The effect of strict lockdown on Omicron SARS-CoV-2 variant transmission in Shanghai

Haibo Yang, PhD¹#, Hao Nie, BSc¹#, Dewei Zhou, BSc¹#, Yujia Wang, PhD¹*, Wei Zuo, PhD¹,2*

1. Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
2. State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China

*To whom correspondence should be addressed:

Wei Zuo (zuow@tongji.edu.cn)

Yujia Wang (yujiawang@tongji.edu.cn)

These authors contributed equally to this work.
Abstract

Background Omicron, the current SARS-CoV-2 variant of concern, is much more contagious than other previous variants. Whether strict lockdown could effectively curb the transmission of Omicron is largely unknown.

Methods In this retrospective study, we compared the strictness of government lockdown policies in Shanghai and some countries. Based on the daily Omicron case number from March 1st 2022 to April 30th 2022, the effective reproductive numbers in this Shanghai Omicron wave were calculated to confirm the impact of strict lockdown on Omicron transmission. Pearson correlation was conducted to illustrate the determining factor of strict lockdown outcomes in the 16 different districts of Shanghai.

Results After very strict citywide lockdown since April 1st, the average daily effective reproductive number reduced significantly, indicating that strict lockdown could slow down the spreading of Omicron. Omicron control is more challenging in districts with higher population mobility and lockdown is more likely to decrease the number of asymptomatic carrier than the symptomatic cases.

Conclusions The strict lockdown could curb the transmission of Omicron effectively, especially for the asymptomatic spread. And urban city with extensive personnel movement is suggested to adopt this lockdown strategy at early stage to maximally control the virus transmission.

Key words: Omicron variant, SARS-CoV-2, lockdown, virus transmission
Introduction

Since December 2019, COVID-19 outbreak suddenly and rapidly spread all over the world\(^1\). As there were none available vaccines and drugs at first, all the countries relied on non-pharmaceutical interventions and applied lockdown strategy in 2020 as the critical prevention and control measure\(^2\). Even though vaccines from Pfizer, Moderna, Sinopharm and other companies were later listed by WHO for emergency use, the emergence of new Variant of Concern (VOC) such as Delta drove a number of SARS-CoV-2 waves and lockdown was still implemented by the majority of governments from time to time\(^3\).

On November 2\(^{nd}\) 2021, the novel SARS-CoV-2 VOC Omicron was first collected in South Africa and then spread rapidly. It caused abrupt epidemic outbreaks across South Africa, then Europe, and eventually the rest of the world by outcompeting Delta VOC, which accounted for at least 90% of genomes sequenced globally in October 2021\(^4\). This change suggests a strong selective advantage of Omicron as proven by further mutational profile study\(^5\). In detail, the significant number of mutations in the SARS-CoV-2 receptor-binding domain (RBD) render the Omicron variant a higher affinity for human angiotensin-converting enzyme 2 than the Delta variant. These changes render the Omicron variant a short mean serial interval of 3 days and an assumed R0 as high as \(10^6\).\(^6\)\(^7\). Another important observation in the Omicron epidemic is the reduced odds of hospital admission for patients, which then becomes an implication for the relaxation of public health and social measures (PHSM) as chosen by most of the countries\(^8\). However, the epidemiology study of the Hong Kong Omicron
wave in early 2022 revealed that the intrinsic severity of Omicron may not be much lower than the ancestral strains9. Furthermore, Omicron displays key mutations associated with immune escape (K417N, E484A, T478K in the RBD), forcing researchers to develop novel vaccines for Omicron as the vaccines previously administered to the public are not ideal anymore10. Thus, lockdown measures may still be needed facing Omicron wave but its effect remains largely unknown.

In this article, we compared the strictness of Shanghai lockdown policy with that of other countries. We further evaluated the effect of strict lockdown on Omicron spread in Shanghai since April 1st 2022 and identified critical factors to make the lockdown strategy work optimally. The asymptomatic rate in Shanghai was also analyzed. We expect the experience of the Shanghai Omicron epidemic could provide valuable information to other countries encountering highly transmissible SARS-CoV-2 strains in the future.
Methodology

Data resource

Daily case number in this Shanghai Omicron wave from March 1st 2022 to April 30th 2022 was retrieved from Shanghai Municipal Health Commission Database. Subway ridership dataset of Shanghai was shared by Chinese Software Developer Network (CSDN).

Timeline: changes in the PHSM in Shanghai

Stage I: Normal COVID-19 Prevention and Control Measures Stage from March 1st to March 12th when minimum requirements were imposed on majority of the citizens;

Stage II: Precise Epidemic Control Stage from March 13th to March 31st where only residents of certain communities at high risk were quarantined;

Stage III: Citywide Lockdown Stage since April 1st when the whole city is shut down until gradually opened.

