Brain Total Creatine Differs Between Primary Progressive Aphasia (PPA) Subtypes and Correlates with Disease Severity

Kathleen E. Hupfelda,b, Helge J. Zöllnera,b, Georg Oeltzschnera,b, Hayden W. Hyattc, Olivia Herrmannd, Jessica Gallegosd, Steve C. N. Huia,b, Ashley D. Harrise,f, Richard A. E. Eddena,b, and Kyrana Tsapkind,g,*

a Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
b F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
c Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
d Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
e Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
f Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
g Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA

Corresponding Author: Kyrana Tsapkin, PhD
Departments of Neurology and Cognitive Science
Johns Hopkins University
Phipps 488, 600 N Wolfe Street
Baltimore, MD 21287
Email: tsapkin@jhmi.edu

Running Title: BRAIN CREATINE IN PRIMARY PROGRESSIVE APHASIA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Primary progressive aphasia (PPA) is a debilitating neurodegenerative disease that primarily impairs language function. It is comprised of three subtypes with varied clinical presentation and cortical atrophy patterns: logopenic variant (lvPPA), non-fluent variant (nfvPPA), and semantic variant (svPPA). No prior work has examined differences in brain chemistry between the PPA subtypes, or associations of brain chemistry with symptom severity.

Methods: We collected magnetic resonance spectroscopy (MRS) data in the left inferior frontal gyrus (IFG, a main language production region) and the right sensorimotor cortex (SMC) from 61 PPA patients. We analyzed tissue-corrected metabolite levels to account for the effects of cortical atrophy and other tissue-specific properties. We aimed to: 1) characterize differences between PPA subtypes for 5 brain metabolites: total N-acetylaspartate (tNAA), total choline (tCho), total creatine (tCr), glutamate+glutamine (Glx), and gamma-aminobutyric acid (GABA); and 2) test for associations between these neurometabolites and PPA symptom severity.

Results: tCr levels differed by PPA subtype across both the left IFG and right SMC. In both regions, tCr levels were lowest among lvPPA patients and highest among svPPA patients. Moreover, across the whole cohort, higher tCr and lower Glx levels in the left IFG correlated with greater disease severity.

Conclusions: Given that tCr is involved in brain energy metabolism and homeostasis, our results indicate that svPPA pathology might involve changes in specific cellular energy processes. Moreover, our finding that higher tCr was associated with worse PPA symptom severity suggests that perturbations to cellular energy homeostasis in cortical language areas may contribute to PPA symptoms. In addition, reduced cortical excitatory capacity (i.e., lower Glx) in brain areas related to language processing may also contribute to PPA symptoms. Together, these findings suggest that tCr could serve as a biomarker to differentiate between PPA subtypes, and that both tCr and Glx might have utility for better understanding PPA disease mechanisms and tracking disease progression.
Trial registration: ClinicalTrials.gov (NCT02606422). Registered 11 November 2015 -
Retrospectively registered,

https://clinicaltrials.gov/ct2/show/NCT02606422?term=NCT02606422&draw=2&rank=1

Keywords: Primary Progressive Aphasia (PPA), creatine (tCr), glutamate+glutamine (Glx),
magnetic resonance spectroscopy (MRS), Point RESolved Spectroscopy (PRESS)
1. Background

Primary progressive aphasia (PPA) is a devastating neurodegenerative condition characterized by prominent declines in language function (1,2). Symptoms usually begin in middle age (around 40-60 years), worsen over time, and may later extend to other cognitive domains (1–3). PPA thus considerably impacts quality of life, in addition to shortening life expectancy; average life expectancy after PPA diagnosis is only about 3-12 years (4). Critically, aside from some symptom improvement with behavioral therapy (5) or neuromodulation (6,7), there remain no disease-modifying treatments for PPA. Therefore, it is becoming increasingly imperative to improve scientific understanding of PPA pathology to identify biomarkers of disease progression as well as potential therapeutic targets.

Consistent with their language symptoms, those with PPA typically display cortical atrophy in the left hemisphere, particularly in brain regions related to language function (8). However, PPA is a heterogeneous disorder associated with both varied symptoms and varied pathology. As such, expert consensus has divided PPA into three subtypes (1) (along with mixed or unclassified cases): 1) logopenic variant PPA (lvPPA) is characterized by deficits in word retrieval (i.e., producing the intended word) and difficulty repeating words and sentences; 2) non-fluent variant PPA (nfvPPA) is characterized by deficits in grammar and speech production and slow, effortful, and distorted (apraxic) speech, but preserved word comprehension and naming; and 3) semantic variant PPA (svPPA) is characterized by severe deficits in single-word comprehension and naming, but preserved grammar and fluency (i.e., these individuals tend to produce “empty” speech).

These three subtypes have been linked to different cortical atrophy patterns and different pathology. Atrophy is most prominent in the left posterior temporal and inferior parietal lobes in lvPPA, left posterior frontal and fronto-insular cortex in nfvPPA, and anterior temporal lobes (left dominant but usually bilateral) in svPPA (1). lvPPA is most often associated with Alzheimer’s disease (AD) pathology (e.g., PET-PIB positivity, decreased Aβ42, and elevated tau in the...
cerebrospinal fluid) (9,10), nfvPPA is most often associated with tau-positive pathology (9,11,12), and svPPA is most often associated with ubiquitin/TDP43-positive frontotemporal lobar degeneration (3,9,13–15). However, there is not a direct correspondence between atrophy or pathology and PPA subtype; thus, further work is warranted to better understand how disease mechanisms might differ between the PPA subtypes.

