1994). In contrast to the original structure (Supplementary Table 1), our new structure splits traditional depression symptoms into separate factors: depression and disinterest. Depression mostly included indicator items of low mood, pessimism, and lack of enjoyment, whereas Disinterest revolved around cognition, such as lack of concentration and decision making. Anxiety symptoms were also split into two factors. First, the Somatic & fear symptoms factor grouped together general pain, bodily discomfort, physical panic attack symptoms, such as heart palpitations and dizziness, with phobias which can present with somatic symptoms. The factor also included an item probing differences in appetite. This item may be inappropriate in the context of eating disorders as changes in appetite can be a central symptom of eating disorders; however, the changes may be diametral depending on the eating disorder type. The appetite item loaded poorly on its factor and may be removed at the researcher's or clinician's discretion. Second, the Worry factor groups General worry about minor things and Feeling of unease together. This differs from the original CPRS-S-A that combined worry symptoms with the somatic and fear-based symptoms.

Overall, our analyses suggest a substantially different factor structure compared with the original structure. Our results highlight that we cannot readily apply questionnaires developed for one patient group (here, patients with depression and anxiety) to patients with different disorders as the factor structure may not hold in the new context.

General differences amongst eating disorders. We also explored differences in the new subscales amongst eating disorders. On the one hand, comparisons suggest that patients with anorexia nervosa binge-eating/purging score higher on all four subscales, consistent with the previous report based on a subsample of our analysis (Ulfvebrand et al., 2015), on the other hand, UFED patients had the lowest scores across all four subscales in line with their subsyndromal expression of eating disorders.

Specific differences. In addition to these overarching differences, we detected differences for specific factors. On factor 2 Somatic & fear symptoms, patients with anorexia nervosa or purging disorder scored higher than individuals with either bulimia nervosa or binge-eating disorder. These differences may indicate that the somatic complications seen in anorexia nervosa (Westmoreland et al., 2016) and purging disorder may be captured by items on this factor summarising somatic fear symptoms. Furthermore, patients with anorexia nervosa and purging disorders may perceive these somatic and fear symptoms more strongly than patients with
bulimia nervosa or binge-eating disorder. Fear has been proposed as a fundamental mechanism in the development of anorexia nervosa (Murray et al., 2018).

Depression and anxiety are risk factors for eating disorders (Meier et al., 2015; Steinhausen et al., 2015), but certain symptoms of anxiety or depression may represent somatic or psychiatric complications or sequelae of the eating disorder itself. In some cases, depressive and anxiety symptoms may be independent of the eating disorder.

4.3 Limitations
Our study is biased due to the following limitations. The sample consisted predominantly of women which limits the ability to identify sex differences. Eating disorders are more commonly diagnosed among women, however, men with eating disorders are consistently underrepresented in eating disorder research. This may be due to a lack of awareness and understanding for these disorders among the wider community and clinicians or may represent an underlying sex difference. Our sample included Swedish treatment seeking patients of mostly white European ancestry limiting the generalisability of our findings. Furthermore, patients in healthcare registers often represent a more severe subpopulation of individuals with eating disorders. Hence, the factor structure and our observed differences amongst eating disorders may not replicate across other ancestry or cultural groups or of individuals with a less severe presentation. Our analyses were cross-sectional.

4.4 Future directions
To address a few of our limitations, future studies should confirm our newly detected factor structure in community samples, samples with other psychiatric disorders, and include a healthy comparison group. Optimally, researchers would collect repeated measures of the CPRS-S-A that would further our understanding of how these constructs develop over time and how levels of depression, disinterest, fear, and worry may change with treatment. Future studies should investigate the convergent validity of the questionnaire and could investigate clinical cutoffs to measure comorbid depressive and anxiety disorders.

4.5 Conclusions
In summary, our four factor solution of the CPRS-S-A is suitable for adult patients with different eating disorders and may help to identify differences in anxiety and depression domains. An easily administered, reliable self-report measure for the most common forms of comorbidity in eating disorders is clinically important. The CPRS-S-A may aid the clinician in case formulation and treatment planning. It may also be relevant for the patient’s own understanding of their
A discussion between patient and clinician, facilitated by the individual CPRS-S-A results, of depression and anxiety symptoms in relation to eating disorder symptoms may also improve therapeutic alliance and thus treatment outcome.
Data availability.
Due to regional legal regulations, the data from the quality register cannot be shared.

Conflict of Interest Statement.
The authors report no conflict of interest.

Acknowledgement
Liselotte V. Petersen and Christopher Hübel acknowledge funding by Lundbeckfonden (R276-2018-4581). Moritz Herle is funded by a fellowship from the Medical Research Council UK (MR/T027843/1).

Authors contribution statement
References

interview (SEDI) against the eating disorder examination (EDE). *Stockholm: Karolinska Institutet.*

Godart, N. T., Radon, L., Curt, F., Duclos, J., Perdereau, F., Lang, F., Venisse, J. L., Halfon, O.,

349–351.

