Non-inferiority of silver diamine fluoride for caries prevention when applied by nurses compared to dental hygienists: Results from the CariedAway school-based clinical trial

Ryan Richard Ruff, MPH, PhD1 2, Tamarinda J. Barry-Godín, MPH, DDS1, and Richard Niederman, DMD1

1 New York University College of Dentistry
2 New York University School of Global Public Health

May 2022

Abstract

Background: The sustainability of school-based caries prevention programs depends on the utilization of effective, efficient treatments and the availability of trained clinicians. The objective of this study was to determine whether registered nurses are non-inferior to dental hygienists in the application and effectiveness of silver diamine fluoride (SDF) for dental caries. Methods: CariedAway was a school-based cluster-randomized trial of SDF versus dental sealants and atraumatic restorations. Within the SDF arm, subjects were treated by either a licensed dental hygienist or a registered nurse, both under the supervision of a pediatric dentist. The proportion of children who remained caries free after two years was analyzed using two-group proportion tests, adjusting for the clustering effect of schools. Results: 417 children were analyzed including 298 treated by hygienists and 119 by nurses. The proportion of caries-free individuals was 0.812 and 0.798 for hygienists and nurses, respectively, for a difference of 0.014 (95% CI = -0.07, 0.098) and within the pre-determined non-inferiority margin. Conclusions: Results support silver diamine fluoride and fluoride varnish delivery by both dental hygienists and nurses in school-based oral health programs.

1 Introduction

The World Health Organization estimates dental caries to be the world’s most common noncommunicative disease, disproportionately affecting low-income and minority populations and consuming between 5-10% of healthcare budgets of industrialized nations [1, 2]. Notably, those most at risk of dental caries typically
lack access to traditional dental services, which results in substantial unmet need in vulnerable groups [3, 4, 5]. As a public health intervention to increase access to dental care, the Centers for Disease Control and Prevention recommends school-based sealant programs, which are effective [6, 7, 8], economical [9], and "allow the use of dental personnel to the top of their licensure" [10].

Silver diamine fluoride (SDF) is an efficient, economical treatment for dental caries [11] that is supported by the American Academy of Pediatric Dentists as part of a comprehensive caries management program [12]. Systematic reviews conclude that SDF is effective in the arrest of caries in primary teeth [13] and significantly reduces the development of new dentin caries after twenty-four months [14]. SDF is a colorless liquid similar in application to fluoride varnish [15], and the Association of State & Territorial Dental Directors (ASTDD) show that state medical and/or dental practice acts allow physicians, nurses, and assistants to provide SDF in addition to dentists and dental hygienists [16].

The CariedAway study was a longitudinal, school-based, cluster randomized non-inferiority trial of non-surgical interventions for dental caries [17]. Prior results from CariedAway demonstrated that a single application of silver diamine fluoride was non-inferior to glass ionomer sealants and atraumatic restorations in the two-year arrest and prevention of dental caries [18], and that oral health-related quality of life was not appreciably different between groups [19]. A secondary objective of CariedAway was to determine whether the effectiveness of SDF treatment when provided by registered nurses was non-inferior to that of dental hygienists.

2 Methods

CariedAway is a registered study at www.clinicaltrials.gov (#NCT03442309) and is reported according to CONSORT recommendations for randomized trials. The study received ethical approval from the New York University School of Medicine IRB (#i17-00578). A study protocol is available [17].

2.1 Design and Participants

CariedAway was a longitudinal, cluster-randomized, pragmatic non-inferiority controlled trial conducted from 2018-2023 in New York City primary schools. The pragmatic design was chosen to test study hypotheses in real world settings that characterize school-based oral health programs. Schools that had a student population from at least 50% Hispanic/Latino or black ethnicities and at least 80% receiving free and reduced lunch (a proxy for low socio-economic status) were eligible for inclusion. Schools were further excluded if they already had a school-based oral health program that provided services. Within eligible and enrolled schools, all subjects were eligible for the study if they provided parental informed consent and child assent.
2.2 Randomization

Subjects in CariedAway were block randomized at the school level to receive treatments for the primary study objectives (silver diamine fluoride versus atraumatic restorations). Within the SDF treatment arm, subjects were not randomized to provider type (hygienist/dentist versus registered nurse). However, no systematic efforts were made to assign subjects to different providers. By law, nurses could only treat patients if standing orders were created by a supervising dentist. Subjects who were enrolled prior to visiting the school were thus eligible to be seen by nurses or hygienists. These subjects were seen by whichever provider was available. Any subject enrolled during the actual visit to schools (e.g., day-of enrollment) were seen only by hygienists.

