“Puberty Age gap”: A new method of pubertal timing

“Puberty age gap”: A new method of pubertal timing and its association with psychopathology (6000 words)

Niousha Dehestani1,2,*, Nandita Vijayakumar1, Gareth Ball1,4, Sina Mansour L.2,5, Sarah Whittle2,6 & Timothy J. Silk1,3,6

1School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.

2Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia

3Developmental Imaging, Murdoch Children’s Research Institute, Parkville 3052, Australia.

4Department of Paediatrics, The University of Melbourne, Melbourne 3053, Australia.

5Department of Biomedical Engineering, The university of Melbourne, Melbourne 3053, Australia.

6These authors jointly supervised this work: Sarah Whittle and Timothy J. Silk

Background: Pubertal timing is linked to the emergence and severity of psychopathology during adolescence. However, variability in methods used to calculate pubertal timing may contribute to inconsistencies in the literature. The aim of this study was to develop a new measure of pubertal timing and investigate its association with psychopathology. Methods: We analyzed data from the Adolescent Brain Cognitive Development (ABCD) cohort, a longitudinal study of ~11,000 children. We implemented three different models of pubertal timing by predicting chronological age from i) observed physical development, ii) hormonal assays, and iii) a combination of physical development and hormones, using a supervised machine learning method. Our method of quantifying pubertal timing was calculated as the difference between predicted and actual age in each model. The performance of the new method was evaluated using measures of psychopathology.
“Puberty Age gap”: A new method of pubertal timing

physical pubertal timing model was also compared to a measure of pubertal timing commonly used in the literature. We compared the three new measures by evaluating their associations with psychopathology. **Results:** The combined model provided the best prediction of age. The physical pubertal timing model had better performance compared to the commonly used existing model. Pubertal timing estimates from both physical and combined models were significantly associated with most dimensions of psychopathology in males and females (early timing associated with higher symptoms). The physical model accounted for more variance in psychopathology than the combined and hormonal models.

Conclusions: This study proposed new models of pubertal timing that utilize multiple pubertal features and account for nonlinear associations with age. Findings suggest that timing of physical maturation may play a predominant role in predicting psychopathology in early adolescence. Further investigation is needed to see if measures of timing that incorporate hormones are more predictive of psychopathology across different stages of late childhood and adolescence.

Keywords: pubertal timing; “Puberty age gap”; psychopathology; adolescence
“Puberty Age gap”: A new method of pubertal timing

Introduction

Adolescence is the period between childhood and adulthood when individuals acquire the emotional and cognitive skills necessary to gain independence from their parents (Blakemore & Choudhury, 2006). Individuals also progress through puberty, the process of attaining reproductive maturity, during this period. This includes hormonal and physical changes such as body hair growth and gonadal maturation (along with the development of breasts and onset of menstruation in females) (Banerjee & Clayton, 2007; Kohen-Raz, 1974). The progression through puberty has been associated with an increase in susceptibility to a range of internalizing and externalizing mental health problems (Ullsperger & Nikolas, 2017), which may reflect the effects of hormones on the central nervous system and/or psychosocial mechanisms related to physical differences from peers (Ge & Natsuaki, 2009). Therefore, investigation of individual differences in pubertal processes that consider both hormonal and physical changes may lead to a better understanding of adolescent psychopathology.