Magnetic resonance spectroscopy (MRS) permits measurement of brain chemicals in vivo in humans using an MRI scanner and thus can provide insight into potential disease mechanisms and drug targets, distinct from conclusions that can be drawn from the atrophy and pathology measurements discussed above. Standard MRS acquisitions, including short-echo time (TE) Point RESolved Spectroscopy (PRESS), measure metabolites including total N-acetyl aspartate (tNAA), total choline (tCho), total creatine (tCr), and glutamate+glutamine (Glx) (16). tNAA, a composite measure of NAA and NAAG (N-acetylaspartylglutamate), is a neuronal marker, suggested as an indicator of neuronal density and integrity (17). tCho, the composite of phospholipid precursors phosphocholine (PCh) and glycerophosphocholine (GPC), can reflect changes in membrane turnover or cell density (18). Creatine and phosphocreatine (reported in combination as tCr) are involved in brain energy metabolism and homeostasis (17). Glx is a combination of two signals: glutamate (i.e., the principal excitatory neurotransmitter in the central nervous system (CNS)) and glutamine (i.e., a precursor for glutamate). J-difference editing of the spectrum using e.g., MEscher–GArwood Point RESolved Spectroscopy (MEGA-PRESS) (19–21) allows us to quantify additional metabolites with coupled spin systems and overlapped signals. These include the primary inhibitory neurotransmitter within the CNS, gamma-aminobutyric acid (GABA).

A majority of studies suggest that brain tNAA, Glx (or glutamate), and GABA levels decrease with normal aging (18,22–24), and are decreased in mild cognitive impairment (MCI) (25,26) and AD (27–30) compared with normal aging. Both tCho and tCr either increase or show no change with normal aging (18,22,24), and are either elevated (31,32) or not different (29,32)
in MCI and AD compared with normal aging. Functionally, lower MRS-measured tNAA, Glx (or glutamate), and GABA, and higher tCho, have each been associated with poorer cognitive performance in normal aging (33–37), MCI (25,38–40), AD (39), and frontotemporal lobar degeneration patients (41). Taken together, it is plausible that these metabolites might differ between the three PPA subtypes and associate with metrics of disease severity.

We previously identified GABA decreases in the left inferior frontal gyrus (IFG) following transcranial direct current stimulation (tDCS) combined with language therapy in PPA patients (42). However, the sample size included in this prior work ($n = 22$) was not sufficient to stratify metabolite level differences by the three PPA subtypes. Therefore, the objectives of the present study included: 1) to characterize differences in brain metabolite levels between the three PPA subtypes; and 2) to examine relationships between brain metabolite levels and PPA symptom severity, as indicated by the FrontoTemporal Dementia Clinical Dementia Rating Scale (FTD-CDR, a measure of overall disease severity, including language function, memory, attention, and independence, with scores ranging from 0 (no impairment) to 24 (severe impairment) (43)).

2. Methods

2.1 Participants

Prior to study enrollment, all patients were evaluated using neurological examination, cognitive and language testing, and neuroimaging. All patients enrolled in the study were diagnosed with PPA using current consensus criteria (1); diagnoses were confirmed by expert clinicians. Additional inclusion criteria included: at least a 12th grade education, right-handedness, and English as a first language. Participants were excluded if: they were over 90 years of age, were not pre-morbidly proficient spellers, had progressed to advanced stages of PPA or other dementia, had any diagnosed comorbid neurologic conditions (e.g., stroke, psychiatric, or developmental disorder), or if they had any contraindications for MRI scanning. The Johns Hopkins University Institutional Review Board (#NA_00071337) approved all study
procedures, and the trial was registered on ClinicalTrials.gov (NCT02606422). All participants scored >0 on the FTD-CDR scale, indicating at least some level of impairment to daily functioning.

2.2 MRS Acquisition

All MRS data were collected using the same 3.0 Tesla Philips Achieva MRI scanner using a 32-channel head coil. For voxel positioning and tissue segmentation, we collected a whole-brain T_1-weighted structural MRI scan, using the following parameters: magnetization-prepared rapid gradient-echo (MPRAGE) sequence, TR/TE = 8 ms/3.75 ms, flip angle = 8°, slice thickness = 1.0 mm, 150 slices, voxel size = 1 mm3 isotropic voxels. Next, we acquired metabolite spectra from two 30 x 30 x 30 mm3 voxels (Fig. 1) using both short-TE PRESS and MEGA-PRESS sequences. We positioned the left IFG voxel using the anatomical landmarks of the lateral ventricles and insula. We positioned the right SMC voxel by centering the voxel on the hand knob in the precentral gyrus. Both voxels were carefully shifted and rotated to avoid the edge of the brain and ventricles as much as possible to avoid lipid contamination and partial-volume effects.

