Title: The unique face of anxious depression: Exaggerated threat but preserved valence sensitivity.

Maria Ironside¹ D.Phil., Rayus Kuplicki¹ Ph.D., Ebony Walker¹ B.A, Cheldyn Ramsey¹ B.S., Katherine L. Forthman¹ M.S., Melissa Nestor² M.S., Martin Paulus M.D.¹,³

¹Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
²University of Oklahoma Health Sciences Center, 1100 N Lindsay, Oklahoma City, OK 73104, USA
³Department of Community Medicine, Oxley Health Sciences, University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA

Corresponding author: Maria Ironside, mironside@laureateinstitute.org

Short/running title: Preserved valence sensitivity in anxious depression

Keywords: depression, anxiety, startle, electromyography, polygenic risk, emotional reactivity
ABSTRACT

Background: Despite being the most common psychiatric comorbidity, underlying brain and behavioral processes characterizing anxious depression are not well understood. Affective startle modulation is a process that separately probes appetitive/defensive systems and is altered transdiagnostically in individuals with mood and anxiety disorders. This study examined the hypotheses that: (a) individuals with anxious depression show a unique profile of defense related processes, (b) these processes are related to genetics, and (c) dimensionally, anxiety and depression interact in their effects on these processes. Methods: 236 depressed participants of the Tulsa 1000 study completed multi-level assessments including an emotional reactivity task. To minimize bias due to covariates, 124 participants with comorbid depression and anxiety disorders (Dep+Anx) were matched with 62 participants with depression only (Dep). Eye-blink startle magnitudes were analyzed using mixed-effects linear regression. Results: The Dep group showed no affective modulation of startle. However, the Dep+Anx group showed potentiation from aversive cues and attenuation from appetitive cues. The Dep+Anx group also showed increased attenuation from appetitive cues compared to the Dep group. Dimensionally, the effect of self-report anxiety on startle was moderated by self-report depression. Polygenic risk for depression was associated with blunted startle reflex. Conclusions: Compared to those with depression, individuals with depression and anxiety show increased positive/negative startle modulation. Moreover, the association between anxiety sensitivity and startle reflex was moderated by levels of depression. Together, these findings suggest that individuals with anxious depression process aversive/appetitive information differently than those with non-anxious depression. This could have important implications for treatment selection.

ClinicalTrials.gov identifier: #NCT02450240.
TEXT

Introduction

Nearly half of individuals with Major Depressive Disorder (MDD) also have an anxiety disorder (1). Thus, comorbid MDD and anxiety disorders (e.g. generalized anxiety disorder, social phobia, panic disorder, or simple phobia) are among the most common presentations for mental health providers. Yet, the underlying brain and behavioral processes that characterize anxious depression are still incompletely understood. A better understanding of the underlying process dysfunctions is an important first step in the development of more mechanistically oriented interventions. Anxious depression is associated with greater treatment resistance, (2) poorer treatment outcomes, (3) quicker symptom relapse (4) and higher levels of suicidal ideation (1) than non-anxious depression. However, treatment engagement appears to be higher in this comorbid group (1). Typical treatments include traditional antidepressants augmented with benzodiazepines or atypical antipsychotics. This is problematic because of the risk for use disorder and unfavorable side effects profiles, which can be increased in anxious depression (5).

Depression and anxiety share abnormalities among a number of neurocognitive processes (6). However, studies comparing anxious versus non-anxious depression are rare, which may be impeding treatment selection and development. Hyperarousal is a feature of anxiety and anxious depression (7) that is not present in non-anxious depression and therefore may be a useful candidate target mechanism. Hyperarousal in anxious depression is associated with dysregulation of stress circuitry (8) and cortical thinning in prefrontal areas associated with top-down aspects of emotional regulation (9). Threat responses are particularly associated with anxiety (10) and have been shown to engage a corticolimbic circuit including ventromedial prefrontal cortex, insula and amygdala (11, 12). In a functional magnetic resonance imaging (fMRI) study comparing anxious and non-anxious depression, limbic responses to emotional conflict (presentation of emotional facial expressions and non-task relevant incongruent emotional words) were similar across anxiety and depression but prefrontal regulation of emotional conflict was absent in anxiety/anxious depression but preserved in non-anxious depression (13), suggesting that deficits in top-down aspects of emotional regulation may be key to this comorbidity. Emotional regulation is associated with structural and functional connectivity of frontal and limbic regions (14). Depression is associated with reduced corticolimbic functional connectivity (15), although findings are mixed (16), perhaps due to the fact that depression is comprised of heterogeneous subgroups. Examining the anxious depression subgroup may remove some of the variance, but few studies have examined this. In a study of depressed patients, amygdala functional connectivity mediated the relationship between anxiety and depression (17). Together, this suggests that top-down control of
defensive responses to acute threat (and the associated circuits) may be a suitable cognitive target specific to anxious versus non-anxious depression.