While all individuals progress through the same stages of puberty, the onset and speed of progression can differ across individuals. As such, at any given period during adolescence, there is marked variability in pubertal stage, termed “pubertal timing” (Marshall & Tanner, 1970; Petersen et al., 1988). Importantly, it is pubertal timing – not pubertal stage – that is often linked to the emergence and severity of psychopathology (Graber, 2013), though there are inconsistencies in the literature. A number of studies have found that in females, earlier pubertal timing is associated with internalizing problems (Crockett, Carlo, Wolff & Hope, 2013; Marceau, Ram, Houts, Grimm & Susman, 2012), including depression (Hamlat, McCormick, Young & Hankin, 2014; Mendle & Ferrero, 2012) and anxiety (Weingarden & Renshaw, 2012), eating disorders (Klump, 2013), and externalizing behaviors (Arm & Shapka, 2008). On the other hand, a number of other studies report null findings.
“Puberty Age gap”: A new method of pubertal timing regarding internalizing symptoms (Arım & Shapka, 2008; Winer, Parent, Forehand & Bresland, 2016). Similarly in males, both early and late timing has been related to internalizing symptoms (Hamlat et al., 2014 VS Kaltiala-Heino, Marttunen, Rantanen & Rimpela, 2003) and externalizing symptoms (Dorn et al., 2003 VS Ge, Brody, Simons & Murry, 2002), while others have failed to identify any associations (Crockett et al., 2013; Winer et al., 2016). Small sample sizes and methodological differences between studies may partially explain the inconsistent findings, with variation in the measures used to calculate pubertal timing likely important. Indeed, a meta-analysis of 101 studies found that the method of measuring puberty had a moderating role in the relationship between pubertal timing and psychopathology (Ullsperger & Nikolas, 2017).

Different statistical approaches exist to measure the relative pubertal timing of individuals compared to same-aged peers. A common approach is to regress age from pubertal status (e.g., based on Pubertal Developmental Scale [PDS] scores) in a sample, with residuals reflecting earlier or later maturity relative to the group average (Mendle, Carter & Dorn, 2019). However, these approaches capture individual differences in observable physical development and do not inform us about underlying biological mechanisms that are more accessible through the examination of hormonal levels (Dorn & Biro, 2011). Hormone levels provide valuable information regarding the endocrine processes of puberty (Byrne et al., 2017; Shirtcliff, Zahn-Waxler, Klimes-Dougan & Slattery 2007). Previous studies have also demonstrated associations between changes in hormone levels and adolescent psychopathology. For example, increasing levels of dehydroepiandrosterone (DHEA) have been linked to internalizing symptoms (Peixoto et al., 2020), while testosterone has been associated with externalizing and disruptive behaviors (Han, Miller, Cole, Zahn-Waxler & Hastings 2015). To the best of our knowledge, only one study has calculated pubertal
“Puberty Age gap”: A new method of pubertal timing

timing with hormone data alone to predict internalizing behaviors in a sample of 174 females (Barendse et al., 2021). Although this study did not find any significant associations, it is important to investigate this in a larger sample of both females and males and assess associations across different dimensions of psychopathology. Additionally, no previous studies have combined both hormonal and physical measurements when calculating pubertal timing that may link to psychopathology. Thus, further investigation is needed to compare pubertal timing methods that amalgamate different aspects of puberty in a single model.

In this study, we propose a method to calculate pubertal timing that draws upon the “brain age” approach (Cole & Franke, 2017), where an association between multiple neuroimaging variables and chronological age is learned with supervised machine learning methods. Subtracting chronological age from brain age yields a “brain age gap” that reflects brain maturation relative to the group average (Cole & Franke, 2017). The major benefits of the brain age model include being able to combine multiple features and to reduce complex multivariate information to a single parameter. We propose to use this type of model to calculate estimates of pubertal timing that combine multiple puberty-related features compared to alternative strategies that focus on single measures and only capture specific aspects or mechanisms of puberty or calculate the mean of multiple measures but may obscure the relative importance of each item. The second benefit of this method is that it can model nonlinear relationships between multiple measures of puberty and age, which is important given that nonlinear associations between specific features of puberty and chronological age have been observed in previous studies (Gracia-Tabuenca, Moreno, Barrios & Alcauter 2021; Marceau, Ram, Houts, Grimm & Susman 2011).