To measure tNAA, tCho, tCr, and Glx, we used a standard short-TE PRESS acquisition with the following parameters: TR/TE = 2000 ms/32 ms; 48 averages sampled at 2000 Hz with 2048 points; and water suppression using the VAPOR method (44). To resolve GABA, we used MEGA-PRESS (20,21) with the following parameters: TR/TE = 2000 ms/68 ms; 14-ms editing pulses at 1.9 ppm and 7.46 ppm, alternating every 2 averages; 320 averages in total; and VAPOR water suppression (44). MEGA-PRESS editing schemes for the detection of GABA co-edits homocarnosine and macromolecular signals (45); therefore, as is standard practice, we refer to the edited 3 ppm GABA signal as GABA+ in the remainder of the manuscript. For both the short-TE PRESS and MEGA-PRESS acquisitions, we also collected 8 water reference spectra without water suppression or pre-inversion, for later use in eddy current correction and metabolite quantification.
Fig 1. Voxel Placement and Spectra. (A) In vivo MR spectra were acquired from the left inferior frontal gyrus (IFG) and right sensorimotor cortex (SMC); here we depict the placement of both voxels (IFG in green, SMC in blue) for a single exemplar participant overlaid onto their skull-stripped structural image to protect patient privacy. The rendered structural image is shown as semi-transparent, in order to depict voxel placement within the brain. (B-C) Average short-TE PRESS and GABA-edited MEGA-PRESS spectra (black), 95% confidence interval (gray shading) and model fits (blue) for all participants for both voxels. The PRESS spectra are shown from 0.2-4.2 ppm. The MEGA-PRESS spectra are shown from 2.7-4.2 ppm.

2.3 MRS Data Processing

MRS data were analyzed using the open-source analysis toolbox Osprey (v2.0.0; https://github.com/schorschinho/osprey/) (46) within MATLAB R2021b. The analysis procedures followed consensus-recommended processing guidelines for PRESS and MEGA-PRESS data (19,47) and match those applied in our previous work (48,49). Briefly, for the short-TE PRESS data, analysis steps included: loading the vendor-native raw data (which had already been coil-combined, eddy-current-corrected, and averaged on the scanner at the time of data collection), removing the residual water signal using a Hankel singular value decomposition (HSVD) filter (50), and modeling the metabolite peaks as described in detail in (46,48) using a custom basis set generated by our new MRSCloud tool (https://braingps.anatomyworks.org/mrs-cloud; 51).
The basis set was generated using PRESS localization at TE = 32 ms with the Philips-specific sequence timing and real RF pulse waveforms, and consisted of simulations of 32 metabolites including NAA and NAAG (=tNAA), Cr and PCr (=tCr), GPC and PCh (=tCho), Glu and Gln (=Glx), and GABA (which are of interest in this study), as well as 23 other low-concentration metabolites. We then created a binary mask of the two MRS voxels in subject space, co-registered these masks to each participant’s T_1-weighted structural scan, and segmented the structural scans using SPM12 (52), and quantified metabolite levels with respect to the unsuppressed water scan. These tissue volume fractions in the MRS voxels were used for full tissue- and relaxation-corrected metabolite quantification (see below).

For the GABA-edited MEGA-PRESS data additional, standardized analysis steps in Osprey included: eddy-current correction based on the water reference (53), robust spectral registration (54) to separately align the individual transients within each sub-spectrum, and final alignment of the averaged sub-spectra by minimizing the choline peak in the difference spectrum before generating the final GABA-edited difference spectrum. The co-edited macromolecules (MMs) at 3 ppm were modelled with the “1to1GABA” model, which uses one composite GABA + MM basis function (i.e., the sum of the GABA and MM$_{3co}$ basis functions, with a fixed 1:1 amplitude ratio); this model assumes 50% of the 3-ppm signal in the GABA-edited difference spectrum can be attributed to co-edited MMs (49,55). As is standard for 3 T GABA-edited MEGA-PRESS data, we considered the composite edited 3-ppm signal, i.e., “GABA+” (GABA+MM) values in our statistical analyses.

Finally, we corrected all metabolite estimates in order to assess metabolite levels only in the tissue present in the voxel, which is particularly relevant for aging and neurodegenerative disease populations who may have substantial cortical atrophy (56). We applied tissue and relaxation correction to the short-TE PRESS values; this adjusts metabolite estimates to account for atrophy and heterogeneous tissue composition within the voxels, using literature values (57) to account for differences in water visibility and relaxation times between tissue...
types (58,59). Similarly, to account for the effects of atrophy and tissue-specific water visibility and relaxation, (and assuming that GABA+ levels in gray matter are twice that in white matter), we applied the “alpha” correction to all GABA+ values (59). For further details, see Appendix A, in which we list all consensus-recommended parameters regarding our MRS data acquisition, processing, and quality (60).

2.4 Statistical Analyses

We conducted all statistical analyses using R 4.0.0 (61) within RStudio (62). First, we used one-way ANOVAs (or Kruskal-Wallis non-parametric tests if the ANOVA assumptions of normality and heteroskedasticity were not met) to test for group differences in demographic variables and symptom severity between the three subtypes. Next, we used linear mixed models (lme, (63)) to examine whether metabolite levels differed by PPA subtype or brain region. In the final model, we entered the metabolite level as the outcome variable, PPA subtype and voxel (i.e., IFG or SMC) as predictors, and included a random intercept for each subject (similar to our previous work, (64)). Including the PPA subtype*voxel interaction term or a random slope for each subject did not improve model fit (likelihood ratio test $p > 0.05$), so these terms were omitted from the final statistical models. Each final model satisfied the linear mixed model assumptions of homogeneity of variances and normality of residuals. We used this same linear mixed model approach to test for PPA subtype and brain region differences in bulk tissue composition (i.e., voxel gray matter, white matter, and cerebrospinal fluid fractions).

