Metabolomic Risk Predictors of Diabetic Foot Complications: a longitudinal observational study

Jonas A. Andersen†, Tommi Suvitaival†, Kajetan Trošt†, Simone Theilade¹,²,³, Ismo Mattila¹,
Anne Rasmussen¹, Marie Frimodt-Møller¹, Peter Rossing¹,⁴, Cristina Legido-Quigley¹, Tarunveer S. Ahluwalia¹,⁵*

Affiliations:
¹Steno Diabetes Center Copenhagen, Herlev, Denmark
²University of Copenhagen, Copenhagen, Denmark
³Department of Medicine, Herlev-Gentofte Hospital, Copenhagen, Denmark
⁴Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
⁵The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
†These authors contributed equally to this work

*Corresponding author:
Tarunveer Singh Ahluwalia, PhD.
Senior Researcher & Associate Professor
Steno Diabetes Center Copenhagen
Borgmester Ib Juuls Vej 83
DK-2730 Herlev
Phone: +45 30913431
Email: tarun.veer.singh.ahluwalia@regionh.dk

One Sentence Summary:
Several plasma metabolites show promise as risk markers of diabetic foot complications.

Number of tables and figures: One table & four figures. Supplementary Material: Two tables & three figures

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract:

Diabetic foot complications is a collective term used for the ailments of the foot that individuals with diabetes incur. The different entities of the term diabetic foot complications are closely linked to each other and several of the other complications of diabetes. Despite implementation of national and international preventive guidelines, diabetic foot complications are still a growing challenge to the individual and society in general. This highlights the need for new strategies in the treatment and prevention of diabetic foot complications. The aim of the study was to investigate associations between plasma metabolites and diabetic foot complications (diabetic foot ulcer (DFU), amputations and Charcot’s Arthropathy) in individuals with diabetes type 1. Non targeted plasma metabolites (n=75) were analyzed using mass spectrometry in a cohort comprising 637 individuals (55% male) with diabetes type 1. Cross sectional associations between metabolites and diabetic foot complications was analysed by linear regression at baseline and by Cox proportional hazards model at follow-up and adjusted for relevant confounders. The median follow up time was 10 years, age 55 (47, 64) years, diabetes duration 35 (25, 44) years and HbA1c 64 (56, 72) mmol/mol. In the adjusted model, four amino acids (proline, threonine, valine, and leucine) were associated with decreased incidence of Charcot’s arthropathy at baseline ($p_{\text{adjusted}} < 0.5$). In addition, the plasma levels of ribonic acid was associated with an increased risk of diabetic foot ulcers during follow-up (HR 1.38(1.06-1.8) $p<0.05$). This study identifies novel circulating metabolites, as potential biomarkers for risk of diabetic foot complications.

1. INTRODUCTION

The complications that afflict the feet of individuals with diabetes are often referred to under the common term the diabetic foot complication. Generally, the term covers four ailments that afflict the diabetic foot; the diabetic foot ulcer (DFU), infections of the diabetic foot, limb amputation incurred by individuals with diabetes and Charcot’s arthropathy. The ailments encompassed in the term are
closely linked to each other; with a lifetime risk of 19-34%. The diabetic foot ulcer (DFU) is the most common diabetic foot complication incurred by individuals with diabetes (1). DFU is often the triggering event for infections and amputations of the diabetic foot (1) and has been associated to risk of Charcot’s arthropathy(2). Apart from the connection between the individual ailments of the diabetic foot, the diabetic foot is closely linked to several of the other complications of diabetes. The diabetic foot complications borrows from both the macro and microvascular complications of diabetes with connections to neuropathy, peripheral arterial disease and retinopathy among others(3).

To put the challenge in perspective an individual with diabetes is subjected to a lower limb amputation every 30 sec. on a global scale(4). In addition to the burden incurred by the individual, the diabetic foot complication poses a significant economic challenge to all societies in the world. The cost of treating the diabetic foot complication is substantial, with a 5.4 times higher cost of treating an individual with a diabetic foot complication compared to an individual with diabetes but no foot complications(5). On a larger scale 1% of the total health-care budget in England was spend on treating the diabetic foot(6). These challenges have led to several national and international strategies with the intend of reducing the incidence of diabetic foot complications(7). This has, however, not lead to a significant reduction in the incidence or cost of diabetic foot complications in general. In addition, the projected increase in size and lifetime of the world’s population with diabetes likely won’t lead to a decrease in diabetic foot complications without new strategies in treatment and prevention of diabetic foot complications(3).