In the current study, we aimed to create a normative model of pubertal timing that combines multiple measures of puberty capturing hormone levels and physical changes. By
A new method of pubertal timing using a strict cross-validation approach, we ensure that model performance is robust. We compared model performance to a common linear model of pubertal timing (i.e., regressing age from total PDS score). We also compared combined normative model against two unimodal models employing a similar supervised machine learning approach, one that uses hormonal measures alone and another that uses physical measures only. Finally, we examined the association between each pubertal timing models and multiple dimensions of psychopathology. We hypothesized that the combined normative model of pubertal timing, which uses both hormonal and physical measures, would provide a more accurate prediction of age and also better prediction of psychopathology compared to either of the unimodal (hormonal or physical) normative models or linear model of puberty. While we hypothesized that pubertal timing would be associated with psychopathology, due to inconsistencies in the literature, we did not have a-priori hypotheses regarding the directions of these associations.

Method

Participants were drawn from the ongoing, longitudinal, Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org/). Data was collected from ~11,500 children at baseline (age 9-10 years) from 21 sites across the United States, with annual data collection thereafter (see Supplementary Table 1 for demographic information). Data from baseline and 3 annual follow-up waves were used in the current analyses. We excluded participants who had a mismatch between their biological sex (collected per visit with the salivary sample) and their self-reported gender as well as those with missing values (See Supplementary Information (SI), Appendix S1 for details of data cleaning procedures). To promote reproducible open research practices, all analyses conducted as part of this article are made publicly available in a git repository (“https://github.com/Niousha-Dehestani/Puberty-age”).
“Puberty Age gap”: A new method of pubertal timing

Puberty Data

Pubertal Development Scale. The Pubertal Development Scale (PDS) measures observable physical signs of puberty. It includes items on height, body hair, and skin change in both sexes, as well as the onset of menarche and breast development for girls, and facial hair and voice changes for boys. Items are rated on a Likert scale from one to four points (“had not begun” to “already complete”). Onset of menarche was a binary variable (yes/no) that was recorded to one/four. Due to the age range of participants, this study used the parent-report version, which is considered more reliable in younger adolescents compared to self-report (Petersen et al., 1988).

Hormones. DHEA and testosterone (TST) levels were measured via salivary hormone samples assayed by Salimetrics. Although estradiol was also measured, it was not used in the current analyses due to it only being available for females, having excessive missingness (n = 780), and concerns for reliability (due to fluctuations in hormone levels across the day and menstrual cycle). The hormone data was cleaned based on the protocol outlined by Herting et al. (2021) which involved removing the confounding effects of collection time, duration of collection, wake-up time on test day, having exercised before collection, and caffeine intake with a linear mixed effect model (see Supplementary Information).

Body Mass Index and Sociodemographic Variables

Body Mass Index (BMI). BMI was calculated as the average of two weight and height measurements per visit. Next, BMI standard deviation scores (BMI z-scores) were calculated relative to age and sex, with reference to the CDC 2000 Growth Charts (Gray et al., 2020).
“Puberty Age gap”: A new method of pubertal timing

Sociodemographic Variables. Five categories of race were coded: White, Black, Hispanic, Asian, and Other/Multi-race. Additionally, household income and education were obtained as measures of family socioeconomic status (SES).

Measures of Mental Health

The Child Behavior Checklist (CBCL) (Achenbach & Ruffle, 2000; Ferdinand et al., 2004) was used to measure parent-reported psychopathology, based on DSM-V criteria. This questionnaire evaluates depression, anxiety, somatic, attention-deficit-hyperactivity, oppositional defiant, conduct, obsessive-compulsive, sluggish cognitive tempo, and stress symptoms. In addition, summary level scores for externalizing, internalizing, and total problems were used.

Statistical Analysis

Calculating pubertal timing. Inheriting fundamental concepts from the literature on “brain age” (Cole & Franke, 2017), “puberty age” was computed using supervised machine learning. The model was trained to learn the relationship between physical and hormonal measurements of puberty (specifically, all PDS items, and DHEA and TST levels) and chronological age separately in males and females. Thereafter, the model was used to predict chronological age from pubertal measurements in an independent test sample. The effect of age was subsequently regressed from these predictions to adjust the bias created by regression toward the mean (RTM) (For more details see SI, Apendix S3, figure S2 and figure S3, Liang et al., 2019). The bias-adjusted prediction of an individual’s chronological age from pubertal measurements is termed “puberty age”. Further, the residuals of the prediction model (after subtracting chronological age from puberty age) are referred to as the “puberty age gap” which we use as a dimensional measure indicative of relative pubertal
“Puberty Age gap”: A new method of pubertal timing
timing. A positive puberty age gap is interpreted as a sign of earlier pubertal development compared to the normative age and sex-matched group, while a negative gap reflects relatively delayed pubertal development (see, Appendix 1, Figure S1).