Stringency index of government response

To quantify the strictness of government policies, we followed the Oxford Coronavirus Government Response Tracker project which originally considering nine metrics including: school closing, workplace closing, cancel public events, restrictions on gatherings, close public transport, stay at home requirements, restrictions on internal movement, international travel controls, and public information campaigns. In our research, public information campaigns metric was excluded as the difficulty of
accessing information from non-English-speaking countries such as South Korea and Japan. A final stringency index was then calculated from the rest eight metrics. Stringency indices of Shanghai at three PHSM stages were calculated separately to visualize the change in government response, and the raw data are shared in Supplementary Data. For the United States, United Kingdom, German, France and other countries, their strictest COVID-19 prevention and control policies since 2020 were input and processed in the same way. Their stringency indices were compared with Shanghai Stage III stringency index to assess government responses during lockdown.

The trend of the Shanghai Omicron Wave

The raw data of daily new infections during the three PHSM stages was smoothed following a 7-day-averaged, 4th order polynomial method. The asymptomatic rate was calculated in the following equation (a) and smoothed:

\[
\text{Asymptomatic rate} = \left(\frac{\text{asymptomatic cases}}{\text{daily new infections}} \right) \times 100\%
\]

(a)

The trend of the Omicron wave in each district was plotted in the same way.

Strict lockdown outcome assessment

a) Effective reproductive number Rt
Estimation of the effective reproductive number \(R_t \) is a reliable and common way to evaluate changes in disease transmission over time. It has been widely used in the COVID-19 pandemic to help policy makers and public health officials to assess the effectiveness of interventions\(^{12}\). Based on the daily case number at the three PHSM stages, we implemented a time-dependent method for \(R_t \) calculation using a previously reported gamma distribution of the Omicron variant\(^{13}\). The real data was confirmed to fit the model.

b) Effective Interval of lockdown and its correlation with other factors

In order to better assess the effect of lockdown, we defined the leading time from the lockdown starting date to the daily Omicron case peaking date as the Effective Interval (EI) of lockdown. We further evaluated the impact of infected cases and population mobility on EI. In this correlation analysis, two algorithms, infection index and active infection index, were involved:

\[
\text{Infection index} = \ln(\text{daily new infections per one million people}) \quad \text{(b)}
\]

The infection index only considers the number of daily Omicron cases on the day before lockdown.

\[
\text{Active infection index} = \ln(\text{daily new infections per one million people}) \times \ln \text{ daily subway ridership} \quad \text{(c)}
\]
The active infection index considers both the number of daily Omicron cases on the day before lockdown and population mobility. In equation (c) the daily subway ridership was used as an indicator of the population mobility14.

The correlation analysis between these two indices with the EI of 16 districts in Shanghai was examined by two-tail Pearson correlation in GraphPad Prism 9.3.1.
Results

Stringency index of Shanghai lockdown

Shanghai is one of the largest cities in the world with 25 million populations. On March 1st 2022, Omicron variant BA.2 hit Shanghai and the case number increased rapidly in the following weeks. The Shanghai government decided to implement a “static management” lockdown in the eastern half of the city since March 28th and then in the whole city since April 1st, to curb Omicron from rapid spreading. During the lockdown time, all schools and workplaces were closed except necessary health care services including hospitals and COVID-19 testing providers. Public transport was closed and a “stay-at-home” order was given to almost all residents in the city except those working on Omicron prevention and control. All public events were cancelled and gatherings were restricted. As of the submission of this article, Shanghai just starts to open up gradually, tentatively and cautiously.

The calculated stringency index of the Shanghai lockdown is 97, which is only slightly lower than the 100 of the India lockdown but higher than all other countries (Figure 1). Shanghai lockdown gets 100 marks in seven metrics and 75 marks in international travel controls. By then, India totally closed its international borders and only international flights with special permission to conduct cargo operations were allowed during their lockdown period15. Instead, Shanghai has been adopting circuit breaker arrangement for international passenger flights since the start of the COVID-19 pandemic. In detail, designated airline companies are allowed to operate one international flight between Shanghai and another city every week. The passengers will
be quarantined for two weeks and the flight will be paused for a certain period according to the number of COVID-19 cases among these passengers if there is any. Thus, Shanghai already imposed as much restriction as possible during the lockdown, which is one of the strictest worldwide.

Omicron transmission before and after the lockdown in Shanghai

As aforementioned in the Methodology section, we classified three PHSM stages. The daily stringency index during Stage I was merely 9 as only individuals with a travel history of medium- or high-risk regions were monitored. As Shanghai started to control certain communities at high risk in a “2+12” manner in Stage II, the daily stringency index became 45. After the “static management” in the eastern half of Shanghai since March 28th, the daily stringency index further increased to 66. Implementation of lockdown policy in Stage III finally reached a daily stringency index of 97 (Figure 2, green squares).