One of the emerging frontier in prevention and treatment of the diabetic foot complication is metabolomics. Metabolomics has shown promise in identifying pathways and biomarkers associated with risk of developing diabetes (8, 9) and its complications (10). We have recently identified circulating risk metabolites and lipids associated with development of various microvascular complications in diabetes including retinopathy (11), renal disease (12-14), and a severe form of
diabetic neuropathy called cardiovascular autonomic neuropathy (15). However, studies investigating circulating risk markers for diabetic foot complications are sparse.

Thus, the aim of the current study was to investigate the association between a non-targeted panel of circulating plasma metabolites and three different foot complications (DFU, amputations and Charcot’s Arthropathy (form here on referred to as diabetic foot complications)) among adult individuals with diabetes type 1.

2. Results

2.1. Clinical characteristics of study population

The study included 637 participants (55% male) with diabetes type 1, a mean age of 55 (47-64) years and a diabetes duration of 35 (25-44) years (Table 1). In the following the participants are divided in three groups; a group that did not present with a diabetic foot complication at baseline and did not incur a diabetic foot complication during follow-up (no-complications group (n=488)). A group that presented with at least one foot complication at baseline (baseline group (n=60)). A group that did not present with a complication at baseline but developed at least one complication during follow-up (follow-up group (n=89)).

Statistically significant higher values were found for age, diabetes duration, urinary albumin excretion rate (UACR) and HbA1c in the baseline and follow-up groups compared to the no-complications group (p<0.05). Similarly, plasma triglyceride levels were significantly higher in the two groups with complications, while plasma levels of low-density lipoproteins were significantly higher in the no-complications group (p<0.05). Finally, estimated glomerular filtration rate (eGFR) was significantly lower in the two groups with complications compared to the no complications group(p<0.05).
At baseline a total of 68 diagnosis of diabetic foot complications (DFC) were registered while 149 new diagnosis were made during follow-up (Table 1).

2.2. Cross-sectional analysis

All 75 identified and verified metabolites were included in a linear regression analysis at baseline (Supplementary table 1). In a crude model (with correction for multiple testing), six metabolites showed a significant association with amputations at baseline (Supplementary Fig. 1). Here 5 circulating metabolites were associated positively (p<0.05; Ribonic acid, Myo Inositol, 4-Hydroxybenzeneacetic acid or 4HP, Ribitol, and Succinic acid) while amino acid Threonine negatively with amputations (p<0.05). In the “adjusted” model (with adjustment for age, gender, body mass index, systolic blood pressure, cholesterol, HbA1c, triglycerides, smoking, and use of statins) none of the metabolites showed a significant association with amputations at baseline.

In the crude model, 20 metabolites were significantly associated with Charcot’s Arthropathy at baseline (Supplementary table 2). In the adjusted model ten metabolites remained significantly associated with Charcot’s arthropathy at baseline (Figure 1), where four amino acids (proline, threonine, valine, and leucine) associated negatively while 6 other metabolites associated positively (Figure 1). Finally, in the fully adjusted model (with further adjustment for eGFR and UACR) only proline remained associated with decreased incidence of Charcot’s arthropathy (Figure 1). No circulating plasma metabolites were associated with the incidence of DFUs at baseline in the crude or adjusted models (p>0.05).

2.3. Longitudinal analysis

The same metabolites examined in the cross-sectional analyses were examined in the longitudinal association analyses.
No metabolites were associated with risk of incurring an amputation during follow-up in crude or adjusted models. In the crude model four metabolites (ribonic acid, ribitol, creatinine, myo inositol) were significantly associated with risk of incurring Charcot’s Arthropathy during follow-up (Supplementary figure 2). Two metabolites retained a significant association to risk of Charcot’s arthropathy in the adjusted model during follow up (Ribonic acid and Ribitol; p<0.05). In the crude model eleven metabolites were found with a significant association to the risk of incurring a DFU during follow-up. In the adjusted model two metabolites (ribonic acid and tyrosine) remained significant (Supplementary figure 3), while in the fully adjusted model only ribonic acid retained a significant association with the risk of incurring DFU during follow-up with a hazard ratio of 1.37 (1.06-1.8 (p=0.015); Figure 2).