We implemented a Generalized Additive Model (GAM) for the prediction of age from pubertal measurements which included testosterone, DHEA, and items of the PDS from all-time points collected (baseline, 1-year follow-up, 2-year follow-up, and 3-year follow-up) in males (N = 11,034) and females (N = 12,083) separately (for details of data processing, such as hormone quality control checks and the procedure for dealing with missing values, see SI Appendix S1 and Table S1). As GAM fits smooth nonlinear curves in the form of spline functions, it is expected to outperform commonly utilized linear methods of pubertal timing measurement, given the nonlinear relations previously reported (Gracia-Tabuenca et al., 2021). Model training was performed within a nested 10-fold cross-validation design. For each fold in the outer loop, 90% of samples were used for model training and 10% for testing. Inner loop hyperparameter tuning was performed by a grid search for optimal regularization penalty on each term (i.e, GAM) to minimize the estimated prediction error in the training sample (generalized cross-validation (GCV) score). The train-test splits were created with a group shuffle split and family IDs were used as group identifiers to ensure that no related individuals were shared across the train and test sets (i.e., all children from the same family either belonged to the train or test split) and removes the potential impact of familial information on model performance. To understand the contribution of different indices to the measurement of pubertal timing, we implemented three alternative models to estimate “puberty age”. The first approach used only hormones (DHEA and testosterone) as features to predict chronological age, the second only used PDS items, and the third combined hormone and PDS data. The predictions of age were named hormonal puberty age, physical
“Puberty Age gap”: A new method of pubertal timing

puberty age, and *combined* puberty age, respectively. In all three models, the residuals of age prediction indexed “puberty age gap”, which reflects pubertal timing. We also used the partial dependence function in GAM models that can reflect the importance of each feature in the combined puberty age model (for more detail, see SI, Appendix S4 and Figure S4).

Comparison of “puberty age” models. We compared the performance of the three alternative puberty age models using Pearson's correlation between predicted and chronological age and median absolute error (MAE) averaged over the 10 cross-validation folds. Additionally, we used a non-parametric paired t-test (Wilcoxon signed-rank test) to statistically compare the model performance of different models based on the absolute error of predictions.

“Physical puberty age” compared to a traditional pubertal timing model. The current study compared the out-of-sample performance and accuracy of the puberty age model with the most common traditional pubertal timing model: regressing age from PDS linearly. In order to draw a comparison between the new model and the traditional approach, the performance of the physical puberty age model was contrasted with the traditional approach. The physical model was selected (rather than the hormonal or combined model) to ensure a fair comparison of two approaches that measure pubertal timing from the same input features (i.e., PDS). In order to conduct this comparison, a linear regression model was used to regress chronological age from the total PDS score (train) and used the fitted model coefficients in unseen data to measure timing (test). Similar to the puberty age model design, a 10-fold cross-validation design was used to measure traditional pubertal timing for the whole sample.
“Puberty Age gap”: A new method of pubertal timing

This linear model provided an implementation of the traditional model in an out-of-sample prediction paradigm. Model performance was assessed based on the out-of-sample prediction accuracies (quantified by the absolute error of predictions). Similarly, we used the “Wilcoxon signed-rank test” to investigate the statistical differences in model performance.