The startle reflex is a defensive eyeblink response to an intense stimulus. The plasticity of this reflex in relation to positive or negative affective context makes this an ideal experimental approach to examine alterations of the defense system (18). In healthy participants startle reflex is attenuated by appetitive stimuli and potentiated by aversive stimuli; a phenomenon called affective startle modulation (ASM)(19, 20); explained by motivational priming of the /appetitive/defensive systems (21). Hereby congruent aversive motivational states prime the defensive system, potentiating the defensive startle response, whereas incongruent appetitive states attenuate the response. Deviations from the expected pattern of ASM are thought to reflect abnormal functioning of the underlying motivational system. A recent review of ASM and psychopathology (18) suggests that the defensive/appetitive systems operate independently and characterize depressed and anxious psychopathology in the following ways: 1) increased affective startle potentiation (ASP) to aversive stimuli in anxiety (22-25) and to phobic stimuli in phobia (26), and 2) general hyporeactivity to aversive and appetitive affective stimuli in depression, with blunted affective startle modulation in severe depression (27). Interestingly, in a study examining a range of anxiety patients, responses were blunted in participants with more pervasive disorders such as multiple trauma PTSD and co-morbidity with depression (28), suggesting disengagement of the defense system in response to chronic disease course. These opposing forces of depression and anxiety on startle make the examination of anxious depression necessary and potentially useful. In practical terms, startle paradigms are more clinically feasible to implement than neuroimaging and have recently been employed as a way to screen novel anxiolytics (29).

Preclinical literature has established a key role for the defensive and appetitive neuronal systems in the modulation of startle reflex, namely the bed nucleus of the stria terminalis (BNST), the amygdala (30) and the nucleus accumbens (31). Concurrent neuroimaging and startle electrophysiology is technically difficult, historically limiting human findings to lesion studies of the amygdala showing elimination of negative ASM (32). However, recent advances allowed converging evidence in human fMRI of valence-specific triggered amygdala responding, with individual level associations between startle magnitude and neural activation strength, suggesting that startle measures could be used as a direct read-out of neural activation of the central amygdala (33), allowing measurement of a key component of the corticolimbic circuit implicated in anxious depression.

ASM to aversive stimuli is dimensionally associated with trait fear (34), a self-report measure of threat sensitivity. The goal of this investigation was to determine whether anxious depression shows a unique profile of exaggerated defense related processes (i.e. hyperarousal). As the aim of the T1000 study
is to take a multi-level approach to defining phenotypes, we leverage genetic data to use polygenic risk scores (PRS) for clinical traits as variables measuring potential propensities towards anxiety and depression that may be relevant at a neurobiological level. The major advantage of using the PRS in this context is that it allows us to examine the predisposition for a particular trait that is assessed in the absence of any environmental or momentary biases due to levels of depression/anxiety. The basic approach was to compare a propensity-matched sample of depressed and anxious depressed individuals using a multi-level approach focused on positive/ negative valence and threat using symptoms, physiology, and genetic (polygenic) levels of analysis. Based on previous findings, we hypothesized that individuals with anxious depression but not those with non-anxious depression would show an increased threat-related startle response pattern characterized by an altered ASM response to negatively valenced stimuli.