Lastly, we applied a linear model to test for relationships between brain metabolite levels and PPA symptom severity (i.e., FTD-CDR scores). Given the subgroup sizes and the missing MRS and FTD-CDR data (see Table B1), we conducted this analysis across the whole cohort instead of stratified by PPA subtype. In addition, given the amount of missing GABA+ data compared with the other metabolites (Table B1), we did not include GABA+ as a predictor in this metabolite-symptom severity model (though we did test for GABA+ differences between PPA subtypes, as described above). Thus, in the full model, we entered as predictors: the metabolite...
levels from both voxels (4 metabolites/voxel), age, sex, and years since diagnosis. We then selected a final model using bestglm with cross-validation, delete-d method, and 1,000 replications to produce a final model that retained only the best predictors of FTD-CDR score (65,66). The FTD-CDR scores were not normally distributed (Shapiro test $p < 0.05$), so we reran the same model selection procedure after square root-transforming the FTD-CDR variable, which improved the normality of the data (Shapiro test $p > 0.05$).

3. Results

3.1 Sample Characteristics

The total cohort consisted of 61 PPA patients: 22 nfvPPA, 27 lvPPA, and 12 svPPA. There were no differences in sex, age, time since diagnosis, or symptom severity based on PPA subtype (Table 1). IFG short-TE PRESS data was not collected for 2 participants, IFG MEGA-PRESS data was not collected for 1 participant, and FTD-CDR scores were missing for 7 participants. Table B1 details additional data omissions from statistical analyses; MRS data were excluded if NAA linewidth was greater than 15 Hz (47) or if incorrect pulse sequence parameters were used during acquisition. Group mean spectra (after these exclusions) are presented in Fig. 1, and data quality metrics (i.e., linewidth, SNR, and fit error) are presented in Appendix A.
Table 1. Sample Characteristics

<table>
<thead>
<tr>
<th></th>
<th>lvPPA</th>
<th>nfvPPA</th>
<th>svPPA</th>
<th>F or χ²</th>
<th>p</th>
<th>η²</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>22</td>
<td>27</td>
<td>12</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sex</td>
<td>13 F; 9 M</td>
<td>11 F; 16 M</td>
<td>7 F; 5 M</td>
<td>1.97</td>
<td>0.373</td>
<td>--</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65.58 (8.11)</td>
<td>68.65 (6.61)</td>
<td>69.07 (5.16)</td>
<td>1.50</td>
<td>0.231</td>
<td>0.05</td>
</tr>
<tr>
<td>Years of educationa,b</td>
<td>16.48 (1.91)</td>
<td>16.83 (2.44)</td>
<td>16.35 (2.33)</td>
<td>0.23</td>
<td>0.799</td>
<td>0.01</td>
</tr>
<tr>
<td>Years since diagnosisa,c</td>
<td>3.93 (2.83)</td>
<td>3.81 (2.58)</td>
<td>5.05 (2.91)</td>
<td>0.83</td>
<td>0.442</td>
<td>0.03</td>
</tr>
<tr>
<td>FTD-CDR sum scorea,d</td>
<td>6.55 (5.17)</td>
<td>5.26 (4.17)</td>
<td>7.61 (5.59)</td>
<td>0.87</td>
<td>0.424</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 1 Note. For each metric, we report the mean (standard deviation) for each PPA subtype. We also report the results of one-way ANOVAs to characterize differences in each variable between the subtype groups. For sex, we report the number of males (M) and females (F) and the result of a Pearson’s chi-square test for differences in the sex distribution within each group. This table includes all available participants; however, statistical analyses of MRS data omitted several additional participants (see Table B1).

a In cases where the variable did not meet the one-way ANOVA assumptions of homogeneity of variances between groups, independence of residuals, and/or normality of residuals (indicated by the subscript ‘a’), we reran each analysis using the non-parametric Kruskal-Wallis test. In all cases, the non-parametric test did not change the statistical significance of the result.

b Years of education was unavailable for 1 lvPPA, 3 nfvPPA, and 2 svPPA patients.

c Years since diagnosis was unavailable for 1 lvPPA, 3 nfvPPA, and 1 svPPA patients.

d FTD-CDR sum score was unavailable for 4 nfvPPA patients and 3 svPPA patients.

3.2 Differences in Brain Metabolite Levels by PPA Subtype

tCr levels differed by subtype across both voxels; svPPA patients had higher mean tCr compared with lvPPA patients (p = 0.019; Fig. 2; Table 2). nfvPPA patients had higher mean tCr levels compared with lvPPA patients, though this difference did not reach statistical significance within the linear mixed effects model (p = 0.071; Fig. 2; Table 2). There were no other differences in brain metabolite levels (all p > 0.05; Fig. 2; Table 2) or voxel tissue fractions (all p > 0.05; Table B3) based on PPA subtype.