“Puberty age gap” associations with psychopathology. We investigated associations between each alternative “puberty age gap” measures and different dimensions of psychopathology in males and females separately. To discard the potential impacts of familial relations and multiple records of the same individual, the sample was stratified to randomly keep a single record for every family. A total of N = 9534 participants (n= 4542 female) records remained after stratification. Next, linear mixed-effect models (LMM) were used separately in females and males to assess associations with psychopathology. The following formula was tested for each dimension of psychopathology:

\[\text{Psychopathology} \sim \text{puberty age gap} + \text{age} + (1|\text{site}) . \]

Age was included as a confound (fixed effect) and data collection sites were modelled as random effects. Separate models were fitted for each symptom score, in addition to the summary measures of internalizing, externalizing, and total problems. We corrected for multiple comparisons using False Discovery Rate (FDR) at 5%. FDR corrected p-values are reported in the results. The alternative LMM were compared based on the Akaike Information Criterion (AIC) and a cut-off of 2 was used to indicate evidence for a better model, i.e., the model with an AIC that is at least 2 units smaller is considered a comparatively better model. Furthermore, to investigate whether associations between pubertal timing and psychopathology differed by age, we investigated the interaction effect of age and puberty age gap in predicting psychopathology using the following LMM model:
“Puberty Age gap”: A new method of pubertal timing

Psychopathology ~ puberty age gap + age + puberty age gap: age + (1| site)

Finally, given the known association of pubertal timing with BMI, SES, and race (Mendle et al., 2019), supplementary analyses accounted for these variables as covariates in statistical models (see SI, Appendix S5 and Table S2, for details of these analyses).

Results

Accuracy of Puberty age models. All three models were able to provide significantly accurate out-of-sample predictions of age (Table 1, Figure 1). The performance of the hormonal model was better than the physical model in males but not in females. On the contrary, in females, physical puberty age was found to be a better predictor of age than hormonal puberty age. Across both sexes, combined puberty age explained the largest degree of variation in chronological age. Non-parametric statistical comparisons showed that the MAE between all models was significantly different (p<.001). See the correlation between these three models in Supplementary Information (See SI, Appendix S2 and Figure S1)

Approximate position of Table 1

Approximate position of Figure 2

“Puberty age model” vs. Traditional model. Comparing the out-of-sample prediction performance of the physical puberty age gap with the traditional model of pubertal timing showed that the physical puberty age model was significantly better at modelling the relationship between puberty development and age in previously unseen data (See Table 2). Non-parametric statistical comparisons showed that the MAE between models were significantly different (p<.001)
“Puberty Age gap”: A new method of pubertal timing

Pubertal timing measures predicting psychopathology. We investigated the association between each puberty age gap measure (hormonal, physical, and combined) and different dimensions of psychopathology (see Table 3, Figure 2). Hormonal puberty age gap was not significantly associated with any psychopathology dimension in either males or females. Physical puberty age gap, however, was significantly positively associated with all dimensions of psychopathology in males and most dimensions in females. While similar associations were present for the combined puberty age gap, AIC differences indicated a better model fit of physical puberty age gap in all cases. Finally, there were no significant interactions between age and any puberty age gap measure in predicting psychopathology in either females or males, suggesting the association was stable across the age range.

Discussion

In this study, we utilized biological and physical pubertal features and used supervised machine learning to model pubertal timing and its association with psychopathology. We showed that our novel pubertal timing model had better accuracy than the conventional linear regression-based measurement in both sexes. Further, we showed that both combined and physical puberty age gap measures were significantly associated with most dimensions of psychopathology in males and females, though models using physical
“Puberty Age gap”: A new method of pubertal timing

Puberty age gap fit the data best. Generally, we found that early pubertal maturation (based on physical and combined data) was consistently predictive of various dimensions of psychopathology and could hence be an indicative risk factor for general psychopathology. Overall, a combined puberty age model predicted age more accurately than the unimodal (i.e., physical, or hormonal features alone) normative models. In males, the performance of the hormonal model was better than the physical model, which was not the case for females. This may be due to the fact that the two hormones tested (DHEA and testosterone) are more predominant in males, whilst female-dominant hormones (such as estradiol) were not considered.