2.3 Interventions

All subjects included in analysis received a simple treatment consisting of 38% silver diamine fluoride (Elevate Oral Care Advantage Arrest 38%, 2.24 F-ion mg/dose) applied to all asymptomatic cavitated lesions and brushed on all pits and fissures of bicuspsids and molars for 30 seconds. Fluoride varnish (5% NaF, Colgate PreviDent) was then applied to all teeth Registered nurses and hygienists operated within a specific room in each school using a disposable mirror, disposable explorer, and head lamp with participants laying in a portable dental chair. Nurses and hygienists were under the supervision of a licensed pediatric dentist.

2.4 Clinician training

Registered nurses first completed modules on child oral health, caries risk assessment, fluoride varnish, and oral examinations from Smiles for Life: A national oral health curriculum [20], accredited by the American Nurses Credentialing
Figure 1: Study flow diagram for the CariedAway randomized controlled trial
Center’s Commission on Accreditation. Nurses and hygienists further received approximately 70 hours of didactic instruction and practical training during the annual CariedAway orientation, including dental screening and treatment protocols for silver diamine fluoride, fluoride varnish, dental sealants, and interim therapeutic restorations. Examiner standardization was conducted via case study, utilization of dental models, and through the recruitment of examinees attending pilot and training schools not included in the CariedAway study population. Examiners were standardized using identical diagnostic and treatment protocols. Caries diagnosis was performed according to guidelines of the International Caries Detection and Assessment System (ICDAS) adapted criteria in epidemiology and clinical research settings [21]. Full description of clinical protocols for diagnosis, outcomes, and other protocol considerations is previously published. Clinicians were standardized through agreement with the senior examiner, a licensed pediatric dentist experienced in applying the dental screening and treatment protocols. The senior examiner performed weekly chairside and data audits to ensure protocol compliance and continuous quality improvement.

2.5 Data Collection

Data collection for CariedAway was conducted in two phases due to the impact of COVID-19. In phase 1, baseline observations were conducted from September 2019 to March 2020 with first follow-up observations conducted from September 2021 to March 2022. In phase two, additional data collection is scheduled at recurring six month intervals from March 2022 through June 2023. Treatments were provided at every observation. Study clinicians performed full-mouth visual-tactile oral examinations at each observation. Teeth were assessed as being present or missing intraorally. Individual tooth surfaces were assessed as being either intact/sound, sealed, restored, decayed, or arrested.

All data were recorded on Apple iPads using an electronic dental health record designed for school-based programs (New England Survey Systems, Brookline, MA) and were securely uploaded each day to the Boston University School of Public Health Data Coordinating Center.

2.6 Outcomes

The primary outcome was the proportion of subjects with no observed incidence of decayed teeth from previously sound dentition (prevention). For caries incidence, the number of decayed teeth not previously carious or arrested and the number of teeth with new fillings were counted at each visit and a summary score was calculated for each subject at each visit.

2.7 Covariates

Data for demographic variables were obtained from informed consent documents and/or school records, including race/ethnicity, age at observation, and sex. For
socioeconomic status, all enrolled schools in CariedAway had at least 80% of the student population receiving free or reduced lunch ("Title 1" schools).

2.8 Analysis

Analysis for the secondary objective of provider variation used data from phase 1 of CariedAway. Subjects were first ordered sequentially by visit and restricted to those randomly assigned to the silver diamine fluoride arm and without dental caries at their baseline observation. Our primary independent variable, provider type, was dichotomized as either registered nurse or dental hygienist/pediatric dentist. Our primary dependent variable of any new evidence of dental decay was created as a dichotomous indicator reflecting whether each tooth presented at follow-up with either untreated caries or clinical evidence of having received an outside filling.