3.3 Regional Differences in Brain Metabolites and Voxel Composition

tNAA was lower in the IFG compared with the SMC voxel (p < 0.001), while tCho, tCr, and Glx were higher in the IFG compared with the SMC voxel (all p < 0.001; Fig. 2; Table 2). GABA+ did not differ by brain region (p = 0.626; Fig. 2; Table 2). The IFG compared with the SMC voxel had a higher gray matter (p < 0.001) and lower white matter fraction (p < 0.001), as well as a greater total tissue fraction (i.e., higher gray matter + white matter fraction; p = 0.012; Table B3).
Fig 2. Differences in Metabolites by PPA Subtype and Brain Region. Metabolite levels for the lvPPA (pink), nfvPPA (green), and svPPA (blue) subtypes are shown for the IFG (left) and SMC (right) voxels.

* indicates $p < 0.05$ for the comparison of svPPA tCr levels with lvPPA tCr levels.

** indicates $p < 0.001$ for the comparison of metabolite values within the SMC versus the IFG.

Table 2. Differences in Metabolites by PPA Subtype and Brain Region

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Predictors</th>
<th>Estimates (SE)</th>
<th>CI</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>tNAA (i.u.)</td>
<td>Diagnosis (nfvPPA)</td>
<td>-0.53 (0.33)</td>
<td>-1.19-0.12</td>
<td>-1.60</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>Diagnosis (svPPA)</td>
<td>-0.17 (0.41)</td>
<td>-0.98-0.64</td>
<td>-0.41</td>
<td>0.684</td>
</tr>
<tr>
<td></td>
<td>Voxel (SMC)</td>
<td>2.58 (0.19)</td>
<td>2.20-2.95</td>
<td>13.44</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>tCho (i.u.)</td>
<td>Diagnosis (nfvPPA)</td>
<td>0.11 (0.09)</td>
<td>-0.07-0.28</td>
<td>1.22</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td>Diagnosis (svPPA)</td>
<td>-0.12 (0.11)</td>
<td>-0.34-0.09</td>
<td>-1.12</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>Voxel (SMC)</td>
<td>-0.26 (0.05)</td>
<td>-0.35-0.16</td>
<td>-5.38</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>tCr (i.u.)</td>
<td>Diagnosis (nfvPPA)</td>
<td>0.34 (0.18)</td>
<td>-0.02-0.69</td>
<td>1.84</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>Diagnosis (svPPA)</td>
<td>0.54 (0.23)</td>
<td>0.10-0.99</td>
<td>2.40</td>
<td>0.019*</td>
</tr>
<tr>
<td></td>
<td>Voxel (SMC)</td>
<td>-0.40 (0.11)</td>
<td>-0.61-0.19</td>
<td>-3.78</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>Glx (i.u.)</td>
<td>Diagnosis (nfvPPA)</td>
<td>0.91 (0.60)</td>
<td>-0.27-2.09</td>
<td>1.51</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>Diagnosis (svPPA)</td>
<td>0.01 (0.74)</td>
<td>-1.45-1.47</td>
<td>0.01</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>Voxel (SMC)</td>
<td>-2.58 (0.33)</td>
<td>-3.23-1.93</td>
<td>-7.79</td>
<td>< 0.001***</td>
</tr>
<tr>
<td>GABA+ (i.u.)</td>
<td>Diagnosis (nfvPPA)</td>
<td>-0.10 (0.28)</td>
<td>-0.65-0.45</td>
<td>-0.37</td>
<td>0.716</td>
</tr>
<tr>
<td></td>
<td>Diagnosis (svPPA)</td>
<td>0.10 (0.36)</td>
<td>-0.60-0.80</td>
<td>0.28</td>
<td>0.782</td>
</tr>
<tr>
<td></td>
<td>Voxel (SMC)</td>
<td>-0.11 (0.23)</td>
<td>-0.57-0.34</td>
<td>-0.49</td>
<td>0.626</td>
</tr>
</tbody>
</table>

Table 2 Note. Here we report the results of a linear mixed effects model testing for PPA subtype and voxel differences in each metabolite. lvPPA and IFG served as the reference groups. For ease of interpretation, in this table we included only the predictors of interest; see Table B2 for all model and fit information. SE = standard error; CI = 95% confidence interval. *$p < 0.05$, **$p < 0.001$.
3.4 Metabolite Relationships with PPA Symptom Severity

We included all short-TE PRESS metabolite levels from both voxels (i.e., 4 measures/voxel), age, sex, and years since diagnosis in the full statistical model, and only those participants without missing short-TE PRESS or FTD-CDR data ($n = 49$; see Table B1). The final model retained left IFG tCr, left IFG Glx, and years since diagnosis as statistically significant predictors of FTD-CDR score (Table 3). That is, across the whole cohort, worse PPA symptoms (i.e., higher FTD-CDR scores) were associated with higher left IFG tCr levels (partial $r = 0.39$; $p = 0.007$; Fig. 3A), lower left IFG Glx levels (partial $r = 0.36$; $p = 0.012$; Fig. 3B), and longer disease duration (partial $r = 0.34$; $p = 0.021$). Rerunning this model with the square root of FTD-CDR scores as the outcome variable (to meet the normality assumption) returned the same three predictors and did not change the statistical significance of any results.