Our findings indicated that our normative puberty age model (using smooth nonlinear methods) performed significantly better compared to a traditional regression-based approach. Importantly, our out-of-sample prediction provides an evaluation of prediction generalizability and replicability of study findings (Rosenberg et al., 2018). Moreover, the nonlinearity assumption between pubertal features and age, which was implemented in the puberty age model, was more accurate than a previous commonly practiced linear model of pubertal timing (regressing age from PDS score). Our results verify the existence of a nonlinear relationship between age and pubertal status. This is consistent with previous literature reporting benefits of nonlinear methods for calculating pubertal timing (Mendel et al., 2019; Marceau et al., 2011). We presented how a model that was trained on 90% of the sample could provide accurate out-of-sample predictions in the remaining 10% of the sample. In other words, our evaluations highlight the benefits of out-of-sample comparisons in the assessment of model generalizability. Furthermore, this creates room for future research to measure pubertal timing in studies with smaller sample sizes by taking advantage of this pre-trained normative model which was generated from a larger sample (fitted model of this
“Puberty Age gap”: A new method of pubertal timing

study available in git, https://github.com/Niousha-Dehestani/Puberty-age). This could potentially alleviate some study biases inherent to small sample sizes.

Our findings showed that physical puberty age gap outperformed combined and hormonal puberty age gap measures in the prediction of psychopathology in both females and males. Although the prediction accuracy of the combined puberty age model was significantly better than physical puberty age, it was not better at explaining psychopathology. Moreover, we could not find any significant associations between hormonal puberty age gap and psychopathology symptoms in males or females. These findings are partially consistent with Barendse et al. (2021), who reported that pubertal timing measured from hormonal information (testosterone and DHEA) did not predict internalizing symptoms. Consistent with prior studies, these findings may suggest that psychosocial mechanisms have a larger role (in contrast to biological mechanisms indexed by hormones) in predicting psychopathology in early adolescence (Mendle & Ferrero, 2012). Likewise, prior work has suggested that earlier physical development impacts social functions such as difficulty maintaining friendship with peers who have not yet developed, and a tendency to associate with older adolescents that engage in more externalizing behaviors (Mendle & Ferrero, 2012). Further, we found that relatively early pubertal timing was associated with an increase in all dimensions of psychopathology. This is consistent with the maturation disparity hypothesis, whereby a mismatch between physical development and progression of emotional and cognitive development is purported to increase in those with early pubertal timing, which accounts for difficulties navigating the complexities and challenges of this period and may thus result in greater risk for psychopathology (Petersen et al., 1988; Ullsperger & Nikolas, 2017).
While this study has strengths in its large sample size, use of hormonal assays and physical measurement of puberty, as well as implementation of a novel, generalizable method for pubertal timing measurements, there are limitations that should be addressed in future work. First, the age range of the sample used was rather limited and a wider age range could have improved the out-of-sample model prediction. Future studies that implement our model in a wider age range encompassing the start to completion of puberty would be able to better capture the complete nonlinear relationship between age and pubertal development.

Relatedly, while we did not observe any interactive effects of age with pubertal timing in predicting psychopathology symptoms in early adolescents, it is possible that such effects may be detectable is across a larger age range. Further, different measures of puberty age gap may also differentially predict psychopathology in earlier versus later adolescence. Second, this study focused a limited number of pubertal hormones, and the omission of other hormonal features may have impacted the predictive power of hormonal puberty age gap – particularly in females. Additionally, the variations in the time for collecting hormones across the day could have also had an impact on the inferior performance of the hormonal age gap. Thus, future studies could incorporate more detailed assessments of hormones to improve model prediction.

In conclusion, the current study proposes a smooth nonlinear puberty age model that facilitates generalizable investigations of pubertal timing in future studies. Furthermore, our findings suggest that psychosocial mechanisms may play a predominant role in the relationship between early pubertal timing and psychopathology, which has implications for interventions aimed at reducing the risk of the emergence of psychopathology in adolescence. Finally, we hope that this study opens a new window for investigating pubertal timing using a nonlinear model.
“Puberty Age gap”: A new method of pubertal timing

Support Information

Additional information on each section of results and methodology found in the support information section at the end of the article.