Next, we calculated Rt, the effective reproductive number indicating changes in disease transmission over time, of the three stages to analyze the Omicron transmission under different PHSM policies. The change of Rt during the Omicron wave was shown in Supplementary Figure 1. Daily averaged Rt of Stage I and Stage II are 1.76 (95% CI: 1.44 to 2.09) and 1.79 (95% CI: 1.7 to 1.89) respectively. These Rt are lower than the average Rt of 3.4 in the Omicron epidemics of South Africa, UK, the Netherlands, and India16. After the citywide lockdown of Shanghai (Stage III), the Rt decreased significantly to 1.04 (95% CI: 1.03 to 1.06), demonstrating that lockdown can
effectively prevent the highly transmissible Omicron from spurring.

Accordingly, after imposing lockdown on April 1st, the daily Omicron cases in Shanghai peaked on April 12th, meaning an effective interval (EI) of 11 days (Figure 2). This is significantly shorter than the EI of 20 days during the lockdown measures of Wuhan, China in 2020 facing the original SARS-CoV-2 strain17, probably due to a stricter lockdown policy in Shanghai than that in Wuhan.

\textit{Control of Omicron in 16 districts of Shanghai after lockdown}

Shanghai city has 16 districts, including both urban regions with high population density and also rural areas in its outskirt. We further compared the trend of Omicron waves in all the 16 districts of Shanghai (Figure 3). Interestingly, it was noticed that the 16 different districts have distinct EI days ranging from 6 days to 20 days (mean ± SD: 10.94 ± 4.09). Double peaks were observed in a few districts, including Hongkou, Yangpu, and Baoshan, as predicted by some previous lockdown modeling study18. These two smaller peaks might be inevitable to relieve the burden on the healthcare system.

We tried to interpret the significant difference of EI in the 16 districts under the same lockdown policy. As more infections will put a bigger population under the risk of Omicron, we analyzed the impact of daily new infections before lockdown on EI. Infection index, an algorithm only considering daily new infections, was introduced and its calculation was given in equation (b). The infection index of each district was then plotted against the corresponding EI as shown in Figure 4A. However, the low
correlation (r) value of 0.416 and the insignificant p value of 0.109 indicate that daily new infections before lockdown alone cannot determine the EI. Since that only Omicron carriers who are in contact with others can form a transmission chain, we introduced active infection index, another algorithm that takes both daily new infections and population mobility into account. In equation (c) of active infection index, the daily subway ridership in each district of Shanghai was adopted as the indicator of the population mobility14. The correlation analysis between EI and active infection index in Figure 4B revealed a significant positive correlation (r=0.5974, p=0.0145), showing both the higher number of infected individuals and the extensive personnel movement before lockdown bring challenges to curb the Omicron epidemic. This result demonstrates that timely lockdown before the surge of case number is important for rapid control of Omicron transmission, especially for those urban regions with high population mobility.

\textit{The asymptomatic rate in Shanghai Omicron wave}

Asymptomatic spread is a characteristic feature of Omicron19. In this Shanghai Omicron wave, the asymptomatic rate fluctuated above 80% (Figure 5A), which might be attributed to factors including the traits of Omicron, the vaccination rate and early detection of infection cases under mass testing. According to Shanghai Municipal Center for Disease Control and Prevention, people aged 60 or under who are in good health have accounted for 84.5% of cases, pushing up the asymptomatic rate. Besides, more than 88% of Shanghai residents are fully vaccinated. Even though the
immunoevasive property of Omicron brings difficulty for vaccines to achieve full protection against infection and transmission, their effectiveness against symptomatic diseases, hospitalization and mortality is also precious as pointed out by COVID-19 vaccine weekly surveillance reports of the United Kingdom Health Security Agency20.

In order to understand the effect of lockdown on the asymptomatic transmission of Omicron, we analyzed the asymptomatic rate before and after lockdown (Figure 5B). The data showed that during Stage I and Stage II, the median asymptomatic rate was 94.67\% and 96.84\% respectively. After lockdown, the median asymptomatic rate of Stage III dropped to 90.11\%. It is unclear that why there is a significant decrease in asymptomatic transmission after the lockdown. Regardless of the possible change in PCR testing policy, one explanation could be that the asymptomatic cases are more common in young and middle-aged individuals21. Young people are more active in social contact before lockdown; therefore, their infection risk is sensitive to lockdown. In contrast, the older-age residents tend to develop symptoms because of their weakened immune systems. Their activity is more limited in family or close neighborhood (neighborhood sharing kitchen and/or toilet). Accordingly, the city lockdown has little effect on the Omicron transmission in family or close neighborhood clusters, which explains the change in the asymptomatic/symptomatic ratio.
Discussion

