Automated Prioritization of Sick Newborns for Rapid Whole Genome Sequencing Using Clinical Natural Language Processing and Machine Learning

Bennet Peterson¹, Javier Hernandez², Charlotte Hobbs⁴, Sabrina Malone Jenkins³, Marvin Moore², Edwin Juarez⁴, Samuel Zoucha³, Erica Sanford Kobayashi⁴,⁵, Matthew Bainbridge⁴, Albert Oriol⁶, Luca Brunelli³, Stephen Kingsmore⁴, Mark Yandell²

1 Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
2 Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
3 Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, USA
4 Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
5 Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
6 Rady Children's Hospital, San Diego, CA, USA

Abstract

Institutional databases of Electronic Health Records (EHRs) are logical starting points for identifying patients with undiagnosed Mendelian diseases. We have developed automated means to prioritize patients for Rapid and Whole Genome Sequencing (rWGS and WGS) directly from clinical notes and other EHR data. Our results indicate that an entirely automated pipeline for selecting acutely ill infants in neonatal intensive care units (NICU) for WGS can meet or exceed diagnostic yields obtained through conventional pipelines in which specialized personnel perform a manual review of clinical notes and histories.

Introduction

It is estimated that 7 million infants are born worldwide with genetic disorders each year¹. Admission to the Neonatal Intensive Care Unit (NICU) often provides the first opportunity for their diagnosis and treatment. Disease can progress rapidly in acutely ill infants, necessitating timely diagnosis in the hope of implementing personalized interventions that can decrease morbidity and mortality. Thus, rapid Whole Genome Sequencing (rWGS) is increasingly being used for their diagnosis²,³.

Current estimates suggest that around 18% of neonates admitted to the NICU harbor a Mendelian genetic disease, and rWGS diagnostic rates in this population are over 35%⁴,⁵. The challenges of
rapidly and efficiently identifying infants for rWGS is further suggested by the fact that large NICUs often see more than 1000 admissions per year, and that neonatal clinical histories evolve rapidly from the time of admission. Previous studies of rWGS in the NICU used inclusion criteria that limited enrollment to the first 96 hours (Kingsmore, NSIGHT2) or 7 days of admission or development of an abnormal response to standard therapy for an underlying condition, but these restrictions may miss the earliest opportunity to sequence a neonate. Minute-to-minute changes in laboratory results, diagnostic imaging, and clinical trajectory suggest that constant automated vigilance, as opposed to one or two isolated points in time, may be optimal to identify infants most likely to benefit from rWGS. Done manually, this would be prohibitively time-consuming and costly. Automated means to prioritize patients for rWGS are thus badly needed. Indeed, this is the principal motivation for the work described here.

Phenotype descriptions are crucial components of the rWGS diagnostic process, and many tools exist for combining phenotypic terms with WGS data to prioritize disease-causing variants. Current best practice is to describe patient phenotypes using Human Phenotype Ontology (HPO) terms. These descriptions usually take the form of machine-readable phenotype term lists, an important prerequisite for automated analyses.

Care providers emphasize the importance of clinical notes for informing disease diagnosis, and HPO-based phenotype descriptions are generally compiled through manual review of these free text documents. Unfortunately, this is a time-consuming process performed by scarce, highly trained experts, and is a major bottleneck for application of WGS in the NICU.

Natural Language Processing (NLP) is a class of computational methods for generating structured data from unstructured free text. Recent work has begun to explore the utility of using Clinical Natural Language Processing technologies (CNLP) to automatically generate descriptions directly from clinical notes, with several groups demonstrating that rWGS diagnosis rates using CNLP derived descriptions can equal or exceed those obtained using manually compiled ones. This is a significant step towards scalability and automation. The ability to automatically survey all NICU admissions daily, for example, would mean that rWGS candidates could be ranked as part of an ever-evolving triage process based upon the latest contents of their EHRs.

Although the use of HPO descriptions for WGS-based Mendelian diagnosis is now established practice, the benefit of prioritization of patients for sequencing based on HPO terms is not known. To explore the feasibility of such an approach, we have combined a CNLP workflow with a machine learning-based prioritization tool we call the Mendelian Phenotype Search Engine (MPSE). MPSE employs HPO-based phenotype descriptions derived from patient EHRs to compute a score. This score can be used to determine the likelihood that a Mendelian
condition is contributing to a patient’s clinical presentation, and thus, can be used for the prioritization of patients for WGS. To demonstrate feasibility, we used a highly curated clinical dataset consisting of 1049 patients admitted to a Level IV NICU (the highest level of acuity for a NICU) and their clinic notes; 293 of these children had rWGS, with 84 receiving a diagnosis. Our cross validated results indicate that an entirely automated CNLP/MPSE-based selection process for rWGS can obtain diagnostic rates equaling or exceeding those obtained through manual review and selection as per current best practice. A second independent study at the University of Utah provides additional support for these conclusions, demonstrating that MPSE operates equally well at both institutions.