Data Sharing:

This study used data from Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a longitudinal study which collected data from ~11000 children in age 9-10 and follow them through 10 years. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/scientists/workgroups/. ABCD consortium investigators designed and implemented the study and/or provided data but did not participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

Acknowledgement

Niousha Dehestani was supported by a Deakin University Postgraduate Research Scholarships (DUPRS). Additionally, this study was supported by the MASSIVE high-performance computing facility (www.massive.org.au).

Conflict of Interest

The authors declare that they have no financial interests or personal relationships that could impact the work reported in this paper.

Correspondence
“Puberty Age gap”: A new method of pubertal timing

Niousha Dehestani, School of Psychology, Deakin University, 221 Burwood Highway,
Burwood, VIC 3125, Australia, ndehestanikolag@deakin.edu.au, +61422937273
or Tim Silk,
Department of psychology, School of Psychology, Deakin University, 221 Burwood
Highway, Burwood, VIC 3125, Australia, tim.silk@deakin.edu.au, +61408533160.

Key Points

- A “puberty age” model is proposed to calculate pubertal timing from multiple
 pubertal features.
- Positive puberty age gap, reflecting early pubertal timing, predicts higher symptoms
 in most dimensions of psychopathology in both females and males.
- Physical puberty age gap (modelling physical changes during puberty) was most
 strongly associated with most dimensions of psychopathology.
- Hormonal puberty age gap (modelling changes in DHEA and testosterone) was not
 associated with most dimensions of psychopathology in early adolescence.

References

& Gynecological Survey, 25(7), 694–695. https://doi.org/10.1097/00006254-197007000-
00018

Achenbach, T. M., & Ruffle, T. M. (2000). The child behavior checklist and related forms for
assessing behavioral/emotional problems and competencies. Pediatrics in Review, 21(8),
265–271. https://doi.org/10.1542/pir.21-8-265

Arım, R. G., & Shapka, J. D. (2008). The impact of pubertal timing and parental control on
“Puberty Age gap”: A new method of pubertal timing

https://doi.org/10.1007/s10964-006-9158-y

“Puberty Age gap”: A new method of pubertal timing

https://doi.org/10.1037/0012-1649.38.1.42

https://doi.org/10.1111/j.1467-8721.2009.01661.x

https://doi.org/10.1016/j.yhbeh.2013.04.003

NeuroImage, 229(January), 117769.
https://doi.org/10.1016/j.neuroimage.2021.117769

https://doi.org/10.1017/S0033291719001545

https://doi.org/10.1007/s10802-013-9798-9

“Puberty Age gap”: A new method of pubertal timing

https://doi.org/10.1002/dev.21268

https://doi.org/10.3389/fendo.2020.549928

https://doi.org/10.1016/j.yhbeh.2013.02.019

https://doi.org/10.1007/s10964-012-9762-y

“Puberty Age gap”: A new method of pubertal timing

Ramos, P., Moreno-Maldonado, C., Moreno, C., & Rivera, F. (2019). The role of body image in internalizing mental health problems in spanish adolescents: An analysis according to
“Puberty Age gap”: A new method of pubertal timing

sex, age, and socioeconomic status. Frontiers in Psychology, 10(AUG).
https://doi.org/10.3389/fpsyg.2019.01952

https://doi.org/10.1038/s41467-018-02887-9

“Puberty Age gap”: A new method of pubertal timing

Tables and Figures:

Table 1. Comparison of the out-of-sample prediction performance of alternative puberty age gap models

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>mae</td>
<td>r</td>
<td>mae</td>
</tr>
<tr>
<td>Combined puberty age</td>
<td>0.62</td>
<td>7.75</td>
<td>0.54</td>
<td>8.54</td>
</tr>
<tr>
<td>Hormonal puberty age</td>
<td>0.44</td>
<td>9.04</td>
<td>0.47</td>
<td>9.01</td>
</tr>
<tr>
<td>Physical puberty age</td>
<td>0.57</td>
<td>8.20</td>
<td>0.44</td>
<td>9.24</td>
</tr>
</tbody>
</table>

r = correlation, mae = mean absolute error
“Puberty Age gap”: A new method of pubertal timing

Figure 2. Performance of puberty age gap models. For all three models (combined, physical and hormonal), the prediction of the age of each individual is plotted against chronological age (in years). Red dots indicate individuals with a positive puberty age gap (early timing) and blue dots indicate individuals with a negative puberty age gap (late timing).