Fig 3. Relationship of IFG tCr and Glx with FTD-CDR Score. This figure depicts the partial correlations of tCr and Glx levels in the left IFG with FTD-CDR scores across all participants (indicated by each gray point). These partial correlations account for the effects of the other predictors included in the final statistical model on the variable of interest (i.e., tCr values are corrected for Glx and years since diagnosis, and Glx values are corrected for tCr and years since diagnosis). Higher FTD-CDR scores indicate worse PPA symptom severity. These plots include $n = 49$ individuals, after exclusion of missing and unusable data (see Table B1).
Table 3. Metabolites Relationships with PPA Symptom Severity

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Estimates (SE)</th>
<th>CI (95%)</th>
<th>t</th>
<th>p</th>
<th>R^2 / R^2 Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-14.18 (9.19)</td>
<td>-32.69-4.32</td>
<td>-1.54</td>
<td>0.130</td>
<td>0.130 / 0.29</td>
</tr>
<tr>
<td>IFG tCr (i.u.)</td>
<td>1.96 (0.69)</td>
<td>0.57-3.35</td>
<td>2.84</td>
<td>0.007**</td>
<td></td>
</tr>
<tr>
<td>IFG Glx (i.u.)</td>
<td>-0.55 (0.21)</td>
<td>-0.98(-0.13)</td>
<td>-2.61</td>
<td>0.012*</td>
<td></td>
</tr>
<tr>
<td>Years since diagnosis</td>
<td>0.48 (0.20)</td>
<td>0.08-0.89</td>
<td>2.39</td>
<td>0.021*</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Note. Here we report the results of the final linear model testing for associations between brain metabolite levels and FTD-CDR (i.e., PPA symptom severity) scores. SE = standard error; CI = 95% confidence interval. *p < 0.05, **p < 0.01.

4. Discussion

This is the first study to investigate brain metabolite differences between PPA subtypes using MRS. Our key findings included, firstly, that tissue-corrected tCr differed by PPA subtype across the left IFG and right SMC; lvPPA patients had the lowest tCr levels, followed by nfvPPA, and svPPA patients with the highest brain tCr levels. Secondly, higher tissue-corrected tCr and lower Glx levels in the left IFG (i.e., a brain region critical for language function) were associated with more severe symptoms as indicated by the FTD-CTR scale (which indexes language function as well as other cognitive and daily living domains (43)). Together, these results suggest that brain tCr may play a role in PPA pathology or progression, particularly for the svPPA subtype, and thus could have utility for differentiating svPPA from other PPA subtypes. Both tCr and Glx might be explored as biomarkers for tracking disease severity and progression.

Those with svPPA had the highest tCr levels across both the left IFG and right SMC. The creatine (Cr)/phosphocreatine (PCr) system is a short-lived energetic system that allows exchange of high-energy phosphate between Cr, adenosine triphosphate (ATP), and adenosine diphosphate (ADP). Creatine kinase, the primary enzyme in the Cr system, reversibly exchanges high-energy phosphate between ATP and Cr (forming PCr) or PCr and ADP (forming ATP). In doing so, the Cr/PCr system simultaneously supplies a high-energy pool capable of rapidly regenerating ATP during high energetic demands, while also dispersing ATP across the cell to connect ATP consumption to the site of energy production (i.e., a bucket-
Brigade of ATP dispersion (67). Cr is found in the highest concentrations in tissues with high ATP demand, including muscle and brain tissue (17,68). MRS at 3 T permits measurement of tCr (i.e., the sum of Cr and PCr); tCr is thus reflective of the Cr/PCr system more generally, including PCr anabolism (via Cr synthesis enzymes glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT)), Cr degradation (non-enzymatic conversion to creatinine), and Cr extracellular transport (via Cr transporter, SLC6A8).

Previous MRS studies have reported elevated tCr in normal aging (18,22,24,69–72), MCI and AD (31), and other neurological conditions with cognitive symptoms (e.g., HIV-positive patients with neurological symptoms (73,74)). It remains unclear whether this is due to increased Cr and/or PCr synthesis, or decreased clearance of these metabolites from the brain (71). It is hypothesized that elevated brain tCr is related to declines in creatine kinase activity with aging and neurological disease (22,69,70,75–77), possibly due to elevated oxidative stress (67,78). In the present work, it could be that svPPA patients encounter the greatest oxidative stress and resulting perturbation to Cr/PCr cellular energy processes. Future MRS studies that edit for antioxidant levels (e.g., glutathione and ascorbate, (79)) could better elucidate potential contributions of declining antioxidant systems to PPA disease processes.

It is also plausible that elevated levels of tCr could be a compensatory mechanism for reduced mitochondrial trafficking in neurons of svPPA individuals. Mitochondrial trafficking refers to the movement of mitochondrial organelles across the cell. Due to the large length of axonal projections in neurons, new mitochondria arising from mitochondrial biogenesis must be delivered from the soma to distal axons (80). Once arrived, mitochondria are anchored in the cell by the protein syntaphilin (SNPH), which abolishes the movement of mitochondria (81). Notably, a recent report showed that SNPH was significantly elevated in a cohort of individuals with TDP43-positive frontotemporal lobar degeneration (82), which is the pathology most associated with the svPPA subtype (1). In this manner, elevated SNPH could result in decreased mitochondrial motility, resulting in a greater need to disperse high-energy phosphate
across the cell from sites of production (e.g., mitochondria) to sites of energy consumption (e.g., neuronal synapses). In this regard, elevated Cr may compensate for an inability to appropriately localize mitochondria across neurons and allow for transport of high-energy phosphate across Cr molecules via creatine kinase. In support of this, neurons lacking appropriate mitochondrial trafficking machinery have markedly reduced ability to form long dendrites; however, this is rescued with Cr supplementation (83). Finally, mitochondrial trafficking has been observed to decrease with older age in animal models (84,85), which may also contribute to reports of elevated brain tCr with aging (18,22,24,69–72). Nonetheless, our understanding of both svPPA pathology and mitochondrial trafficking remain incomplete, and further work is needed to better understand potential mitochondrial trafficking deficiencies and relationships with brain tCr levels.