Methods and Materials

Participants: Data were collected from 236 participants (170 female) from the Tulsa 1000 study (35), a naturalistic longitudinal study recruiting a community. Participants were between 18 and 56 years of age at the time of electromyography (EMG) measurements (mean age = 35.6, standard deviation = 11.4). Participants were screened for inclusion on the basis of the following scores: (1) Patient Health Questionnaire (PHQ-9) ≥10; and (2) Overall Anxiety Symptom and Impairment Scale (OASIS) ≥8. Exclusion criteria were positive urine drug screen; lifetime bipolar, schizophrenia spectrum, antisocial personality, or obsessive compulsive disorders; active suicidal ideation with intent or plan; moderate to severe traumatic brain injury; severe and or unstable medical concerns; changes in psychiatric medication dose in the last 6 weeks; and fMRI contraindications. Ethical approval was obtained from Western Institutional Review Board T1000 protocol #20142082. Full exclusion criteria can be found in the supplement and the parent project protocol paper (35). All participants provided written informed consent prior to participation, in accordance with the Declaration of Helsinki, and were compensated for participation. ClinicalTrials.gov identifier: #NCT02450240.

After removal of 24 participants with greater than 20% unusable EMG data (see supplement for CONSORT diagram and below for exclusion criteria) and one participant for incomplete self-report data the initial sample for the analysis included 62 participants with non-anxious depression (Dep) and 149 participants with comorbid depression and anxiety disorder (Dep+Anx), defined categorically as lifetime major depression and at least one anxiety disorder according to the anxiety module of the Mini International Neuropsychiatric Interview (MINI; (36)), these include Generalized Anxiety Disorder,
Panic Disorder, Agoraphobia and Social Phobia (see Table 1 for details). To reduce the bias due to confounding variables, 124 participants from the Dep+Anx group were propensity matched for age, sex and education at a ratio of 2:1 with 62 participants from the Dep group using the MatchIt package in R. Propensity score analysis is based on the hypothesis that two patients with similar propensity scores have covariates which come from similar distributions. This means that by selecting or reweighting samples based on propensity scores, researchers create new datasets where covariates are similar between two groups (37). These two groups did not differ on their level of depression (PROMIS) (see Table 1) but, crucially, had significantly different levels of trait self-report anxiety sensitivity (ASI) and state anxiety severity and impairment (OASIS).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Depressed only</th>
<th>Depressed + Anxious</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>62</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Age (M, SD)</td>
<td>37.2 11.6</td>
<td>36.4 10.8</td>
<td>t(115) 0.44, p = 0.66</td>
</tr>
<tr>
<td>Female (N, %)</td>
<td>41 66%</td>
<td>89 71%</td>
<td>$\chi^2(1) 0.626, p = 0.43$</td>
</tr>
<tr>
<td>Race: Asian</td>
<td>2 3%</td>
<td>2 2%</td>
<td>$\chi^2(1) 0.511, p = 0.47$</td>
</tr>
<tr>
<td>Race: Black</td>
<td>9 15%</td>
<td>10 8%</td>
<td>$\chi^2(1) 1.876, p = 0.17$</td>
</tr>
<tr>
<td>Race: White</td>
<td>49 79%</td>
<td>108 87%</td>
<td>$\chi^2(1) 2.043, p = 0.15$</td>
</tr>
<tr>
<td>Race: Native American</td>
<td>7 11%</td>
<td>21 17%</td>
<td>$\chi^2(1) 1.030, p = 0.31$</td>
</tr>
<tr>
<td>Latinx ethnicity (N, %)</td>
<td>2 3%</td>
<td>7 6%</td>
<td>$\chi^2(1) 0.479, p = 0.49$</td>
</tr>
<tr>
<td>Education (some college or higher; N, %)</td>
<td>55 89%</td>
<td>104 84%</td>
<td>t(127) 0.203, p = 0.84</td>
</tr>
<tr>
<td>Depression (PROMIS) (M, SD)</td>
<td>60.1 7.4</td>
<td>61.6 7.5</td>
<td>t(122) 1.274, p = 0.21</td>
</tr>
<tr>
<td>Anxiety sensitivity (ASI) (M, SD)</td>
<td>18.8 11.5</td>
<td>27.7 14.4</td>
<td>t(148) 4.567, p < 0.001</td>
</tr>
<tr>
<td>Anxiety (OASIS) (M, SD)</td>
<td>7.66 3.32</td>
<td>10.5 3.2</td>
<td>t(117) 5.499, p < 0.001</td>
</tr>
<tr>
<td>Medicated</td>
<td>40 65%</td>
<td>88 71%</td>
<td>$\chi^2(1) 0.802, p = 0.37$</td>
</tr>
<tr>
<td>Noisy trials removed (M, SD)</td>
<td>0.3 0.7</td>
<td>0.2 0.5</td>
<td>t(90) 0.880, p = 0.38</td>
</tr>
<tr>
<td>No response trials (M, SD)</td>
<td>0.5 0.8</td>
<td>0.4 0.8</td>
<td>t(118) 1.182, p = 0.24</td>
</tr>
<tr>
<td>Generalized Anxiety Disorder (N, %)*</td>
<td>0 0</td>
<td>73 59%</td>
<td></td>
</tr>
<tr>
<td>Panic Disorder with Agoraphobia (N, %)*</td>
<td>0 0</td>
<td>16 13%</td>
<td></td>
</tr>
<tr>
<td>Agoraphobia without Panic Disorder (N, %)*</td>
<td>0 0</td>
<td>4 3%</td>
<td></td>
</tr>
<tr>
<td>Panic Disorder without Agoraphobia (N, %)*</td>
<td>0 0</td>
<td>14 11%</td>
<td></td>
</tr>
<tr>
<td>Social Phobia (N, %)*</td>
<td>0 0</td>
<td>33 27%</td>
<td></td>
</tr>
<tr>
<td>Two or more anxiety disorders (N, %)*</td>
<td>0 0</td>
<td>32 26%</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Final sample demographics
M: Mean; SD: standard deviation; PROMIS: Patient-Reported Outcomes Measurement Information System; ASI: Anxiety Sensitivity Index; OASIS: Overall Anxiety Symptom and Impairment Scale
* Anxiety disorders as defined by the clinician administered Mini International Neuropsychiatric Interview (MINI; (36))
Procedure: General procedures included a clinical interview session, a neuroimaging session and a behavioral (electrophysiology) session, completed within two weeks on average. Although the parent project (i.e., T1000) consisted of a broader range of protocols, only details relevant to the current study are presented here. See supplement and protocol paper (35) for details.