Table 2. Comparison of the out-of-sample prediction performance of the traditional pubertal timing model and the combined puberty age model

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>mae</td>
<td>r</td>
<td>mae</td>
</tr>
<tr>
<td>Traditional model</td>
<td>0.51</td>
<td>8.50</td>
<td>0.33</td>
<td>9.70</td>
</tr>
</tbody>
</table>
“Puberty Age gap”: A new method of pubertal timing

| Physical Puberty age Model | 0.57 | 8.20 | 0.44 | 9.24 |

$r =$ correlation, $mae =$ mean absolute error
“Puberty Age gap”: A new method of pubertal timing

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physical</td>
<td>Combined</td>
</tr>
<tr>
<td>t</td>
<td>aic</td>
<td>t</td>
</tr>
<tr>
<td>Total problem</td>
<td>7.20***</td>
<td>34554.46</td>
</tr>
<tr>
<td>Internalising</td>
<td>6.24***</td>
<td>34214.42</td>
</tr>
<tr>
<td>Externalising</td>
<td>7.17***</td>
<td>33512.60</td>
</tr>
<tr>
<td>Depression</td>
<td>5.44***</td>
<td>28692.54</td>
</tr>
<tr>
<td>Anxiety</td>
<td>2.25*</td>
<td>29460.49</td>
</tr>
</tbody>
</table>
"Puberty Age gap": A new method of pubertal timing

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>SD</th>
<th>Range</th>
<th>FDR Corrected</th>
<th>p</th>
<th>95% CI</th>
<th>99% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatic</td>
<td>4.72***</td>
<td>3.56**</td>
<td>30028.92</td>
<td>30038.48</td>
<td>-0.58</td>
<td>33069.160</td>
<td>30050.80</td>
</tr>
<tr>
<td>ADHD</td>
<td>2.67**</td>
<td>3.20**</td>
<td>27794.57</td>
<td>27791.47</td>
<td>1.79</td>
<td>31819.04</td>
<td>30028.92</td>
</tr>
<tr>
<td>Opposite</td>
<td>5.26***</td>
<td>4.77***</td>
<td>27348.10</td>
<td>27352.95</td>
<td>0.86187</td>
<td>31559.18</td>
<td>27374.82</td>
</tr>
<tr>
<td>Conduct</td>
<td>4.38***</td>
<td>4.142***</td>
<td>27896.70</td>
<td>27898.72</td>
<td>1.25</td>
<td>31209.55</td>
<td>27914.20</td>
</tr>
<tr>
<td>Sluggish cognitive tempo</td>
<td>5.56***</td>
<td>5.56***</td>
<td>27450.91</td>
<td>27450.95</td>
<td>2.08</td>
<td>31402.83</td>
<td>27477.29</td>
</tr>
<tr>
<td>OCD</td>
<td>1.99*</td>
<td>2.03*</td>
<td>28750.56</td>
<td>28750.40</td>
<td>0.18</td>
<td>32851.53</td>
<td>28754.46</td>
</tr>
<tr>
<td>Stress</td>
<td>4.54***</td>
<td>4.07***</td>
<td>28507.85</td>
<td>28511.88</td>
<td>0.78</td>
<td>32828.41</td>
<td>28527.80</td>
</tr>
</tbody>
</table>

Note: Statistical significance is indicated by asterisks (*: p<0.05; **: p<0.01; ***: p<0.001; FDR corrected). The bold numbers reflect better model performance.
“Puberty Age gap”: A new method of pubertal timing

![Figure 3](https://example.com/figure3.png)

Figure 3. Bar plot showing the T-statistic from the prediction of each dimension of psychopathology from different puberty age models. Hormonal puberty age gap is not significantly associated with any dimension of psychopathology.