In a survival analysis of DFU-free days stratified on median plasma levels of ribonic acid in the study population (Figure 3). The analysis showed a significantly higher number of DFU-free days in the group with the lowest levels of ribonic acid in plasma at baseline (p<0.0001).

2.1. Summary

In summary, a total of 16 out of the 75 metabolites were associated with a foot complication in any of the crude analyses (Figure 4). These metabolites were amino acids, fatty acids, hydroxy fatty acids, phenols, sugar derivatives and other compounds (Figure 4). Out of the 16 metabolites, 11 were associated with prevalent foot complications, and another distinct set of 11 metabolites were associated with incident foot complications. The metabolites 2,4-dihydroxybutanoic acid, 3,4-dihydroxybutanoic acid, 4-hydroxybenzeneatic acid, myo-inositol, ribitol, ribonic acid were associated, both, with a prevalent foot complication and an incident foot complication. The amino acids leucine, proline, threonine, and valine were inversely associated with prevalent charcot, whereas most of the other associations with foot complications were positive. The highest number of metabolites (11) were associated with incident ulcers, though these associations were not present with
prevalent ulcers. On the contrary, the three sugar derivatives myo-inositol, ribitol and ribonic acid were associated with charcot, both at baseline and at follow-up.

3. Discussion

This is one of the first prospective studies to examine a possible correlation between circulating plasma metabolites and diabetic foot complication. Several metabolites with association to incidence and risk of incurring a diabetic foot complication are identified in the study. Perhaps the most interesting being ribonic acid also known as ribonate, a derivative of the sugar ribose and part of the pentose pathway. We found an association between plasma levels of ribonic acid and the risk of developing a DFU. Prior studies have associated ribonic acid with the incidence and future risk of retinopathy and nephropathy in the same cohort examined here(11, 13). This may hint at general correlation between complications associated with diabetes and plasma levels of ribonic acid in this one cohort. While this may be true, a study by Chen et al. also found an association between plasma levels of ribonic acid and retinopathy when comparing a population with diabetes and retinopathy to a population with diabetes without retinopathy(16). Similarly, Hu et al. found ribonic acid to be connected to all-cause mortality in a population with chronic kidney disease(17). In addition, studies have shown that ribonic acid levels in urine and plasma are elevated when diabetes is induced in animal models and the pentose pathway may be part of this mechanism(18-20). The role of ribonic acid in development of diabetes and its complications is unclear. It does, however, seem that ribonic acid and pentose pathway are prime candidates for future research both when looking for potential biomarker and metabolomic pathways to target in treatment and prevention of diabetic foot complications. In addition, the studies showing an association between ribonic acid and other complications of diabetes, may hint at a more general role of ribonic acid in the complications of diabetes.
We also showed an inverse association between plasma levels of four amino acids (threonine, leucine, valine, and proline) and incidence Charcot’s arthropathy at baseline an adjusted model (only proline remained significantly associated with Charcot’s arthropathy at baseline in a fully adjusted model). Although the role of circulating amino acids in diabetes complications is unclear, they have been reported to play a vital role in human metabolic pathways including gluconeogenesis(21-23) and the secretion of insulin and glucagon(24, 25). Limited studies on circulating amino acids, and diabetes foot complications are available (10, 26). A recent study by Hung et al. found an association between DFU healing and plasma levels of four amino acids. These amino acids included threonine and leucine, which were also found in our study(27). An association between amino acids and healing of pressure, trauma and burn ulcers have been proposed in other studies(28, 29). Prospective randomized studies have even hinted at beneficial effects on pressure-ulcer healing of nutritional supplements including specific amino acids(30). The beneficial effects are, however still, in question due to the limited available data(31). Similar results have been seen when adding nutritional supplements to treatment of individuals with diabetes; smaller retrospective and prospective studies have shown promise(32, 33), but the combined data is insufficient to conclude if there is a beneficial effect(34).

While the role of diet in diabetic foot complications is still unclear, the role of diet in diabetes in general is not up for debate(35, 36). This begs the question whether the absent effects of diet on diabetic foot complications is simply due to the sparsity of data or maybe the wrong substrates being administered. We need further studies on the association between diabetic foot complications and amino acids to identify the most potent biomarkers and targets for treatment and prevention of diabetic foot complications.