Study staff administered the MINI clinical interview. During this session, participants also provided self-reported information on demographics. For the current study we focused on dimensional measures of anxiety/threat sensitivity (Anxiety Sensitivity Index; ASI), depression (PROMIS depression scale) and as a follow up, approach and avoidance motivation (Behavioral Inhibition/ Behavioral Activation scale; BIS/BAS).

Participants completed an emotional reactivity task (20) during EMG eyeblink recording (Fig. 1). Participants viewed appetitive, neutral, and aversive images from the International Affective picture series (IAPS) (38) for 6 s. Noise probes (95 dB) were presented between 2500 and 4500 ms after picture onset to elicit startle blink responses during 24 of these image presentations (8 per valence).
Figure 1: Emotional reactivity task: A) Each trial begins with a 20-26s fixation period, followed by presentation of one image for 6s, during which a startle probe is presented. After each image, the participant makes valence and arousal ratings on a 7 point scale. (IAPS images blurred in this schematic for copyright reasons; first example image is a pancake (appetitive), second example image is a building (neutral)) B) Startle EMG data collected from electrodes placed on the orbicularis oculi.

For genetic analyses participants had fasting blood (150ml) drawn by venipuncture by a trained phlebotomist. Samples were genotyped by RUCDR Infinite Biologics using Illumina GenomeStudio V2.0.3.