The degree of intraclass correlation was measured using intercept-only mixed effects multilevel regression modeling. Non-inferiority of prevention by provider type was assessed using two-sample proportion tests with cluster adjustment for the school and the estimated intraclass correlation and by comparing the right-sided 95% confidence interval for the difference between providers to the pre-determined non-inferiority margin of 0.10. Logistic regression models were then conducted to explore the role of potential confounding variables on the provider/caries relationship.

As these results were from secondary objectives of CariedAway, they were not subject to a priori power analyses. Power for the primary study objective is previously available [17]. Analysis used intent to treat and was conducted using Stata v16.0 and R v1.4. Statistical significance was set at 0.05.

3 Results

Of the 4718 subjects enrolled and randomized in Phase 1, 2998 were estimated to be available for follow-up observation with the remainder known to have aged out of the study during the intervening COVID period. We completed follow-up data collection with 1398 subjects from September 2021 through 2 March 2022 (Figure 1). A total of 418 subjects were treated with silver diamine fluoride and did not have caries at baseline. One subject did not have provider recorded and thus was removed from analysis (N=417). This analytic sample consisted of 298 subjects treated by dental hygienists and 119 treated by registered nurses. Approximately 10% of subjects presented at baseline with dental sealants and 14% developed new caries in the two year period between baseline and follow-up. In keeping with the study inclusion criteria, 81% of subjects were of Hispanic/Latino or black ethnicity. The intraclass correlation coefficient was less than .00001.

The proportion of individuals who remained caries free after two years (prevention rate) was 0.812 and 0.798 for subjects treated by dental hygienists and nurses, respectively, for a difference of 0.014 (95% CI = -0.07, 0.098), just below
Table 2: Prevention rates after two years

<table>
<thead>
<tr>
<th></th>
<th>Hygienists/Dentists</th>
<th>Nurses</th>
<th>Difference</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>mean</td>
<td>SE</td>
<td>N</td>
</tr>
<tr>
<td>Prevention</td>
<td>298</td>
<td>0.81</td>
<td>0.23</td>
<td>119</td>
</tr>
</tbody>
</table>

the non-inferiority threshold (Table 2). Results from regression models show no differences between provider after controlling for race, age at baseline, sex, and dental sealant prevalence (Table 3).

4 Discussion

Our analysis demonstrates that the effectiveness of silver diamine fluoride when applied by registered nurses is non-inferior in the two-year prevention of dental caries compared to dental hygienists in a school-based pragmatic setting. Specifically, the overall prevention rate in predominantly low-income, minority children was approximately 80%. If left untreated, dental caries can progress to severe infection [22] and negatively affects quality of life [23], academic performance [24], and school attendance [24]. Thus the effective prevention of dental caries in schools can not only improve health but overall child development.

Table 3: Regression model results for provider type

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>SE</th>
<th>95% CI</th>
<th>95% CIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider</td>
<td>0.9</td>
<td>0.25</td>
<td>0.52</td>
<td>1.55</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.78</td>
<td>0.23</td>
<td>0.43</td>
<td>1.41</td>
</tr>
<tr>
<td>White</td>
<td>0.52</td>
<td>0.37</td>
<td>0.13</td>
<td>2.1</td>
</tr>
<tr>
<td>Asian</td>
<td>1.35</td>
<td>1.06</td>
<td>0.29</td>
<td>6.29</td>
</tr>
<tr>
<td>Other</td>
<td>1.5</td>
<td>1.17</td>
<td>0.33</td>
<td>6.88</td>
</tr>
<tr>
<td>Unreported</td>
<td>0.63</td>
<td>0.26</td>
<td>0.28</td>
<td>1.4</td>
</tr>
<tr>
<td>Age</td>
<td>1.05</td>
<td>0.11</td>
<td>0.85</td>
<td>1.3</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>1.19</td>
<td>0.3</td>
<td>0.72</td>
<td>1.96</td>
</tr>
<tr>
<td>Sealants</td>
<td>0.95</td>
<td>0.41</td>
<td>0.41</td>
<td>2.24</td>
</tr>
</tbody>
</table>