Methods

Datasets. Our clinical dataset consisted of 293 probands who underwent rWGS at Rady Children’s Hospital in San Diego (RCHSD), 84 of which received a molecular diagnosis of Mendelian disorder. The diagnosed individuals represent a real-world population comprised of different Mendelian conditions resulting from diverse modes of disease inheritance and disease-causing genotypes. To this cohort, we added every NICU admission at RCHSD in the year 2018. The 756 additional patients and their clinic notes provide a diversity of phenotypes not necessarily associated with Mendelian diseases. In total, the RCHSD dataset consisted of 1049 individuals. A second independent dataset of 36 probands that were sequenced as part of the University of Utah NeoSeq program, was retrospectively analyzed to evaluate the utility of the RCHSD training data for prioritizing probands for rWGS at a second institution.

Phenotype descriptions. Highly-curated, manually created HPO-based phenotype descriptions were provided for each of the 293 RCHSD and 36 University of Utah WGS cases, as described in NSIGHT1. Corresponding CNLP-derived phenotype descriptions were generated for all 1085 probands by NLP analysis of clinical notes using CLiX ENRICH (Clinithink, Alpharetta, GA). CLiX was run in default mode with ‘acronyms on’.

MPSE. The Mendelian phenotype Search Engine (MPSE) employs Human Phenotype Ontology (HPO) based descriptions to prioritize patients, determining the likelihood that a Mendelian condition underlies a patient’s phenotype, based upon a training dataset. MPSE does not attempt to determine which Mendelian disease might underlie the patient’s phenotype, rather it seeks to categorize patients as positive or negative for Mendelian disease. Although one can envision many algorithmic approaches to classification, e.g., Support Vector Machines or Neural nets, for this proof of principle study, we sought to demonstrate feasibility and provide baseline performance metrics. Accordingly, MPSE employs a simple, well-established approach: Naïve Bayes. Future work will explore more sophisticated approaches to data modeling. Briefly, MPSE uses the differences in HPO term frequencies between a collection of cases and controls.
to score each proband. The algorithm employs the BernoulliNB package from *scikit-learn*, a general-purpose machine learning library written in the Python programming language. We also discovered that the number of terms in a proband's HPO description correlated modestly with age ($r^2 = 0.0725$), accordingly, we used a linear regression to control for this effect.

Cross validation. We validated our results using leave-one-out cross validation, (i.e., k-fold cross validation, with $k = 1$). Leave one out, or $k = 1$ cross validation, is the most stringent form of cross validation. More specifically, we created 1049 different training datasets—each differing by a single proband—scoring each proband against a (different) version of MPSE, trained using a data subset that did not contain the proband being scored. All performance metrics were computed using this cross-validation scheme. We also carried out a second independent, retrospective validation study using the clinical notes and diagnoses for the 36 WGS probands sequenced to date by the University of Utah NeoSeq program.

Results & Discussion

Previous work, including our own, has demonstrated the utility of HPO-based, CNLP derived phenotype descriptions for post sequencing diagnostic applications. Here we explore the feasibility of using CNLP phenotype descriptions, manufactured using the same NLP protocols, for triaging patients for rWGS. To do so, we combined a Natural Language Processing (NLP) workflow based around the commercially available CLiX tool with an ML-based prioritization tool we call MPSE, the Mendelian Phenotype Search Engine. MPSE (see Methods) employs the Human Phenotype Ontology (HPO) to prioritize patients. The *a priori* likelihood that a patient has a Mendelian condition is a computed probability based on the existence of HPO terms in the patient’s phenotype that are similar to those patients who previously had WGS. To investigate feasibility, we utilized curated RCHSD clinical data: 1049 Level IV NICU admissions and their clinic notes. Of these 1049 patients, 293 had rWGS and 84 received a molecular diagnosis. We validated the results presented below using leave-one-out cross validation; see methods for details. To examine the broader applicability of the RCHSD training data to other NICUs, we also carried out a second independent, retrospective validation study using the clinical notes and diagnoses for the 36 WGS probands sequenced to date by the University of Utah NeoSeq program.