Data pre-processing and analysis:

EMG data: EMG data were analyzed following accepted guidelines (39). Briefly, raw data were bandpass Butterworth filtered between 60 and 500 Hz, smoothed over every rolling 20 samples with a resolution of 0.0005 sec. Quality control of the data was carried out using automated processes implemented in Matlab R2019a (40) and visual inspection. For the automated process “bad” trials were excluded where the standard deviation of the baseline (100 msec before noise stimuli) was greater than 2x the standard deviation of the response window during the trial (30-90msec post noise stimuli). Any blinks occurring after the noise stimuli but before the beginning of the response window were excluded. Startle magnitude was calculated as the difference between the maximum magnitude in the response window minus the mean baseline. No blink trials were those in which the peak value in the response window is smaller than the range of the baseline and were included in the startle averages (39). Individual trials and videos of electrode placement were visually inspected by two investigators (EW and CR) and additional trials/participants were excluded if electrode positioning was poor or if there were artifacts in the signal. Data were positively skewed. Therefore, for analyses examining valence interactions t-scores were calculated for each trial using a within-participant formula:

\[T_{ij} = ((\text{raw score}_{ij} - M_i)/SD_i)*10 + 50 \]

For analyses using startle reflex only an optimized log transform (41) was used to counteract skew. For repeated measures, data were analyzed with mixed effects linear regression using the lme4 package in R (42) with fixed factors of valence and group, a within participant adjustment for the slope of valence (random slope) and covariates of sex and age. Degrees of freedom were estimated using Satterthwaite’s method. For non-repeated measures data were analyzed with linear regression using the stats package in R. Dimensional analyses examined the interaction effect of anxiety sensitivity and
depression on startle. PRS analyses included education, PROMIS depression scores and 10 principal components of genetic ancestry as covariates.

Polygenic risk score (PRS) calculation: Principal components of genetic ancestry were derived using the software FlashPCA2 (43). Imputation was performed using the Michigan Imputation Server (44). PRS for depression and anxiety were calculated using genome-wide association study (GWAS) from the UK Biobank and the genotypes from the T500 participants (see (45)). The GWAS summary provided for each SNP a beta weight and p-value in relation to a particular phenotype (46). PRS were generated using the software PRSice-2 (47) using standard clumping parameters (250 kilobases, r² = 0.1, p = 1). PRS were calculated at 14 p-value thresholds (5*10-8, 5*10-7, 5*10-6, 5*10-5, 5*10-4, 0.001, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, & 1). The optimal p-value threshold for PRS-Anxiety and PRS-Depression was selected by comparing variance explained in ASI and PROMIS Depression t-score, respectively, after adjusting for the principal components of genetic ancestry. The p-value thresholds chosen were 1 for PRS-Anxiety and 0.4 for PRS-Depression. PRS-Anxiety explained 2% of the variance in the ASI for a sample with all ethnicities and PRS-Depression explained 1% of the variance of PROMIS depression for a sample with all ethnicities.

Results

Startle response: Mixed effects linear regression results showed a significant valence X group interaction (F(2,310) 3.460, p = 0.03, R² = 0.022) (Fig. 2). Planned contrasts showed that the Dep group had no modulation of startle response from valence (pairwise comparisons; all p > 0.5), whereas the Dep+Anx group showed negative potentiation compared to positive (negative > positive) (t(184) = 4.608, p < 0.001) and positive attenuation compared to neutral (positive < neutral) (t(548) = -5.018, p < 0.001). The Dep+Anx group also had lower startle response during appetitive stimuli compared to the Dep group (t(397) = -2.273, p = 0.02).
Figure 2: Blunted affective startle modulation in depression versus comorbid depression and anxiety. Error bars represent the 95% confidence interval of the model predicted value.

Image ratings: Participants rated the aversive images as more negatively valenced ($t(368) = 37.948, p < 0.0001$) and more arousing ($t(368) = 16.898, p < 0.0001$); and the appetitive images as more positively valenced ($t(368) = 15.033, p < 0.0001$) and more arousing ($t(371) = 3.354, p < 0.001$) than the neutral images. There was no *valence X group* interaction on ratings ($F(2,368) = 0.173, p = 0.84$). RTs of arousal ratings had a significant *valence X group* interaction ($F(2,368) = 4.11, p = 0.03$), driven by slower RTs of arousal ratings for aversive images in the Dep group compared to the Dep+Anx group ($t(295) = 2.902, p = 0.004$) (Supplemental Fig. S3). There were no main effects of group on RTs for valence or arousal ratings (all $p > 0.16$).