Some authors have suggested that elevated tCr in aging and neurologic disease represent gliosis (69,86,87), as glial cell concentration of tCr is about two to four times that of neurons (88), and prior work has found elevated tCr levels in non-human primates with moderate compared to mild gliosis (87). PPA is associated with a significant accumulation of activated microglia in both gray (89) and white matter (90), particularly in heavily atrophied regions of the language-dominant hemisphere (89,90). Microglia (i.e., the macrophages of the brain) become “activated” in response to neuronal damage, inflammation, and other brain pathology (91,92). This thus fits with our finding of higher tCr levels in the left IFG (i.e., the more affected language cortex in PPA) compared with the right SMC. In addition, activated microglia have been reported to occur close to pathologic insults such as TDP43 inclusions in PPA patients with TDP43-positive pathology (89), i.e., the pathology most associated with svPPA (1).

Moreover, it is interesting that tCr levels were the highest in svPPA, as this PPA subtype is typically associated with the most severe behavioral disturbances (93,94) (though we did not find group differences in symptom severity; however, the svPPA group had the most severe average symptom scores). In addition to the potential explanations for elevated tCr levels described above, other prior work has found the most widespread, bilateral cortical atrophy for
svPPA patients (1). Therefore, though the metabolite estimations presented here are corrected for cortical atrophy, greater atrophy in svPPA still suggests that more of the brain is affected by disease processes compared with the other two PPA subtypes. However, there remain very few studies describing brain differences between PPA subtypes; thus, it is difficult to closely compare the present findings with past work.

We found that both higher tCr and lower Glx levels correlated with more severe PPA symptoms, as indicated by the FTD-CDR inventory. This suggests that higher brain tCr and lower brain Glx levels could be (directly or indirectly) related to maladaptive disease processes. These brain-behavior relationships occurred only for the left IFG but not the right SMC. The regional specificity of this association is plausible (and was hypothesized), as the FTD-CDR inventory includes both language and cognitive function sections; the left IFG is involved in language selection and production (e.g., both oral and written naming and spelling) and cognition (e.g., articulatory loop in working memory) (95), while the SMC roles are mostly related to motor execution and sensory processing. Higher tCr levels might indicate disruptions in underlying cellular bioenergetic processes, which could contribute to the development of more severe language and cognitive symptoms in PPA patients; however, such claims warrant further replication in future studies with larger samples, as well as exploration of tCr relationships with additional cognitive metrics.

While we found that elevated brain tCr levels correlated with the most severe PPA symptoms, and others have reported elevated tCr in AD (31), higher brain tCr levels might not be entirely dysfunctional; the relationship between tCr levels and PPA disease processes could be more complex. For instance, oral Cr supplementation has been shown to improve cognitive function in normal adults (96) (though results were variable dependent on cognitive domain, effect sizes were small-moderate, and no large-scale Cr supplementation studies have been conducted in PPA patients). Moreover, multiple prior studies have reported lower tCr levels or no difference in tCr levels for normal aging cohorts (18). While these studies used varying
methods (e.g., different MRI scanner field strengths and different brain regions), it remains unclear what other factors might influence brain tCr changes in aging and disease. Prior work has identified relationships between lower Glx (or glutamate) and poorer cognitive and visuomotor performance in both normal aging (97,98) and neurodegenerative disease (i.e., MCI (25,26) and frontotemporal lobar degeneration (41,99)). Reduced Glx could indicate loss of glutamatergic neurons or disturbances in glutamate and/or glutamine synthesis, which could each reasonably contribute to poorer functional performance. Moreover, as glutamate is a component involved in the synthesis of glutathione (i.e., one of the most abundant brain antioxidants), it could also be that increased brain oxidative stress in response to disease processes would result in greater glutathione production (64,100), and thus lower detectable brain glutamate levels. In our cohort, tCr was not correlated with Glx levels in either the IFG (Pearson r = -0.04; p = 0.782) or SMC (Pearson r = 0.13; p = 0.383), and thus each metabolite may distinctly contribute (directly or indirectly) to PPA disease processes. Further investigation is warranted to better understand the precise mechanisms by which tCr and Glx might associate with PPA symptoms and progression.