Automated generation of HPO terms. We obtained HPO phenotype descriptions for all probands from clinical notes using Clinithink, a 3rd party NLP tool. Automatically generating phenotypic descriptions via NLP is a major strength, as it enables the creation of large and dynamic pools of HPO-based phenotype descriptions for downstream prioritization activities.
Comparison of the CNLP descriptions to their corresponding manually compiled ones revealed notable differences as regards HPO term numbers and contents. The CLiX generated descriptions for the RCHSD and NeoSeq cohorts had an average of 114.8 terms (min: 3, median: 91, max: 1000) and 175.7 terms (min: 68, median: 173.5, max: 277) respectively, whereas the corresponding manually created descriptions averaged 4.1 terms (min: 1, median: 3, max: 24) and 9.5 terms (min: 3, median: 8, max: 18) respectively.

![Figure 1](image.png)

Figure 1. Automatically identifying probands with Mendelian phenotypes and prioritizing them for WGS using NLP-derived HPO phenotype descriptions. Panel A: distributions of MPSE raw scores for RCHSD sequenced (red), and RCHSD un-sequenced (blue) probands. Score distribution for Utah NeoSeq probands are shown in green. Inset: Receiver Operator Characteristic (ROC) curve for RCHSD data. MPSE Scores are -log likelihood ratios.

Prioritizing patients. We first sought to evaluate how effective our CNLP/MPSE pipeline was at prioritizing patients for rWGS. In other words, did the children originally selected for rWGS by RCHSD physicians have higher MPSE scores than those who were rejected? **Figure 1** demonstrates that this is the case. As can be seen, the distributions of MPSE raw scores for the RCHSD and Utah WGS-selected children are well-separated from unsequenced ones. RCHSD sequenced cases had an average MPSE score of 26.7 while unsequenced controls had an average
score of -31.8, statistically different by Student’s independent samples t-test (p<2e-16). The insert shows a Receiver Operator Characteristic (ROC) curve for the same data (AUC 0.86), indicating that MPSE can effectively prioritize probands for rWGS. The Utah dataset complements these results, demonstrating the RCHSD training data resulted in generally high scores that also correlated with higher diagnostic rates, a point we address in more detail in our discussion of Figure 3.

Figure 2. An automatically generated HPO-based phenotype description scored by MPSE. In this word-cloud, size and color are proportional to each HPO term’s contribution to the proband’s final MPSE prioritization score. Previously diagnosed by RCHSD using WGS, this child is heterozygous for a large deletion on the X chromosome which spans the PCDH19 gene, causative for autosomal dominant female-specific X-linked Epileptic Encephalopathy.

Cardinal phenotype terms. MPSE also provides means to identify, and highlight for expert review, those terms in a phenotype description that are most consistent with Mendelian disease. We refer to these terms as the proband’s cardinal phenotypes. Figure 2 shows a CNLP phenotype description as a word cloud, wherein font sizes have been scaled by their individual...
contributions to the proband’s final MPSE sum score; those with the highest scores are shown in red, these are the proband’s MPSE cardinal phenotypes. These views of the patient’s phenotype description are designed to speed physician review and improve explainability.

Figure 3. MPSE projected diagnostic rates. Sequencing the top 20% of MPSE prioritized probands results in a predicted diagnostic rate of 41% for both RCHSD and U of Utah. Diagnostic rates equal or exceed the published RCHSD rate of 35% for almost half the queue. Red: RCHSD, blue: U of Utah.

MPSE diagnostic rates. To estimate MPSE-driven diagnostic rates, we subset the RCHSD dataset of 1049 probands, so that it contained 18% true positives, in keeping with the NSIGHT2 study⁵, so as to simulate a lower bound on the total percentage of NICU admissions presenting with Mendelian diseases. RCHSD probands were scored using leave-one-out cross validation, as described in Methods. We also included the 36 University of Utah NeoSeq probands as an independent control. Interestingly, the NeoSeq cohort’s 35% diagnostic rate is very similar to those reported by RCHSD ³⁵. **Figure 3** shows projected diagnostic rates of the probands as a function of their MPSE scores. As can be seen, sequencing the top 20% of probands ranked on their MPSE scores would achieve 41% diagnostic rate for both RCHSD and
NeoSeq cohorts. These facts illustrate an enrichment for diagnosable probands near the top of the queue. Beyond this point, diagnostic rates diverge due to the different True Positive percentages for the cohorts: 18% for RCHSD, 35% for NeoSeq. Interestingly, the highest scoring proband (far left in Figure 3) was not selected for rWGS by RCHSD. Although additional data and further case review will be required to determine whether their high MPSE score is in fact consistent with Mendelian disease, these facts demonstrate the utility of MPSE scores for identifying problematic cases. Collectively, these results indicate that an MPSE-based pipeline can match, and even exceed diagnostic rates obtained through expert manual case-review.