Dimensional analyses: Dimensional analyses in the same sample examined the effects of self-report anxiety sensitivity (ASI) and depression (PROMIS) on startle response during aversive stimuli using linear regression. There was a significant *ASI X Depression* interaction. This indicates that depression
moderated the effect of anxiety sensitivity (F(1,178 = 5.523 p = 0.02, R² = 0.030). For the lower three quartiles of self-report depression, ASI was significantly correlated with startle reflex to negative images (r(112) = 0.24, p = 0.01), but this relationship was not observed in the top quartile (r(72) = -0.17, p = 0.16) (Fig. 3). This interaction was present when examining mean startle across all trials (p = 0.03) and during appetitive stimuli (p = 0.05) but not when examining difference scores of aversive versus appetitive or neutral (all p > 0.7).

Figure 3: Moderation effect of self-report depression scores on effect of self-report anxiety sensitivity on startle response during aversive stimuli. PROMIS: Patient-Reported Outcomes Measurement Information System; ASI: Anxiety Sensitivity Index.

Polygenic risk scores: Across all participants, polygenic risk for depression was associated with lower startle response during aversive stimuli (F(1,161) = 7.646 p = 0.006, R² = 0.006) (Fig. 4). As with the dimensional analysis, this effect was present when examining mean startle across all trials and when viewing appetitive stimuli (both p < 0.01) but not when examining difference scores of aversive versus appetitive or neutral (all p > 0.5).
Figure 4: Polygenic risk score for depression associated with lower startle response during aversive stimuli.

Follow up analyses of behavioral approach and inhibition: To further characterize the groups they were compared on behavioral inhibition and approach using the BIS/BAS. A Welch two-sample t-test showed that the Dep+Anx group had higher behavioral inhibition (avoidance) than the Dep group ($t(108) = 3.356, p < 0.001$). There were no differences between the groups on behavioral activation (all $p > 0.09$).

Healthy control comparison: Follow-up analyses compared propensity matched Dep and Dep+Anx groups separately to healthy controls (HC; $N = 50$). Propensity matching (for age, sex and education) was carried out in the same way as the main analyses. For the Dep+Anx vs HC analyses there was no significant main effect of group or any valence X group interaction (all $p > 0.8$). For the Dep vs HC analyses mixed effects linear regression results showed a trend valence X group interaction ($F(1,100) = 3.105, p = 0.08, R^2 = 0.030$). Planned contrasts showed that the Dep group had no modulation of startle response from valence (pairwise comparisons; all $p > 0.6$), whereas the HC group showed negative
potentiation compared to positive (negative > positive) ($t_{(100)} = 2.724, p = 0.008$) and positive attenuation compared to neutral (positive < neutral) ($t_{(294)} = -2.148, p = 0.03$). There were no differences between the groups on appetitive, neutral or aversive cues (pairwise comparisons; all $p > 0.1$).

Discussion

This multi-level investigation aimed to examine whether anxious depression is characterized by a unique profile of exaggerated defense related processes relative to propensity matched participants with non-anxious depression. There were four main results: First, at a physiological level of analysis the Dep+Anx group showed preserved ASM whereas the Dep group showed no ASM; Second, at a behavioral level of analysis, the Dep group had slower RTs to arousal ratings for aversive cues than Dep+Anx; Third, at a self-report level of analysis, depression moderated the effects of anxiety sensitivity on startle reflex during aversive cues where the most severely depressed individuals did not have an association between anxiety sensitivity and startle reflex; Finally, at a genetic level of analysis, polygenic risk for depression was associated with blunted startle reflex. Using the PRS here provides us with another level of evidence that predisposition to have depression/anxiety is also associated with the observed physiological measures of threat sensitivity. We further characterized the Dep+Anx group as having greater self-report behavioral avoidance. Together, these results support the hypothesis that anxious depression is characterized by affective modulation of appetitive and defensive systems relative to those with non-anxious depression and that non-anxious depression only is associated with valence independent blunting of emotional reactivity. These effects could be related to a single impairment downstream from these systems in non-anxious depression. For example, a sensory deficit (48) or a motor deficit (49). Sensory deficits are difficult to investigate with the current data but our lack of valence independent group differences on RTs suggests that these groups may not have a single downstream motor deficit that could drive our startle findings. In addition, a recent review (18) suggests that the appetitive and defensive systems operate independently and are affected in opposing ways by anxiety and depression.