Study limitations included missing information on medication. Consequently, information on dosage and changes in dosage during the study is unavailable. In addition, information on some of the known
clinical risk factors (foot pulses, toe blood pressure, foot deformities etc.) in development of DFCs were not available. Finally, information on diet, which may affect the individual participants metabolome composition, was unavailable. On the other hand, the strengths of this study are; the large size of the cohort with diabetes type 1, a long follow-up, high throughput metabolomic measurements using mass spectrometry and high qualitative bioinformatic data analyses methods.

A recent editorial from our institute highlights the importance of including longitudinal follow-up, as presented in this study, in metabolomic and similar studies on diabetes and its complications(37). This study adds to the growing evidence base for specific metabolites associated to complications of diabetes, specifically DFU and Charcot’s Arthropathy. The identified circulating metabolites have already been described in the literature, suggesting associations with diabetes and its complications. Metabolomics in diabetic foot complications is an intriguing prospect, as risk profiling promises the opportunity to prevent rather than treat these debilitating ailments. In addition, metabolomics may uncover pathways that can help explain the development and possibly be targeted in the treatment and prevention of the diabetic foot complications.

4. Materials and Methods

The study participants were adult (>18 years of age) individuals with Type I diabetes from the Profile cohort. Participants were screened and included in the outpatient clinic at Steno Diabetes Center Copenhagen, where blood samples were also attained, between 2009 and 2011. The study was designed as a longitudinal observational study and has been described in detail previously(38). The study was conducted according to the Helsinki Declaration on ethical principles for medical research(39). The study was approved by the Danish Ethical Committee, Danish Patient Safety Authorities and Danish Data Protection Agency.
4.1. Baseline Characteristics and Diagnosis Codes

All information on clinical characteristics and diabetic foot complications was extracted from patient electronic health records. All information on diabetic foot complications were attained in accordance with the international classification of diseases, tenth revision (40). All information on procedures (amputations) were attained in accordance with Danish version of the Nordic Classification of Surgical Procedures (41). Date of diabetic foot complications diagnosis was cross referenced with date of participant blood sampling for metabolomic analysis (or baseline). The diagnosis was then registered as “at baseline” if date of diagnosis was made prior to or at baseline and as during follow-up if date of diagnosis was after baseline. Participant baseline characteristics (Table 1) refer to the time point where blood collections were made for metabolomics analyses. Longitudinal data was acquired until 31st Dec 2020.

Data regarding potential changes in medication during follow-up were not available.

4.2. Serum Metabolomics Analyses

The method used has previously been described in detail by Tofte et. al (13). In brief; The metabolomic measurements were performed using serum stored at -80°C. Leco Pegasus four-dimensional gas chromatography with time off flight mass spectrometry (4D GC×GC TOFMS) instrument (Leco Corp. MI, USA) was used for metabolomics measurements. Using ChromaTOF raw data was assed using peak-picking and resulting data was processed (alignment and normalization) with Guinea (42) and postprocessed in R-software. Inclusion of metabolites in the following analysis was based on certainty of the identification and level of technical precision. No restrictions for prior hypothesis or known pathways were implemented. A total of 75 metabolites (Supplementary table 1) were identified and included in analyses. These included amino acids, free fatty acids and compounds from the polyol and energy metabolite pathways.
Metabolites with missing or undetectable values less than or equal to 20%, underwent imputation using the k-nearest neighbor algorithm and were log2-transformed as previously described(13).

4.3. Statistical analysis

All statistical analysis and subsequent data visualization were carried out using the R-software. Continuous variables are given as median (interquartile range Q1-Q3). Skewed variables were log transformed before association testing. Categorical variables are given as total number followed by % of total. Continuous variables were compared using ANOVA while categorical variables were compared using Chi-squared test. Associations between single metabolites and specific diabetic foot complication were evaluated by linear regression analyses at baseline and by Cox proportional hazards model at follow-up. Hazard ratios (HR) are reported per doubling of specified metabolites level. The unadjusted model was referred as the “crude model”, further adjustment for age, gender, body mass index, systolic blood pressure, cholesterol, HbA1c, smoking, statin and triglycerides is referred to as “adjusted”. Further adjustment for renal function markers (eGFR and UACR) is referred to as “fully adjusted”. The p-values were corrected for multiple testing using the Benjamini-Hochberg method for all models. The R-package survminer was used for Kaplan-Meier plots for the diabetic foot complications with stratification on median levels of the top-performing metabolite, and for the forest plot of the hazard ratios of the top-performing metabolite and clinical covariates. Integration of the results from all the crude models was visualized with the R-package circlize.