In the Shanghai Omicron wave, the municipal government implemented the strictest lockdown policy. These measures effectively stopped the spreading of Omicron, especially its asymptomatic transmission. Through correlation analysis, we found that timely lockdown before the surge of case numbers is critical for putting the Omicron epidemic under control in urban regions. Previous work also utilized the same Oxford Coronavirus Government Response Tracker project to evaluate the association between physical distancing interventions and the incidence of COVID-19 in 149 countries. Among the nice metrics, their primary interventions of interest were those aimed at physical distancing, including closure of schools and workplaces, restrictions on mass gatherings, public transport closure, stay at home regulations and restrictions on movements within a country. The association between the sequence of interventions and the change in the incidence of COVID-19 was analyzed. They found a greater decrease in the incidence of COVID-19 was associated with earlier implementation of lockdown rather than later implementation. This is consistent with our correlation analysis implying that timely lockdown before the surge of case number is important for rapid control of Omicron transmission.

Some other previous studies investigated the impacts of New Zealand’s graduated, risk-informed national COVID-19 suppression measures in early 2020 on the epidemiology of COVID-19. They did a descriptive epidemiological study of all laboratory-confirmed and probable cases of COVID-19, which makes their results much more reliable and convincing. A feature of this New Zealand’s COVID-19
pandemic is the low proportion of asymptomatic infection compared with other countries despite widespread testing. The low level of community transmission was believed to contribute to this. This supports our hypothesis that impeded community transmission after the lockdown in Shanghai reduced asymptomatic transmission between young and middle-aged residents, leading to a lower asymptomatic rate at Stage III.
Supplementary data

Supplementary data are available online.

Funding

This work was supported by the NSFC for Excellent Young Scientists of China (82122038), the National Key Research and Development Program of China (2017YFA0104600), NSFC Sino-German COVID International Collaboration Program (C-0025) to WZ.

Acknowledgements

We would like to thank CSDN for sharing the subway ridership dataset of Shanghai.

Author Contributions

W.Z. designed the study and polished the manuscript. Y.W. designed the study and performed the analysis. H.Y. performed the analysis and drafted the manuscript. H.N. and D.Z. collected the data and performed the analysis.

Conflict of interests

We declare no competing interests.
Reference

16. Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J. Travel Med. 2022: taac037.

Figure 1. Stringency indices of lockdown policies implemented by different governments.

Based on the Oxford Coronavirus Government Response Tracker project, the lockdown policies of different governments were assessed considering eight metrics (plotted as grey triangles). The stringency indices of lockdown policies were then derived from the eight metrics and presented as red/blue dots.
Figure 2. Daily new infections in Shanghai with corresponding stringency index.

The daily new infections (red, yellow, and blue dots indicate numbers during the Public Health and Social Measures Stage I, II, and III, respectively) with corresponding stringency index (green squares) in Shanghai from March 01, 2022 to April 30, 2022. Dashed vertical lines indicate the beginning date of Stage II and III (March 13 and April 01, respectively). The raw data was smoothed following a 7-day-averaged, 4th order polynomial method and the trend was plotted as black curve for daily new infections.
Figure 3. Daily new infections in 16 districts of Shanghai.

The daily new infections from March 1, 2022 to April 30, 2022 in 16 districts of Shanghai were plotted as dots. The raw data was smoothed following a 7-day-averaged, 4th order polynomial method and the trends were plotted as black curves. Dashed vertical lines indicate the lockdown date of each district. EI, the leading time from the lockdown starting date to the daily omicron cases peaking date, was labeled for each district. For districts with double peak, EI was identified based on the first peak and differentiated as EI’.
Figure 4. Correlation analysis between EI and the calculated infection index/active infection index.

EI is the leading time from the lockdown starting date to the daily omicron cases peaking date in each district. The calculated infection index is an algorithm considering only the daily new infections number in each district. The calculated active infection index is an algorithm taking both the number of infected individuals and the population mobility in each district into account. Data are examined by two-tail Pearson correlation in GraphPad Prism 9.3.1.

(A) The correlation between EI and the calculated infection index.

(B) The correlation between EI and the calculated active infection index.
Figure 5. Asymptomatic rate in Shanghai Omicron wave.

Asymptomatic rate is the ratio of asymptomatic cases to daily new infections.

(A) Asymptomatic rate (red, yellow, and blue dots for the PHSM Stage I, II, and III, respectively) in Shanghai Omicron wave. Dashed vertical lines indicate the beginning date of Stage II and III (March 13 and April 01, respectively). The data was smoothed following a 7-day-averaged, 4th order polynomial method and the trend was plotted as black curve.

(B) The comparison of asymptomatic rate during the three PHSM Stages.