Previous work based on symptom patterns supports a tripartite model (7), consisting of a general negative affect factor and specific depression and anxiety factors. The general factor is increased negative affect, common to both depression and anxiety. In our findings this would be represented by the self-report depression scale and the polygenic risk factor for frequency of depressed mood, both of which were similar in Dep versus Dep+Anx. At both self-report and genetic levels of analysis we show that this general factor is associated with blunted ASM. The specific depression factor in the tripartite model is the absence of positive affect (anhedonia). In the emotional reactivity task the positively valenced images prime the appetitive system. As expected from the tripartite model, we see a lack of positive affective...
modulation from appetitive images in Dep. Unexpectedly, we found preserved positive affective modulation in Dep+Anx, suggesting a novel key difference that may help explain greater treatment engagement in anxious depression (1). The anxiety specific factor in the tripartite model is hyperarousal.

In the emotional reactivity task the negatively valenced images prime the defensive system. As expected from the tripartite model the Dep+Anx group show hyperarousal, represented by higher affective modulation from negative compared to positive images, which is not observed in Dep, suggesting another key difference. Hyperarousal is also represented by self-report anxiety sensitivity, which was also significantly higher in Dep+Anx versus Dep. These two measures of hyperarousal were significantly correlated in all but the most depressed participants, suggesting a moderating effect of depression.

Supplemental analyses from a smaller healthy control group suggest that the ASM profile of the Dep+Anx group more closely resembled the controls than the Dep group. This could be interpreted as anxiety “rescuing” the impairment from depression. However, this interpretation contrasts with the clinical observations that comorbid depression and anxiety are associated with worse clinical outcomes than depression alone. Therefore, additional studies will be necessary to elaborate on the connection between startle dysfunction and clinical outcomes in individuals with Dep+Anx.

The approach-withdrawal model helps tease apart the behavioral factors, with depression being associated with reduced approach and anxiety being associated with increased avoidance (50). In the present study, reduced approach and withdrawal could be compared to a lack of appetitive/approach or defensive/withdrawal priming in Dep, which is preserved in Dep+Anx. This suggests that treatments targeting the appetitive system (e.g. antidepressants acting on the dopamine system such as bupropion) may not be as effective in anxious depression, as (in terms of startle modulation at least) this system seems to be somewhat preserved. Conversely, treatments that target hyperarousal may not be necessary in non-anxious depression and may, we speculate, contribute towards further emotional blunting. Future research should examine how those with anxious versus non-anxious depression respond to treatments separately targeting the appetitive and defensive systems.

We propose a process model for anxious depression to help distinguish disease modifiable processes that could be useful targets in treatment development. Anxiety may be characterized by an excessive defense system that takes incoming stimuli and evaluates them with respect to threat-to-self. This process may be highly taxing and result in exhausting affective processing capacities ultimately resulting in depression. This is consistent with the observation that two-thirds of individuals with lifetime comorbid anxiety disorders and MDD reported an earlier age-of-onset of their anxiety disorder than their MDD (1). It is unclear whether this subsequent depression is characterized by a lack of response to both positive/negative affect, i.e. if individuals within the anxious depressed group often become non-anxious...
depressed. It is unlikely that the entire sub-group will show the same phased process. In comparison, depressed only individuals may be characterized by a primary lack of reactivity to affective stimuli, which results in a lack of anxious responding when threatful stimuli are encountered. Therefore, whereas the primary disease-modifying process for anxious depression would be to attenuate threat-related processing, the primary disease-modifying process for non-anxious depression would be to enhance valence-related processing in general. A lot of focus is given to reward responsivity in depression, but we propose a more general factor of blunted valence responding, supported by these multi-level data. This would modify the tripartite model, transforming the anxiety specific factor of hyperarousal into a general factor “arousal” with depression and anxiety working in opposition. This suggests that treatments targeting hyperarousal in non-anxious depression may actually be worsening blunted emotional reactivity.