5. Acknowledgments

In addition to the authors listed in the beginning of the article, several others have contributed to the completion of this study. A specific thanks to the participants in the study, without your help this research would not be possible.
5.1. Funding
TSA received funding from Novo Nordisk Foundation NNF18OC0052457 and from Steno Diabetes Center Copenhagen.

5.2. Author Contributions

Conceptualization: JAA, PR, TSA
Methodology: TS, KT, IM, CLQ, TSA
Investigation: JAA, TS, TSA
Visualization: TS
Funding acquisition: ST, PR, CLQ, TSA
Project administration: ST, AR, MFM, PR, TSA
Supervision: PR, TSA
Writing – original draft: JAA, TS, TSA
Writing – review & editing: JAA, TS, ST, AR, MFM, PR, CLQ, TSA
All authors read and approved the final version of the manuscript.

5.3. Competing interests
None of the authors have any competing interest connected to this study.

Outside of this study: PR has received consultancy and/or speaking fees (to SDCC) from AbbVie, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Gilead, Eli Lilly, MSD, Novo Nordisk and Sanofi Aventis, and research grants from Novo Nordisk and Astra Zeneca.

MFM has received speaking fees from Boehringer Ingelheim, Novartis, Baxter, and Sanofi

5.4. Data availability
The data sets used in this study are available from the corresponding author after acquiring required permissions from the relevant regulatory authorities.
6. References

11. V. R. Curovic et al., Circulating Metabolites and Lipids Are Associated to Diabetic Retinopathy in Individuals With Type 1 Diabetes. *Diabetes* **69**, 2217-2226 (2020).

7. Tables and figures

Table 1. Clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>No-complications</th>
<th>Complications already at baseline</th>
<th>Complications only at follow-up</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>637</td>
<td>488</td>
<td>60</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>348 (55%)</td>
<td>257 (53%)</td>
<td>34 (57%)</td>
<td>57 (64%)</td>
<td>0.14</td>
</tr>
<tr>
<td>Age (years)</td>
<td>55 (47.64)</td>
<td>54 (46.62)</td>
<td>60 (52.68)</td>
<td>60 (54.67)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetic duration (years)</td>
<td>35 (25, 44)</td>
<td>32 (19,41)</td>
<td>44 (36,52)</td>
<td>42 (33,49)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoker</td>
<td>133 (21%)</td>
<td>102 (21%)</td>
<td>10 (17%)</td>
<td>21 (24%)</td>
<td>0.6</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.8 (22.5, 27.5)</td>
<td>24.6 (22.4, 27.0)</td>
<td>25.3 (22.7, 29.1)</td>
<td>25.1 (22.5, 28.4)</td>
<td>0.3</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>130 (119, 142)</td>
<td>129 (118, 141)</td>
<td>131 (120, 148)</td>
<td>131 (120, 146)</td>
<td>0.4</td>
</tr>
<tr>
<td>HbA₁c (mmol/mol)**</td>
<td>64 (56, 72)</td>
<td>63 (55, 71)</td>
<td>66 (58,72)</td>
<td>66 (61,74)</td>
<td>0.005</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73 m²)</td>
<td>85 (64, 102)</td>
<td>88 (73, 105)</td>
<td>59 (43, 88)</td>
<td>72 (55,87)</td>
<td><0.001</td>
</tr>
<tr>
<td>p-LDL (mmol/l)</td>
<td>2.40 (2.00, 2.90)</td>
<td>2.40 (2.00, 2.90)</td>
<td>2.1 (1.75, 2.60)</td>
<td>2.25 (1.98, 2.90)</td>
<td>0.015</td>
</tr>
<tr>
<td>p-Triglycerides (mmol/l)</td>
<td>0.96 (0.72, 1.33)</td>
<td>0.94 (0.71, 1.30)</td>
<td>0.92 (0.75, 1.22)</td>
<td>1.12 (0.81, 1.64)</td>
<td>0.006</td>
</tr>
<tr>
<td>UACR</td>
<td>13 (6, 42)</td>
<td>11 (6, 4)</td>
<td>41 (20, 206)</td>
<td>28 (11,82)</td>
<td><0.001</td>
</tr>
<tr>
<td>DFC</td>
<td>227</td>
<td>0 (0)</td>
<td>68</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>DFU</td>
<td>137</td>
<td>0 (0)</td>
<td>19 (3%)</td>
<td>108 (17%)</td>
<td>-</td>
</tr>
<tr>
<td>Amputations</td>
<td>51</td>
<td>0 (0)</td>
<td>23 (4%)</td>
<td>28 (4%)</td>
<td>-</td>
</tr>
<tr>
<td>Charcot’s arthropathy</td>
<td>39</td>
<td>0 (0)</td>
<td>26 (4%)</td>
<td>13 (2%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Baseline characteristics for participants, given as total population and divided in individuals with no diabetic foot complications at baseline or during follow-up (no-complications), individuals with complications at baseline (at baseline) and individuals with no complications at baseline who developed complications during follow-up (during follow-up).