We identified differences in brain metabolite levels by PPA subtype only for tCr, but not for the other four investigated metabolites. The metabolite values reported here are corrected for bulk tissue concentrations (58,59); that is, we report metabolite values only within the brain tissue that remains in the voxels, accounting for age-related atrophy of gray and white matter. Therefore, though the three PPA subtypes are associated with differing cortical atrophy patterns (1), our results are not likely explained by group differences in atrophy location and severity. Moreover, as we did not identify group differences in tNAA levels, it is less likely that the tCr group difference is driven by diffuse neuronal loss; instead, we predict that these group differences in tCr are more related to differences in brain energy metabolism, though this hypothesis warrants further investigation in larger cohorts.
There are several limitations to this work. Our cross-sectional approach precluded us from assessing how these metabolite levels may alter prior to PPA onset and with disease progression. Though both age and years since diagnosis did not differ between PPA subtypes, and years since diagnosis was distinct from the relationships between IFG tCr and Glx and symptom severity, it still could be that disease progression rather than subtype more strongly influences brain metabolite levels. PPA is relatively rare and difficult to diagnose (43); thus, we could not compare individuals at the same stage in their disease progression. Brain metabolite levels for one or more subtypes may not differ substantially from normal aging; however, due to the lack of a normal aging control group, we were unable to determine this. There were no differences in the relationship between tCr and symptom severity based on PPA subtype, though all groups trended in the same direction; however, we were likely underpowered to investigate any group differences in this brain-behavior relationship. In addition, there are several inherent limitations to the MRS methods used. Current methods do not allow us to distinguish the contribution of PCr versus Cr to the tCr signal, or the contribution of glutamate versus glutamine to the Glx signal. The tissue corrections applied here are standard for aging cohorts with cortical atrophy (58,59); however, these corrections use literature values (57) for relaxation constants. Changes in water and metabolite relaxation rates with aging and disease could also impact metabolite quantification (101–103), though these were not quantified and thus cannot be incorporated into tissue corrections. Finally, PPA patients often have more difficulty than others remaining still in the scanner, which could have affected spectral quality (though we excluded any participants with NAA linewidth > 15 Hz); moreover, ability to complete an MRI scan precluded us from enrolling any extremely advanced PPA cases in this cohort.

5. Conclusions

We found that brain tCr is different between PPA subtypes (i.e., the highest for svPPA patients). We also found a correlation between both higher left IFG tCr levels and lower left IFG Glx levels and more severe PPA symptoms. tCr could be useful in differentiating between PPA
subtypes, and both tCr and Glx could have utility as markers of PPA symptom severity.

However, further work in larger cohorts is needed to better understand the potential roles of tCr and Glx in PPA development and progression.
Ethics Approval and Consent to Participate

The Johns Hopkins University Institutional Review Board (#NA_00071337) approved all study procedures, and written informed consent was obtained from all participants.

Consent for Publication

All authors consent to the publication of this study.

Availability of Data and Material

The raw data supporting the conclusions of this manuscript will be made available by the authors without undue reservation.

Competing Interests

All authors declare that they have no competing interests.

Funding

This work was supported by grants from the National Institute on Aging (K00 AG068440-03 to KH, R00 AG062230 to GO, and R01 DC014475-05 and R01 AG068881-02 to KT) and grants from the National Institute of Biomedical Imaging and Bioengineering (R01 EB016089 to RE, and P41 EB031771).

Author Contributions

KH analyzed the MRS data, conducted all statistical analyses, created all figures and supplemental material, and wrote the first draft of the manuscript. HZ, GO, SH, AH, and RAE consulted on MRS data analyses and interpretation. HH contributed to manuscript writing and results interpretation. OH, JG, AH, and KT facilitated MRS and behavioral data collection. KT and RAE designed the project and led interpretation and discussion of the results. All authors participated in revision of the manuscript.

Acknowledgements

The authors also wish to thank all of the participants who volunteered their time, without whom this project would not have been possible.
Abbreviations

PPA: Primary progressive aphasia
lvPPA: logopenic variant PPA
nfvPPA: non-fluent variant PPA
dsPPA: semantic variant PPA
MRS: magnetic resonance spectroscopy
IFG: inferior frontal gyrus
SMC: sensorimotor cortex
tNAA: total N-acetylaspartate
tCho: total choline
tCr: total creatine
Glx: glutamate+glutamine
GABA: gamma-aminobutyric acid
AD: Alzheimer's disease
TE: echo time
PRESS: Point RESolved Spectroscopy
NAAG: N-acetylaspartylglutamate
PCh: phosphocholine
GPC: glycerophosphocholine
MEGA-PRESS: MEscher–GArwood Point RESolved Spectroscopy
MCI: mild cognitive impairment
tDCS: transcranial direct current stimulation
FTD-CDR: FrontoTemporal Dementia Clinical Dementia Rating Scale
MPRAGE: magnetization-prepared rapid gradient-echo
HSVD: Hankel singular value decomposition
MMs: macromolecules
Cr: creatine
PCr: phosphocreatine
ATP: adenosine triphosphate
ADP: adenosine diphosphate
AGAT: glycine amidinotransferase
GAMT: guanidinoacetate methyltransferase
SNPH: syntaphilin
References

22. Chiu PW, Mak HKF, Yau KKW, Chan Q, Chang RCC, Chu LW. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T. Age. 2014;36(1):251–64.

BRAIN CREATINE IN PRIMARY PROGRESSIVE APHASIA

65. McLeod Al, Xu C. bestglm: Best subset GLM. URL HttpCRAN R-Proj Orgpackage Bestglm. 2010;