The ubiquity and impact of school-based sealant programs, while well established, depends in part on the availability of properly trained dental professionals. In a prior survey of registered dental hygienists, 54% of respondents were unfamiliar with SDF, 78% agreed that using SDF as a treatment for dental caries falls within their scope of practice, and 82% believed it to be an alternative to traditional restorative treatments [25]. Further, the use of traditional preventive services like glass ionomer sealants can be prohibitively expensive when treating large school populations, such as those found in New York City. In contrast, school nursing services prevent millions of dollars in medical care costs and lost productivity [26] and provide for safe and effective management of children with chronic health conditions, improving both health and academic...
outcomes [27]. Since state medical or dental practice acts can authorize nurses to treat children with silver diamine fluoride, their incorporation into school-based dental programs can have substantial impact on the efficiency and reach of care. For example, in New York, the state scope of practice implies that SDF is a topical fluoride and thus able to be applied by registered nurses under the supervision of a licensed dentist. This also aligns with professional practice, as the National Association of School Nurses advocates for the school nurse to promote child oral health through prevention, education, and coordination [28].

Our overall results are in line with the available evidence. Recent systematic reviews and meta-analyses are available for the effectiveness of silver diamine fluoride in the prevention of caries in primary dentition and permanent first molars [29, 14], caries control in exposed root surfaces [30], and in the arrest or reversal of both noncavitated and cavitated lesions in primary and permanent teeth [31]. These studies indicate preventive fractions for SDF versus placebo or active controls in the range of 70-90%, depending on the comparator used.

Although the provider comparison of CariedAway was not a randomized one, no efforts were made to introduce bias into treatment protocols. Study subjects who enrolled prior to school visitation received standing orders from the supervising dentist and thus were able to be treated by either nurses or hygienists. These subjects were seen on a first come, first served basis and were not ordered by any factor (such as severity, sex, or race). Children who enrolled during the study visit were only eligible to be treated by dental hygienist. If pre-visit enrollees were systematically different, this could introduce bias into our results. However, further analysis with potential confounders show that they did not have an appreciable impact.

The two year period between baseline and follow-up observations corresponded with the onset and duration of the COVID-19 pandemic, which resulted in the suspension of all in-school educational and clinical activities from March 2020 to August 2021. As our analytic sample for this analysis considered only those with no untreated decay at baseline, exfoliation of decayed teeth was not a concern. Additionally, our analysis accounted for both any newly observed untreated decay and any evidence of having received a dental filling, which would suggest the incidence of new decay (and thus prevention failure) in the intervening years. As a result, our findings should not be confounded by receipt of traditional care in a dental office.

The CariedAway trial utilized non-restorative and minimally-invasive treatments that were recently added to the World Health Organization’s list of essential medicines, which can be used to expand the scope and reach of school caries prevention. Our results support the incorporation of not only alternative non-restorative methods into traditional school-based prevention programs but the inclusion of under-utilized health professionals. As of 2018, an estimated 132,300 school nurses work in the United States [32], approximately 75% of the entire hygienist workforce, representing a substantial untapped resource to address oral health inequities.
5 Additional information

5.1 Funding

Research reported in this publication was funded through a Patient-Centered Outcomes Research Institute (PCORI) award (PCS-1609-36824). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the funding organization, New York University, or the NYU College of Dentistry.

5.2 Author contributions

RRR and RN were the principal investigators and conceived of and designed the study. TBG served as the supervising dentist, directed clinical activities, and oversaw all data collection. RRR performed all statistical analyses and wrote the manuscript. All authors critically reviewed the manuscript and provided edits. All authors read and approved the final manuscript.

5.3 Acknowledgements

We are grateful for the support of multiple people and organizations in their collaboration on this initiative, including Rachel Whittemore, Nydia Santiago-Galvin, and Denise Guerrero, without whom this work would not be possible. We are also thankful for our clinical team who provided care and our patient/stakeholder board who provided community perspectives on COVID-19 and school guidance. We also wish to thank John Roberge and Michael Stanley at New England Survey Systems (NESS), who worked with us to continuously improve our ability to capture clinical data, and Joe Palmisano at the Boston University School of Public Health. We thank Drs. Roger Platt, Ramneet Kalra, and David Tepel at the New York City Department of Health and Mental Hygiene, who facilitated access to New York City schools. Finally, we thank Drs. Dionne Richardson and Michele Griguts at the New York State Department of Health, who provided guidance during COVID-19.

References