P value <0.05 were considered significant and depicted in bold.
Figure 1. Cross-sectional analysis - *Charcot’s Arthropathy*

Cross-sectional analysis of association between baseline metabolites level and Charcot’s arthropathy at baseline. Divided in crude (with correction for multiple testing), adjusted (further adjusted for age, gender, body mass index, systolic blood pressure, cholesterol, glycosylated hemoglobin A1c, smoking, statin and triglycerides) and fully-adjusted (further adjusted for estimated glomerular filtration rate and urinary-albumin creatinine ratio), with 95% confidence intervals. Significance was defined as $q < 0.05$. In this figure an significant p-value not adjusted for multiple testing is marked in yellow (p). A p-value that is significant after adjustment for multiple testing is marked in red (q). Finally, a p-value that is not-significant before multiple testing is marked in black.
Figure 2. Longitudinal analysis - diabetic foot ulcer

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribonic_acid</td>
<td>1.37</td>
<td>(1.06 - 1.8)</td>
<td>0.015</td>
</tr>
<tr>
<td>Age</td>
<td>1.59</td>
<td>(1.25 - 2.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender</td>
<td>1.57</td>
<td>(1.03 - 2.4)</td>
<td>0.036</td>
</tr>
<tr>
<td>HbA1c_baseline</td>
<td>1.46</td>
<td>(1.12 - 1.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>CALSBP</td>
<td>0.97</td>
<td>(0.79 - 1.2)</td>
<td>0.732</td>
</tr>
<tr>
<td>bmi</td>
<td>1.05</td>
<td>(0.86 - 1.3)</td>
<td>0.64</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.39</td>
<td>(1.14 - 3.2)</td>
<td>0.187</td>
</tr>
<tr>
<td>Statin</td>
<td>1.92</td>
<td>(1.43 - 2.58)</td>
<td>0.015</td>
</tr>
<tr>
<td>log_Blood_TGA</td>
<td>1.01</td>
<td>(0.80 - 1.0)</td>
<td>0.39</td>
</tr>
<tr>
<td>Total_cholesterol</td>
<td>0.94</td>
<td>(0.76 - 1.2)</td>
<td>0.596</td>
</tr>
<tr>
<td>eGFR</td>
<td>0.78</td>
<td>(0.61 - 1.0)</td>
<td>0.058</td>
</tr>
<tr>
<td>logUAER</td>
<td>0.99</td>
<td>(0.80 - 1.2)</td>
<td>0.927</td>
</tr>
</tbody>
</table>

Forrest plot of hazard ratio of incurring diabetic foot ulcers for each of the variables in the fully-adjusted model.

Figure 3. Survival analysis – diabetic foot ulcer-free days

Kaplan-Meier analysis of ulcer-free days stratified on median of plasma levels of ribonic acid at baseline.
Figure 4. Overview of crude associations

Chord diagram of crude associations between the metabolome (left) and foot complications (right) at baseline (prevalent cases) and during the follow-up (incident cases). A curve between a metabolite and a complication depicts a significant crude association (red: positive; blue: negative) after correction for multiple testing. The category of each metabolite is indicated by the color aside the metabolite name. Amino acids leucine, proline, threonine and valine are negatively associated with prevalent charcot (blue curves), whereas most of the other associations are positive (red curves).