Conclusions

We have demonstrated the feasibility of prioritizing individuals for rWGS, using solely automated means, and that an automated process can meet or exceed diagnostic yields obtained through manual review of clinical charts. More sophisticated machine learning techniques might further improve performance. Neural and Bayesian networks, and random forest-based approaches generally outperform naïve Bayes. Likewise, addition of other metadata such as provider billing codes, medication histories, ancestry and socioeconomic indicators might still further improve performance. Nevertheless, even without such enhancements, our CNLP/MPSE workflow prioritized patients for rWGS with relatively high accuracy (AUC=0.86), with maximal projected diagnostic yields exceeding the published RCHSD diagnostic rate by 7 percentage points. These results bode well for future improved versions of the pipeline, whatever their final form.

The ability of MPSE to accurately distinguish sequenced from unsequenced probands at RCHSD and to assign high scores to University of Utah probands demonstrates the generalizability of the RCHSD training data, at least between two leading research institutions. Broader generalization, however, remains to be proven. The question is important because as WGS-based diagnosis becomes more widespread, and patients considered become more diverse, clinical cultures and institutional differences in clinical note taking might render the parameters derived from the RCHSD training dataset less effective at some sites. However, the generalizability of the training data used here must be distinguished from generalizability of the CNLP/MPSE workflow. The CNLP portion of the pipeline can be used to create a similar dataset for any institution engaged in WGS-based diagnosis, and, because it is a bayesian classifier, retraining MPSE is straightforward. While we chose to use the CLiX CNLP tool, any NLP software able to produce high-fidelity HPO-based phenotype descriptions could be used upstream of MPSE. Going forward, we will explore the utility of retraining and combining models derived from multi-institutional datasets to further improve performance.
More broadly, recent work has also demonstrated the utility of WGS for Pediatric Intensive Care Unit (PICU) patients, where genome-based diagnoses have ended years-long diagnostic odysseys. The PICU generally has a more heterogeneous patient population than the NICU, because it includes patients affected by cancer, organ transplant, trauma, etc. Thus, an automated tool such as MPSE that could help identify the relatively less common percentage of patients admitted with underlying Mendelian disorders could be especially useful for this population. These facts suggest that large medical systems may have other, non-pediatric patients who would also benefit from WGS—if they could be found. MPSE could in principle be used to search Electronic Medical Record databases for such patients. Outpatient pediatric specialty clinics might also benefit.

Re-analysis of previously reported negative WGS cases is also increasingly an issue. The last decade has witnessed a huge increase in numbers of genes and variants associated with Mendelian conditions, suggesting that many individuals previously undiagnosed by gene panels, WES, and WGS, would benefit from reanalysis in light of our ever-expanding knowledge of genetic disease. Recent work has validated this hypothesis. However, limited reimbursement and resources mean that, to be cost-effective, only those patients with the highest likelihood of diagnosis are currently reanalyzed using WGS technologies. High MPSE scores might also be used to strengthen arguments for reimbursement. Once again, automated approaches such as the one described here, might provide a means to locate and prioritize these patients for reanalysis. More generally, we foresee MPSE as an electronic decision support tool for speeding facilitating the patient review process.

Acknowledgments

We thank Aaron Quinlan for many helpful discussions in the early stages of the project.

Funding Acknowledgment

The preparation of this manuscript was supported by a grant from the Conrad Prebys Foundation.

Author Contributions

MY, BP, CH, and SK wrote the manuscript. BP, JH MY, CH, SK, SMJ, and LB designed the study and analysis strategy. MY, BP, and JH developed the MPSE algorithm. CH, SMB, and MY guided requirements. MM, BP, JH, SZ, and MY performed data analysis. EJ, ESK, and MB compiled cases and clinical evidence. CH provided feedback on features and development. AO, SMJ, LB, and SK sponsored the project and provided helpful discussions and edits of the manuscript.
Ethics approval and consent to participate

The need for Institutional Review Board Approval at Rady Children’s Hospital for the current study was waived as all data used from this project had previously been generated as part of IRB approved studies and none of the results reported in this manuscript can be used to identify individual patients. The studies from which cases were derived were previously approved by the Institutional Review Boards of Rady Children’s Hospital. The Utah NeoSeq Project was approved by the University of Utah Institutional Review Board (IRB).

Competing Interests

MY is a consultant to Fabric Genomics Inc., which has a co-marketing agreement with Clinithink Inc.
BM and JH have received consulting fees and stock grants from Fabric Genomics Inc.
The remaining authors declare that they have no competing interests.

References