This study had several limitations. First, case-control designs and cross-sectional studies cannot arbitrate between cause and effect. Thus mechanistic explanations require future experimental testing. Second, although the paradigm has been used extensively in prior investigations, compared to other experimental paradigms this version had fewer trials. Third, the Anx+Dep group was twice as large, which increases the ability to detect effects in the Dep+Anx versus the Dep group. Fourth, for dimensional measures, the interpretation of the affective modulation of startle is limited but we suggest that when the groups are collapsed the blunting effect of depression on overall startle overshadows affective modulation. Finally, future studies of threat sensitivity should use more specific self-report scales than the ASI, for example the Trait Fear Scale (51).

In sum, these findings suggest that anxious and non-anxious depression have distinct neurocognitive profiles and thus, may require different treatment approaches. Exaggerated defensive responses in anxious depression may promote avoidance behavior, whereas a lack of positive affect may be driving the same outcome in non-anxious depression. To our knowledge, this is the first time that findings on preservation of the appetitive system in anxious depression have been presented; enabled by our propensity matching approach using both categorical and dimensional analyses. This appetitive system preservation may be a useful tool for developing strategies to regulate negative affect and hyperarousal in this large patient group.

Acknowledgements: This work has been supported in part by The William K. Warren Foundation and the National Institute of General Medical Sciences Center Grant Award Number 1P20GM121312. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The ClinicalTrials.gov identifier for the clinical protocol associated with data published in the current paper is NCT02450240, “Latent Structure of Multi-level Assessments and Predictors of Outcomes in Psychiatric Disorders”.

The Tulsa 1000 Investigators include the following contributors: Robin Aupperle, Ph.D., Jerzy Bodurka, Ph.D., Salvador Guinjoan, M.D., Ph.D., Sahib S. Khalsa, M.D., Ph.D., Rayus Kuplicki, Ph.D., Martin P. Paulus, M.D., Jonathan Savitz, Ph.D., Jennifer Stewart, Ph.D., Teresa A. Victor, Ph.D.

Maria Ironside D.Phil., Rayus Kuplicki, Ph.D., Jennifer L. Stewart, Ph.D., Namik Kirlic, Ph.D., Jonathan Savitz, Ph.D., Robin Aupperle Ph.D., and Martin Paulus M.D. receive funding from the National Institute of General Medical Sciences (NIGMS) center grant P20GM121312; Sahib Khalsa M.D. Ph.D. has grant funding from the National Institute of Mental Health (NIMH; K23MH112949); Robin Aupperle Ph.D. has additional grant funding from NIMH (K23MH108707; R01MH123691); Jennifer L Stewart Ph.D. has additional grant funding from the National Institute of Drug Abuse (NIDA) (R01DA050677), Rayus Kuplicki Ph.D. has additional funding from NIDA (R01DA050677); and Martin Paulus, M.D. has additional grant funding from the National Institute of Drug Abuse (U01DA041089, R01DA050677).
Disclosures: Dr. Paulus is an advisor to Spring Care, Inc., a behavioral health startup, he has received royalties for an article about methamphetamine in UpToDate; Dr. Ironside reports no financial relationships with commercial interests; Dr. Kuplicki reports no financial relationships with commercial interests; Ms. Walker reports no financial relationships with commercial interests; Ms. Ramsey reports no financial relationships with commercial interests; Ms. Forthman reports no financial relationships with commercial interests; Ms. Nestor reports no financial relationships with commercial interests; Dr. Aupperle reports no financial relationships with commercial interests; Dr. Guinjoan reports no financial relationships with commercial interests; Dr. Khalsa reports no financial relationships with commercial interests; Dr. Savitz reports no financial relationships with commercial interests; Dr. Stewart reports no financial relationships with commercial interests; Dr. Victor reports no financial relationships with commercial interests.
References

40. MATLAB, 7.10.0 (R2019a) ed. Natick, Massachusetts: The MathWorks Inc.